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Abstract: Accurate extraction of Cole parameters for applications in bioimpedance spectroscopy (BIS) 

is challenging. Precise estimation of Cole parameters from measured bioimpedance data is crucial, 

since the physiological state of any biological tissue or body is described in terms of Cole parameters. 

To extract Cole parameters from measured bioimpedance data, the conventional gradient-based non-

linear least square (NLS) optimization algorithm is found to be significantly inaccurate. In this work, 

we have presented a robust methodology to establish an accurate process to estimate Cole parameters 

and relaxation time from measured BIS data. Six nature inspired algorithms, along with NLS are 

implemented and studied. Experiments are conducted to obtain BIS data and analysis of variation 

(ANOVA) is performed. The Cuckoo Search (CS) algorithm achieved a better fitment result and is also 

able to extract the Cole parameters most accurately among all the algorithms under consideration. The 

ANOVA result shows that CS algorithm achieved a higher confidence rate. In addition, the CS 

algorithm requires less sample size compared to other algorithms for distinguishing the change in 

physical properties of a biological body. 
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1. Introduction  

Recently, bioimpedance spectroscopy (BIS) is found to have tremendous applications in medical 

sciences, especially in physiological diagnosis. The major application area of BIS is detection of 

various diseases including cancer. The first step in experimental study of BIS is the measurement of 

bioimpedance (of the biological body under question) as a function of frequency. The measured 
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bioimpedance elucidates the electrical characteristics of biological tissue. In the next step, Cole 

parameters are extracted by fitting the measured bioimpedance data, and finally, the biological tissue 

or body under investigation is described in terms of Cole parameters. The Cole model [1] is the most 

accepted and widely-used impedance model to describe biological tissue or body. As the values of the 

Cole parameters are highly dependent on the cell membranes and quantity of the intracellular and 

extracellular fluid, the parameters of the Cole model provide essential information in characterizing 

the properties of biological tissue, and it is extensively used for practical purposes which include 

determining human body composition [2,3], discriminating tissues of fruit or vegetable [4], the effect 

of moisturizing cream on human skin [5], characterization of prostate cancer [6], the effect of storage 

conditions [7], physiological changes including determining the vegetable quality [8], etc. 

The most efficient optimization method for extracting the Cole parameters is scientifically not 

proven with rigorous and robust analyses of the properties of biological tissue. The gradient-based 

NLS algorithm is the most conventional optimization technique to fit the BIS data and extract the Cole 

parameters [9,10]. The NLS algorithm is well known for its computational simplicity, faster runtime, 

availability and its wide applicability. Unfortunately, the optimization performance of this algorithm 

is unsatisfactory against the existence of noise and outliers in the measured BIS data, which in turn 

affects the precision of the estimated Cole parameters. Because the outcome of the fitting of this 

approach is strongly dependent on the solution vector's starting values, it is prone to converge in local 

minima frequently. Therefore, the NLS algorithm is not a reliable choice for extracting the Cole 

parameters accurately; hence, more efficient algorithms are required. Finding efficient algorithms to 

estimate Cole parameters from measured BIS data is the objective of this present work. 

On the other hand, nature-inspired optimization algorithms are implemented for various real-

world problems due to their remarkable optimizing capabilities. These algorithms are designed by 

simulating various natural intelligent behaviour demonstrated by several creatures. In general, these 

algorithms start with a set of random solutions, and then this set is improved by using mathematical 

equations inspired by nature. Due to the usage of multiple solutions, these algorithms can search more 

areas in the search space. So, if any search agent is trapped in a local solution, other search agents can 

search for the global solution. Another fundamental feature of these algorithms is the use of stochastic 

components. These components allow the algorithms to fluctuate the search agents in a randomized 

manner, increasing the chance of finding the optimal solution. Changing the magnitude of random 

components during the optimization process leads the algorithms to a systematic stochastic search. 

Due to these advantages, many such algorithms are implemented in a large number of popular areas 

such as optimizing neural networks [11], spam and intrusion detection systems [12,13], breast cancer 

detection [14], Internet of Things (IoT) [15], geographic atrophy segmentation for SD-OCT images [16], 

power dispatch problems [17], image segmentation [18], antenna array design [19], PID controller 

design [20], aerospace technology [21], terrorism prediction [22], finding neural unit modules for brain 

network [23] protein structure prediction [24] etc. These capabilities of nature-inspired algorithms 

naturally demand their applicability in the estimation of Cole parameters from measured BIS data. 

In this paper, a novel and robust process is presented to estimate Cole parameters accurately. Six 

different nature-inspired optimization algorithms are used to extract the Cole parameters and compare 

the algorithms’ efficiency with the conventional NLS algorithm. Six nature-inspired algorithms used 

in this work are Cuckoo Search (CS) algorithm [25,26], Grey Wolf Optimization (GWO) [27], Moth 

Flame Optimization (MFO) [28], Particle Swarm Optimization (PSO) [29,30], Sine Cosine Algorithm 

(SCA) [31] and Whale Optimization Algorithm (WOA) [32]. The effectiveness of all algorithms is 
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evaluated over the sets of both simulated BIS data where the noise has been injected intentionally into 

the dataset, as well as the measured BIS data of different root vegetables for analyzing the change in 

physiological properties due to the aging effect. The root vegetables selected for this study are Ginger 

(Zingiber officinale), Potato (Solanum tuberosum) and Sweet Potato (Ipomoea batatas). This research 

work aims to investigate the robustness of each proposed algorithm against unwanted noise and 

determine the most efficient algorithm to gain statistical relevance using a minimum sample size. In 

the case of simulated BIS data, the CS algorithm showed the best-fit result in terms of noise immunity 

and achieved the highest precision in terms of the extracted Cole parameters. For measured BIS data 

of the root vegetables, ANOVA is performed on the relaxation time estimated from the extracted Cole 

parameters between the first and final day data measurement for each algorithm. The experimental 

results illustrate that the CS algorithm achieved the highest efficiency among all the algorithms, using 

a minimum sample size to gain statistical relevance. In this work, all algorithms are implemented using 

Python programming language and ANOVA is performed using the standard libraries available in 

Microsoft Excel. 

2. Cole bioimpedance model and extraction of Cole parameters 

The Cole bioimpedance model [1,4,5] is the most well-known model used for the characterization 

of biological tissue. Figure 1 represents the equivalent circuit of the Cole bioimpedance model. From 

the equivalent circuit, it can be seen that the tissue behaves like an RC series-parallel circuit where a 

resistance 𝑅∞ is connected in series with a parallel combination of a fractional capacitor (𝐶) and a 

resistance (𝑅0 − 𝑅∞) (see Figure 1). 

 

Figure 1. Cole equivalent circuit for biological tissue. 

The mathematical expression for Cole impedance is: 

𝑍 = 𝑅∞ +
(𝑅0−𝑅∞)

1+(𝑗𝜔𝜏)𝛼
          (1) 

where, 𝑗 = √−1, 𝑅0 indicates the impedance at very low frequency, 𝑅∞ indicates the impedance at 

very high frequency, 𝜔  indicates the angular frequency, 𝛼  indicates the dimensionless exponent 
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(0 < 𝛼 < 1  for biological tissue) and 𝜏  indicates the relaxation time of the tissue and Eq. (2) 

represents the mathematical expression of 𝜏. 

𝜏 = [(𝑅0 − 𝑅∞)𝐶]
1

𝛼⁄         (2) 

The mathematical expression of the real and imaginary components of 𝑍 is represented using Eq. (3) 

and (4) [33]. 

𝑍𝑅𝑒𝑎𝑙 = 𝑅∞ +
(𝑅0−𝑅∞)(1+𝜔𝛼𝜏𝛼 cos

𝛼𝜋

2
)
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2
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2
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)
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𝑍𝐼𝑚𝑔 = −
(𝑅0−𝑅∞)(𝜔𝛼𝜏𝛼 sin

𝛼𝜋

2
)

(1+𝜔𝛼𝜏𝛼 cos
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2
)
2
+(𝜔𝛼𝜏𝛼 sin

𝛼𝜋
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)
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The modulus of the impedance 𝑍 is represented by: 

|𝑍| = √(𝑍𝑅𝑒𝑎𝑙)
2 + (𝑍𝐼𝑚𝑔)

2
        (5) 

A typical Cole plot (negative of the imaginary part of the impedance along vertical axis and real 

part of the impedance along the horizontal axis as a function of frequency, also known as Nyquist plot 

in the discipline of electronics) looks like a semi-circle (but practically not exactly semi-circle) and is 

schematically shown in Figure 2. 

 

Figure 2. Typical Cole plot (or Nyquist plot). 

The mathematical equation of the impedance locus in Figure 2 is represented using Eq. (6) [33]. 
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[𝑍𝑅𝑒𝑎𝑙 −
(𝑅0+𝑅∞)

2
]
2

+ [𝑍𝐼𝑚𝑔 −
(𝑅0−𝑅∞) cot(

𝛼𝜋

2
)

2
]

2

=
(𝑅0−𝑅∞)2

4
𝑐𝑠𝑐2 (

𝛼𝜋

2
)    (6) 

Eq. (6) is an equation of a circle whose centre lies below the horizontal axis and mathematical 

expressions of centre of the circle and radius of circle are represented using Eq. (7) and (8) [33]. 

𝑐𝑒𝑛𝑡𝑒𝑟 = (
𝑅0+𝑅∞

2
,
(𝑅0−𝑅∞) cot(

𝛼𝜋

2
)

2
)       (7) 

𝑟𝑎𝑑𝑖𝑢𝑠 =
(𝑅0−𝑅∞)

2
csc (

𝛼𝜋

2
)         (8) 

The mathematics of separating the real and imaginary parts of impedances can also be found in 

standard references [4,5]. Experimentally |𝑍| and the phase angle is measured in the frequency range 

of 1 Hz to 50 kHz. Then the Cole parameters [𝑅0, 𝑅∞, 𝛼, 𝑐] are obtained by fitting the experimental 

data with the theoretical Cole impedance expressed by Eq. (5). In this fitting process, various 

algorithms are investigated. In order to fit experimental BIS data, the objective function is defined as 

the sum of the squared error (SSE) between the complex observed impedance and the predicted 

impedance from Eq. (5). The mathematical representation of the objective function is represented using 

Eq. (9). 

𝑆𝑆𝐸 = ∑ [𝑍(𝑥, 𝑓𝑗) − �̂�𝑗]
2𝑛

𝑗=1          (9) 

where, 𝑍(𝑥, 𝑓𝑗)  is the measured impedance at frequency 𝑓𝑗 , �̂�𝑗  is the estimated impedance at 

frequency 𝑓𝑗 , 𝑥  represents the set of Cole parameters [𝑅0, 𝑅∞, 𝛼, 𝑐]  and 𝑛  is the number of 

frequency points (or simply number of data points). To reduce the complexity of the above equation, 

the real and imaginary components are separated using Eq. (10). 

𝑆𝑆𝐸 = ∑ [ℜ{𝑍(𝑥, 𝜔𝑗) − �̂�𝑗} + ℑ{𝑍(𝑥, 𝜔𝑗) − �̂�𝑗}]
2𝑛

𝑗=1      (10) 

where, ℜ{∙} and ℑ{∙} indicates the real and imaginary components of impedance respectively. 

Finally, the Cole parameters [𝑅0, 𝑅∞, 𝛼, 𝑐] are evaluated by the minimization or optimization of 

the objective function (SSE). During this process, the Cole parameters act as solution vector (𝑋). The 

lower and upper boundaries of each parameter [𝑋𝐿 , 𝑋𝐻] represent the search space of the optimization 

process. At the starting of every algorithm, the initial values of the parameters are calculated using Eq. 

(11). 

𝑋𝑖,0 = 𝑋𝐿 + 𝑟𝑎𝑛𝑑 × (𝑋𝐻 − 𝑋𝐿)         (11) 

where, 𝑋𝑖,0  indicates the initial values for the solution vector (𝑋)  and 𝑟𝑎𝑛𝑑  is a randomly 

generated value between the interval [0,1]. After initialization, every optimization algorithm uses their 

unique mathematical techniques to extract the global values of the Cole parameters by minimizing the 

objective function. 
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3. Experimental protocol and measurement 

In order to get electrical access into biological samples (Potato, Sweet Potato, Ginger), an 

electrode-pair is designed and fabricated. Figure 3 represents a schematic diagram of the fabricated 

electrode-pair. Using a disposable syringe, the mounting structure of the electrode-pair is made. 

Stainless steel is chosen for the electrode material as it is reluctant to react with any other material and 

provides adequate strength at a low wire diameter. Electrode made of a material which reacts with 

biological tissue will definitely yield erroneous results and such electrode should be avoided. The 

distance between the electrodes is 3 mm, and the diameter of the electrodes is 0.28 mm. Throughout 

this work, the penetration depth is kept at 1.5 cm for maintaining identical conditions during 

measurement. A similar experimental procedure can also be found in standard reference [4] on 

bioimpedance measurement. As the Cole parameters (except α) are highly dependent on the distance 

between the two electrodes, this separation is kept constant throughout the experiment. It is to be noted 

here that for a given biological body, the relaxation-time (τ) is independent of the distance between the 

electrodes and it is a characteristic parameter of the biological body. 

 

Figure 3. Schematic diagram of the fabricated electrode-pair. 

We have used a 1 MHz precision LCR meter (Model: 8101G, Make: GW Instek) to measure the 

root vegetables’ BIS data. The LCR meter is calibrated before taking any BIS data measurement to 

remove any parasitic effect. Before penetrating the electrode pairs inside the root vegetables, the 

electrodes are cleaned by the medicated spirit and dried appropriately every time. The LCR meter 

measures the magnitude of impedance and corresponding phase angle using a sinusoid of 1 V (peak-
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to-peak) over a frequency range from 1 Hz to 50 kHz with 200 steps. The measured data is recorded 

by a PC connected with the LCR meter through an RS-232C serial port. 

In order to get experimental BIS data, three commonly available root vegetables, i.e., potato, 

sweet potato and ginger, are considered as biological samples in this study. To analyze the efficiency 

of each proposed algorithm in various BIS data distribution ranges, these specific root vegetables are 

selected for this work as their Cole parameters are located at different BIS data distribution ranges 

from each other. The entire BIS data measurement system of the root vegetables is shown in Figure 4. 

The change in physical properties due to the aging effect of specific root vegetables using Cole 

parameters from measured BIS data is analysed. The BIS measurement is conducted for up to twelve 

days, maintaining a gap of one or two days for each sample. For each measurement day, five different 

measurements of bioimpedance are recorded for every biological sample. Thus, a total of 30 datasets (6 

days × 5 positions) for each biological sample is measured at a controlled temperature of 25 °C and 70% 

humidity. The measurement period and its timeline are illustrated in Figure 5.  

 

Figure 4. Experimental setup. 

 

Figure 5. Pictorial depiction of measurement timeline. 

Each bioimpedance measurement generates a single set of BIS data which contains two hundred 
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data points. As the numerical values of biological tissue-related parameters vary with a large standard 

deviation due to the diversity of the cell size, five such bioimpedance measurement at five different 

positions of each biological sample has been recorded in our study. For vividly analysing the change 

in physical properties, only the first and final day data measurement of each root vegetable is 

considered for the Cole parameter extraction. Consequently, there are ten datasets in total for each 

biological sample to analyse the aging effect of root vegetables. For the convenience of the fitting 

process, from two hundred data points, only fifty data points are selected manually (using loop in 

python), which are distributed at approximately equal distances from each other in imaginary 

impedance and real impedance space. As the relaxation time (𝜏) contains all the Cole Parameters (see 

Eq. (2)), it is the most important tissue characterizing parameter [4,5]. Hence, the relaxation time is 

calculated using Eq. (2) for each case and is used to perform an ANOVA to gain statistical relevance 

for each root vegetable. 

4. Optimization algorithms 

4.1. Non-linear least square optimization 

The least-square optimization is the most widely used method for fitting any linear or non-linear 

curve by minimizing the sum of squared residuals of a set of data points from the plotted curve. There 

are two types of least-square optimization; one is ordinary or linear least-square optimization, where 

the residuals are linear, and the non-linear least-square optimization, where the residuals are non-linear. 

The main objective of this method is to find the optimum value of parameters of a model function to 

fit the curve in the best possible way. 

Suppose, for an optimization problem, the data points are (𝑚1, 𝑛1) , (𝑚2, 𝑛2) , (𝑚3, 𝑛3) , ,, 

(𝑚𝑗 , 𝑛𝑗) in which 𝑚 is the independent variable and 𝑛 is the dependent variable whose values are 

found by observation (through experiment). Here the model function is defined as 𝑓(𝑚, 𝛽), where 𝛽 

is the parameter of the model function, the value of which is to be optimized. The sum of squared 

residuals (𝑆) of the data points are defined using Eq. (12). 

𝑆 = ∑ [𝑓(𝑚𝑖 , 𝛽) − 𝑛𝑖]
2𝑗

𝑖=1         (12) 

The least-square optimization method finds the optimal value of 𝛽  by minimizing 𝑆 . The 

minimum of 𝑆 is found by calculating its gradient with respect to 𝛽 and setting the gradient to zero.  

The NLS algorithm is directly implemented by using the built-in least squares available function 

in a python module named scipy [34]. In the least squares function, the value of maximum iteration is 

adjusted by the requirements of the objective function through an internal method by default. Hence, 

we cannot change the number of maximum iterations. 

4.2. Cuckoo search optimization 

The CS algorithm was introduced by Xin-She Yang and Suash Deb [25], which is inspired by the 

brood parasitism of cuckoos in combination with the Lévy flight behaviour of specific birds and fruit 

flies. Cuckoos are a family of birds who adopted a unique egg-laying strategy to increase the survival 

rate of their species. Some cuckoo species, such as the Ani and Guira, lay their eggs in the nests of 

birds of different host species. If the host birds realise that the eggs are not their own, they can 
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participate in a direct fight with the intruding cuckoos and throw those alien eggs away, or they can 

abandon their nest and construct a new one. Several cuckoo species have evolved due to this, like 

Tapera, which can imitate the host birds’ colour and pattern of eggs. Even some cuckoo chicks can 

mimic the call of host chicks, which increases the survival rate of the cuckoo species. 

In the CS optimization algorithm, each egg in a host bird’s nest represents a solution in 𝑑 -

dimensional search space; each cuckoo can only lay one egg at a time. The goal is to replace a poor 

solution in the nests with a new and better one. In this algorithm, there is no distinction between a 

cuckoo, an egg, or a nest because each cuckoo corresponds to one egg representing one nest, 

corresponding to a single solution vector in 𝑑-dimensional search space. At first, in this optimization 

process, each cuckoo lays one egg and then dumps it in a random nest. Then, the best nests representing 

the best solutions will be carried over to the subsequent iterations. The probability of discovering a 

cuckoo’s egg by the host bird is 𝑝𝑎 ∈ [0, 1]. Hence, a fraction 𝑝𝑎 of the 𝑛 host nests is substituted 

by new nests, representing new randomly generated solutions. 

In this algorithm, both the local and global explorative random walk are manipulated by a 

switching parameter 𝑝𝑎. The mathematical equation of local random walk is represented using Eq. 

(13) [26]. 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝛽𝑠 ⊗ 𝐻(𝑝𝑎 − 𝜖) ⊗ (𝑥𝑗
𝑡 − 𝑥𝑘

𝑡)       (13) 

where, 𝐻(𝑢) indicates a Heaviside function, 𝜖 indicates a random number generated from a 

uniform distribution, 𝑠  is the step size, 𝛽  is a small scaling factor, 𝑥𝑗
𝑡  and 𝑥𝑘

𝑡   are two different 

randomly selected solutions by random permutation. The mathematical equation of the global random 

walk, which is carried out by using Lévy flights is represented using Eq. (14) [26]. 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝛼 ⊗ 𝐿(𝑠, 𝜆)        (14) 

where, 𝐿(𝑠, 𝜆)~
𝜆𝛤(𝜆) sin(𝜋𝜆 2⁄ )

𝜋

1

𝑠1+𝜆 , (𝑠 ≫ 0)        (15) 

Here, 𝛼 indicates the step size scaling factor, ⊗ denotes an entry-wise operation and 𝐿(𝑠, 𝜆) is 

the power-law distribution. The notation ‘∼’ indicates that the random numbers 𝐿(𝑠, 𝜆)  must be 

drawn from the Lévy distribution on the right-hand side with an exponent 𝜆. The gamma function (Γ) 

is defined using Eq. (16). 

𝛤(𝜆) = ∫ 𝑥𝜆−1𝑒−𝑥𝑑𝑥
∞

0
         (16) 

Algorithm 1 Pseudocode for the CS algorithm 

1: Start  

2: Initialize the number of decision variables (𝑑) and the number of populations (𝑛)   

3: Initialize the upper and lower boundary of the decision variables (𝑢𝑏, 𝑙𝑏)  

4: Initialize the maximum number of iteration (Max_iter)  

5: Generate random initial positions of the host nests 𝑋𝑖𝑗  (𝑖 = 1,2, … 𝑛 𝑎𝑛𝑑 𝑗 = 1,2, …𝑑)  

6: while (iteration number < Max_iter) 

7: Select a cuckoo randomly by Lévy fights using Eq. (14)  

8: Calculate its fitness value (𝑓𝑖) using the objective function  

9: Select a nest randomly from 𝑛 nests 
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10: Calculate its fitness value (𝑓𝑗) using the objective function  

11: if (𝑓𝑖 > 𝑓𝑗)  

12:  replace 𝑗𝑡ℎ cuchoo by the new solution 

13: end if  

14: A fraction (𝑝𝑎) of worse nests are eliminated 

15: New nests are generated at new locations using Eq. (13) 

16: Save the best solutions (or nests with the best quality of solutions) 

17: Sort the solutions and find the current best solution 

18: iteration number = iteration number + 1 

19: end while 

20: return best nest (optimal nest position)  

21: end  

4.3. Grey wolf optimization 

The population-based GWO algorithm was introduced by Mirjalili [27], which is inspired by the 

behaviour of the grey wolves in nature. In order to search for the optimal solution, the GWO algorithm 

imitates the social hierarchy and the intelligent hunting strategy of grey wolves. According to their 

social hierarchy, there are four types of grey wolves: alpha, beta, delta and omega. Every type of grey 

wolf plays a different role in hunting, involving three significant actions: seeking prey, encircling prey 

and attacking the prey. 

Considering the domination level, there are four different types of members: alpha, beta, delta 

and omega in a pack of wolves. Alpha is the most dominant wolf in the group, responsible for making 

most of the decisions, and other wolves obey the decisions made by alpha. Beta wolves come next to 

the alpha in the leadership hierarchy of grey wolves, and they help the alpha make decisions. The delta 

wolves come next in this domination level, and they act as scouts, sentinels, and caretakers in the pack. 

The weakest class of domination in a pack of wolves is the omega which follows every decision made 

by other wolves. To implement this system mathematically in the GWO algorithm, the first three best 

solutions are considered as 𝛼 , 𝛽 , 𝛿  and the rest of the solutions are considered as 𝜔 . After this 

consideration, the position of grey wolves (search agents) is updated using the following mathematical 

models. 

Encircling Prey: At first, grey wolves chase the prey in a team, then encircle the prey by changing 

their position with respect to the prey’s movement direction. The mathematical model of this encircling 

behaviour is represented using Eq. (17) and (18)27. 

�⃗⃗� = |𝐶 ∙ 𝑋𝑝
⃗⃗ ⃗⃗  (𝑡) − 𝑋 (𝑡)|         (17) 

𝑋 (𝑡 + 1) = 𝑋𝑝
⃗⃗ ⃗⃗  (𝑡) − 𝐴 ∙ �⃗⃗�         (18) 

where, 𝑡  indicates the current iteration number, 𝑋   indicates the position of a grey wolf, 𝑋𝑝
⃗⃗ ⃗⃗   

indicates the position of the pray, �⃗⃗�  indicates the new position of the grey wolf, 𝐴  and 𝐶  are the 

coefficient vectors which forces the wolves to diverge from the prey to emphasize the global search. 

𝐴  and 𝐶  can be calculated using Eq. (19) and (20) [27]. 
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𝐴 = 2𝑎 ∙ 𝑟1⃗⃗⃗  − 𝑎          (19) 

𝐶 = 2𝑟2⃗⃗  ⃗         (20) 

where, 𝑎  is a parameter which decreases linearly from 2 to 0 with increasing iteration and 𝑟1, 

𝑟2  are randomly generated value from the interval [0,1] . The mathematical equation to update 

parameter a is represented using Eq. (21) [27]. 

𝑎 = 2 − 𝑡 (
2

𝑇
)         (21) 

where, T indicates the total number of iterations. 

Hunting the Prey: After locating and encircling the prey, the alpha usually guides the hunting 

mechanism. In GWO, the alpha, beta and delta are considered the first three optimum solutions 

obtained so far, which is an essential consideration because other search agents (omega wolves) 

improve their positions following to the position of the best search agents. The position of each wolf 

is updated over the iteration using Eq. (22), (23), and (24) [27]. 

𝐷𝛼
⃗⃗⃗⃗  ⃗ = |𝐶1

⃗⃗⃗⃗ ∙ 𝑋𝛼
⃗⃗ ⃗⃗  − 𝑋 |,   𝐷𝛽

⃗⃗ ⃗⃗  = |𝐶2
⃗⃗⃗⃗ ∙ 𝑋𝛽

⃗⃗ ⃗⃗  − 𝑋 |,   𝐷𝛿
⃗⃗ ⃗⃗  = |𝐶3

⃗⃗⃗⃗ ∙ 𝑋𝛿
⃗⃗ ⃗⃗  − 𝑋 |    (22) 

𝑋1
⃗⃗⃗⃗ = 𝑋𝛼

⃗⃗ ⃗⃗  − 𝐴1
⃗⃗⃗⃗ ∙ (𝐷𝛼

⃗⃗⃗⃗  ⃗),   𝑋2
⃗⃗⃗⃗ = 𝑋𝛽

⃗⃗ ⃗⃗  − 𝐴2
⃗⃗ ⃗⃗ ∙ (𝐷𝛽

⃗⃗ ⃗⃗  ),   𝑋3
⃗⃗⃗⃗ = 𝑋𝛿

⃗⃗ ⃗⃗  − 𝐴3
⃗⃗ ⃗⃗ ∙ (𝐷𝛿

⃗⃗ ⃗⃗  )   (23) 

𝑋 (𝑡 + 1) =
𝑋1⃗⃗⃗⃗  ⃗+𝑋2⃗⃗⃗⃗  ⃗+𝑋3⃗⃗⃗⃗  ⃗

3
        (24) 

where, 𝑋𝛼
⃗⃗ ⃗⃗  , 𝑋𝛽

⃗⃗ ⃗⃗   and 𝑋𝛿
⃗⃗ ⃗⃗   are the current position of alpha, beta and delta wolf, respectively and 

𝐷𝛼
⃗⃗⃗⃗  ⃗, 𝐷𝛽

⃗⃗ ⃗⃗   and 𝐷𝛿
⃗⃗ ⃗⃗   are the new position of alpha, beta and delta wolf, respectively. 

Algorithm 2 Pseudocode for the GWO 

1: Start  

2: Initialize the number of decision variables (𝑑) and the number of populations (𝑛)  

3: Initialize the upper and lower boundary of the decision variables (𝑢𝑏, 𝑙𝑏)  

4: Initialize the maximum number of iteration (Max_iter)  

5: Generate random initial positions of the grey wolves 𝑋𝑖𝑗  (𝑖 = 1,2,… 𝑛 𝑎𝑛𝑑 𝑗 = 1,2,…𝑑)  

6: Initialize the values of 𝑎, 𝐴 and 𝐶  

7: Calculate the fitness values of every grey wolf using objective function  

8: 𝑋𝛼 = Position of the alpha wolf (best solution in the search agent) 

9: 𝑋𝛽 = Position of the beta wolf (second-best solution in the search agent) 

10: 𝑋𝛿 = Position of the delta wolf (third-best solution in the search agent) 

11: while (iteration number < Max_iter) 

12:  for each grey wolf 

13:   Update the position of the current grey wolf using Eq. (24) 

14:  end for 

15:  Update the values of 𝑎, 𝐴 and 𝐶 
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16:  Calculate the fitness values of all grey wolfs positions 

17:  Update the values of 𝑋𝛼, 𝑋𝛽 and 𝑋𝛿 

18:  iteration number = iteration number + 1 

19: end while 

20: return 𝑋𝛼 (optimal solution in the search agents)  

21: end 

4.4. Moth flame optimization 

The population-based MFO algorithm was introduced by Mirjalili [28], which is inspired by the 

navigating mechanism of moths at night using a light source known as transverse orientation. When 

moths travel at night, they maintain a fixed angle with respect to the moon during flying. As the 

distance from the earth to the moon is very large (384,400 km), this effective mechanism helps the 

moths to travel long distances in a straight line. However, in the presence of artificial light sources 

such as electric lamps or candles, the transverse orientation creates a converging spiral path around the 

light source as the distance is much smaller compared to the moon. 

In the MFO algorithm, a population of 𝑛-moths work as search agents. Each moth contains a 𝑑-

dimensional vector corresponding to the problem’s solution, and the flames are denoted as flags 

assigned by moths in the 𝑑-dimensional search space. Each moth moves around in the 𝑑-dimensional 

space, and the possible solutions are the positions of the moths. In each cycle, a nominal moth hunts 

around a flame for a better solution, and when one is discovered, it changes the flame’s location. The 

MFO algorithm contains three parts which are defined using Eq. (25) [28]. 

𝑀𝐹𝑂 =  (𝐼, 𝑃, 𝑇)        (25) 

where, 𝐼 is the initialization function for generating a set of random population of moths between 

the upper and lower boundaries of the decision variables and their corresponding fitness values defined 

using Eq. (26) and (27)28. 

𝑀𝑖𝑗 = (𝑢𝑏𝑖 − 𝑙𝑏𝑖) ∗ 𝑟𝑎𝑛𝑑() + 𝑙𝑏𝑖      (26) 

𝑂𝑀 =  𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑀)      (27) 

where, 𝑖 indicates the number of moths, 𝑗 indicates the number of flames and 𝑢𝑏, 𝑙𝑏 are the 

upper and lower boundaries of the decision variables, respectively. 𝑃 is the primary function of this 

algorithm, by which the moths travel around the 𝑑-dimensional search space. Until the 𝑇 termination 

function is achieved, the 𝑃 function receives the matrix of 𝑀 and returns its updated values on each 

iteration. The mathematical equation of the logarithmic spiral function is selected to imitate the 

transverse orientation of moths is represented using Eq. (28) and (29) [28]. 

𝑆(𝑀𝑖 , 𝐹𝑗) = 𝐷𝑖𝑒
𝑏𝑡 cos(2𝜋𝑡) + 𝐹𝑗        (28) 

𝐷𝑖 = |𝑀𝑖 − 𝐹𝑗|          (29) 

where, 𝑆 is the spiral function, 𝑀𝑖 indicates the 𝑖𝑡ℎ moth and 𝐹𝑗 indicates the 𝑗𝑡ℎ flame. 𝐷𝑖 
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is the distance between the 𝑖𝑡ℎ moth and 𝑗𝑡ℎ flame, 𝑏 is a constant which determines the shape of 

the logarithmic spiral and 𝑡 indicates a random number in [𝑟, 1], where 𝑟 is convergence constant 

which linearly decreased from −1 to −2 with increasing iteration for accelerating the convergence 

speed. Lower value of 𝑡 indicates the closer distance from moth to the flame.  

The number of flames is lowered adaptively during the iterations to address the problem of 

diminishing the exploitation of the best promising option. The mathematical equation of this adaptive 

flame reduction during every iteration is represented using Eq. (30) [28]. 

𝑓𝑙𝑎𝑚𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 = 𝑟𝑜𝑢𝑛𝑑 (𝑁 − 𝑙 ∗
𝑁−1

𝑇
)     (30) 

where, 𝑁 indicates the initial number (or maximum number) of flames, 𝑙 indicates the current 

number of iterations and 𝑇 indicates the total number of iterations. 

Algorithm 3 Pseudocode for the MFO 

1: Start  

2: Initialize the number of decision variables (𝑑) and the number of populations (𝑛)  

3: Initialize the upper and lower boundary of the decision variables (𝑢𝑏, 𝑙𝑏)  

4: Initialize the maximum number of iteration (Max_iter)  

5: Generate random initial positions of the moths 𝑀𝑖𝑗  (𝑖 = 1,2, …𝑛 𝑎𝑛𝑑 𝑗 = 1,2, …𝑑)  

6: While (iteration number < Max_iter)  

7:  Update the flame number using Eq. (30) 

8:  Calculate the fitness values (OM) using the objective function 

9:  if (iteration number == 1) 

10:   Best Solution = 𝑠𝑜𝑟𝑡(𝑀) 

11:   Best Fitness = 𝑠𝑜𝑟𝑡(𝑂𝑀) 

12:  else 

13:   Best Solution = 𝑠𝑜𝑟𝑡(𝑀𝑡−1, 𝑀𝑡) 

14:   Best Fitness = 𝑠𝑜𝑟𝑡(𝑀𝑡−1, 𝑀𝑡) 

15:  end if 

16:  for_1 each moth position 

17:   for_2 each dimension 

18:    Update the values of 𝑟 and 𝑡 

19:   Calculate 𝐷𝑖𝑗 using Eq. (29) with respect to the corresponding moth and flame position 

20:    Update 𝑀𝑖𝑗  using Eq. (28) with respect to the corresponding moth position 

21:   end for_2 

22:  end for_1 

23:  iteration number = iteration number + 1  

24: end while  

25: return optimal flame position  

26: end 

4.5. Particle swarm optimization 

The meta-heuristic Particle Swarm Optimization (PSO) algorithm was introduced by Kennedy 

and Eberhart [29], which is inspired by the flocking behaviour of birds in nature. In this algorithm, a 
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population of n particles acts as search agents in the 𝑑-dimensional search space, where each particle 

contains a solution vector of a given optimization problem. The search agents travel in the 𝑑 -

dimensional search space by updating their position at every iteration to find the global solution. The 

algorithm mainly consists of two vectors: the position vector and the velocity vector. The position 

vector defines the current position, and the velocity vector represents the direction and magnitude of 

step size for each dimension and each search agent independently. The position of the search agents is 

updated in every iteration using Eq. (31) [30]. 

𝑋𝑖(𝑡 + 1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝑋𝑖(𝑡)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + 𝑉𝑖(𝑡 + 1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗        (31) 

where, 𝑋𝑖(𝑡) indicates the position of the 𝑖𝑡ℎ particle at 𝑡𝑡ℎ iteration and 𝑉𝑖(𝑡) indicates the 

velocity of the 𝑖𝑡ℎ particle at 𝑡𝑡ℎ iteration. The mathematical equation of the velocity vector of the 

particles is represented using Eq. (32) [30]. 

𝑉𝑖(𝑡 + 1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑤𝑉𝑖(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + 𝑐1𝑟1(𝑃𝑖(𝑡)⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝑋𝑖(𝑡)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) + 𝑐2𝑟2(𝐺(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  − 𝑋𝑖(𝑡)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ )   (32) 

where, 𝑤 indicates the inertial weight, 𝑐1 indicates the individual coefficient, 𝑐2 indicates the 

social coefficient and 𝑟1 , 𝑟2  are random numbers between the interval [0,1] , 𝑃𝑖(𝑡)  indicates the 

best solution obtained by the 𝑖𝑡ℎ particle until the 𝑡𝑡ℎ iteration and 𝐺(𝑡) indicates the best solution 

obtained by all particles until the 𝑡𝑡ℎ iteration. 

According to Eq. (32), there are three components in the velocity vector responsible for the 

movement of particles in the 𝑑-dimensional search space. The first component 𝑤𝑉𝑖(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   is responsible 

for the contribution towards the previous velocity. This contribution depends on the inertial weight 

(𝑤). A larger value of this parameter means a higher affinity to maintain the previous velocity. The 

second component 𝑐1𝑟1(𝑃𝑖(𝑡)⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝑋𝑖(𝑡)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )  maintains the tendency towards the best solution that a 

particle has obtained so far. The individual coefficient 𝑐1  and random number 𝑟1  manipulate the 

tendency towards the best solution of a particle until the 𝑡𝑡ℎ iteration. Finally, the third component 

𝑐2𝑟2(𝐺(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  − 𝑋𝑖(𝑡)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) maintains the tendency around the best solution found by all particles until the 

𝑡𝑡ℎ  iteration. The social coefficient 𝑐2  and random number 𝑟2  manipulate the impact of this 

component. 

Algorithm 4 Pseudocode for the PSO 

1: Start  

2: Initialize the number of decision variables (𝑑) and the number of populations (𝑛)  

3: Initialize the upper and lower boundary of the decision variables (𝑢𝑏, 𝑙𝑏)  

4: Initialize the maximum number of iterations (𝑀𝑎𝑥_𝑖𝑡𝑒𝑟)  

5: Initialize 𝑐1,𝑐2, 𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥, 𝑤𝑚𝑖𝑛 and 𝑤𝑚𝑎𝑥  

6: Generate random initial positions of the particles 𝑋𝑖𝑗  (𝑖 = 1,2, … 𝑛 𝑎𝑛𝑑 𝑗 = 1,2, …𝑑)  

7: while (iteration number < Max_iter) 

8:  Calculate the fitness values of every whale position using objective function  

9:  𝒇𝒐𝒓_𝟏 each particle positions  

10:   𝑃 = Best solution obtained by 𝑖𝑡ℎ particle  

11:   𝐺 = Best solution found by all particle  

12:   Update the value w in each iteration  

13:   𝒇𝒐𝒓_𝟐 every particle dimensions  
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14:    Update the values of 𝑟1 and 𝑟2  

15:    Update the value of the current velocity vector (𝑣𝑖𝑗) using the Eq. (32)  

16:    if (𝑣𝑖𝑗  >  𝑣𝑚𝑎𝑥)  

17:     𝑣𝑖𝑗 = 𝑣𝑚𝑎𝑥  

18:    else if (𝑣𝑖𝑗 < 𝑣𝑚𝑖𝑛)  

19:     𝑣𝑖𝑗 = 𝑣𝑚𝑖𝑛  

20:    end if 

21:    Update the value of the next position vector (𝑋𝑖𝑗) using the Eq. (31)  

22:   end for_2  

23:  end for_1  

24:  iteration number = iteration number + 1  

25: end while  

26: return G (optimal solution in the search agents)  

27: end  

4.6. Sine cosine algorithm 

The population-based SCA was introduced by Mirjalili [31], which is developed by two main 

mathematical equations. The equations are represented using Eq. (33) and (34) [31]. 

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝑟1 × sin(𝑟2) × |𝑟3𝑝𝑖
𝑡 − 𝑋𝑖

𝑡|      (33) 

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝑟1 × cos(𝑟2)× |𝑟3𝑝𝑖
𝑡 − 𝑋𝑖

𝑡|      (34) 

where, 𝑡 indicates the current iteration number, 𝑋𝑖
𝑡+1 indicates the position of the 𝑖𝑡ℎ search 

agent in the (𝑡 + 1)𝑡ℎ  iteration, 𝑋𝑖
𝑡  indicates the position of the 𝑖𝑡ℎ  search agent in the 𝑡𝑡ℎ 

iteration, 𝑟1 represents a random number which defines the magnitude of the range of sin and cosine 

function, 𝑟2 represents a random number which defines the domain of the sin and cosine function and 

𝑟3  represents a random number which indicates the magnitude of the destination contribution for 

reaching a new position to the global minima. As the usage of sine and cosine functions play a vital 

role in these equations, this algorithm has been named Sine Cosine Algorithm. The combination of 

using these two equations is represented using Eq. (35) [31]. 

𝑋𝑖
𝑡+1 = {

𝑋𝑖
𝑡 + 𝑟1 × sin(𝑟2) × |𝑟3𝑝𝑖

𝑡 − 𝑋𝑖
𝑡| , 𝑟4 < 0.5

𝑋𝑖
𝑡 + 𝑟1 × cos(𝑟2)× |𝑟3𝑝𝑖

𝑡 − 𝑋𝑖
𝑡| , 𝑟4 ≥ 0.5

    (35) 

where, 𝑟4 is a random number between the interval [0,1]. All these random variables play a 

crucial role in SCA. The parameter 𝑟1 is responsible for changing the magnitude of the range of sin 

and cosine function, which is the primary mechanism to move the search agents towards or outwards 

the destination. With increasing iteration, the parameter 𝑟1 is linearly decreased in SCA represented 

using Eq. (36)31. 

𝑟1 = 𝑎 − 𝑡 (
𝑎

𝑇
)          (36) 

where, a is a constant and T indicates the total number of iterations. Similarly, the second 

parameter 𝑟2  is responsible for changing the step size of a search agent towards or outwards the 
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destination. The third parameter 𝑟3  indicates the contribution level of the destination, and this 

contribution reduces with increasing the iteration number. Finally, the fourth parameter 𝑟4  allows 

SCA to choose between the sin and cosine function with an equal probability. 

Algorithm 5 Pseudocode for the SCA 

1: Start  

2: Initialize the number of decision variables (𝑑) and the number of populations (𝑛)  

3: Initialize the upper and lower boundary of the decision variables (𝑢𝑏, 𝑙𝑏)  

4: Initialize the maximum number of iteration (Max_iter)  

5: Generate random initial positions of the search agents 𝑋𝑖𝑗  (𝑖 = 1,2, … 𝑛 𝑎𝑛𝑑 𝑗 = 1,2, …𝑑)  

6: while (iteration number < Max_iter) 

7:  Calculate the fitness values of every search agent using objective function  

8:  𝑃 = Best solution obtained so far  

9:  Update the values of 𝑟1, 𝑟2, 𝑟3 and 𝑟4  

10:  Update the position of search agents using Eq. (35)  

11:  iteration number = iteration number + 1  

12: end while 

13: return P (optimal solution in the search agents)  

14: end  

4.7. Whale optimization algorithm 

The meta-heuristic Whale Optimization Algorithm (WOA) was introduced by Mirjalili [32], 

which was inspired by the bubble-net foraging behaviour of humpback whales. Due to their 

considerable bodyweight, humpback whales need to consume a massive number of fish or krill 

regularly. For this reason, they adopted an evolutionary process to trap prey in a specific place as they 

are not fast enough to chase. In this process, when the humpback whales detect a school of krill or 

small fishes, they swim in a spiral-shaped path around the prey while making bubbles. When the school 

of krill or small fishes move towards the surface, humpback whales attack them. 

In WOA, a population of 𝑛 whales act as search agents in the 𝑑-dimensional search space, with 

each whale containing a solution. The search agents travel in the 𝑑 -dimensional search space by 

updating their position in every iteration to find the global minima. The mathematical representation 

of this position update method is represented using Eq. (37) and (38) [32]. 

𝑋 (𝑡 + 1) = 𝑋∗⃗⃗ ⃗⃗ (𝑡) − 𝐴 ∙ �⃗⃗�          (37) 

�⃗⃗� = |𝐶 ∙ 𝑋∗⃗⃗ ⃗⃗ (𝑡) − 𝑋 (𝑡)|          (38) 

where, 𝑋 (𝑡)  represents the position of the search agent at 𝑡𝑡ℎ  iteration, 𝑋∗⃗⃗ ⃗⃗ (𝑡)  indicates the 

possible position of the prey at 𝑡𝑡ℎ iteration, �⃗⃗�  indicates the distance between the whale and the prey, 

𝐴  and 𝐶  are the coefficient vectors which force the whales to diverge from the prey to emphasize the 

global search. The mathematical equations of these coefficient vectors are represented using Eq. (39) 

and (40) [32]. 
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𝐴 = 2𝑎 ∙ 𝑟1⃗⃗⃗  − 𝑎           (39) 

𝐶 = 2𝑟2⃗⃗  ⃗          (40) 

where, 𝑎  is a parameter which decreases linearly from 2 to 0 with increasing iteration and 𝑟1⃗⃗⃗  , 

𝑟2⃗⃗  ⃗ are random vectors in the interval [0,1]. Eq. (37) allows the search agents to travel any areas around 

a given prey (𝑋∗(𝑡)) and the random vectors help the search agents to move in a hyper-rectangle space 

around the prey. The mathematical representation of the spiral movement of whales in the WOA, is 

represented using Eq. (41) [32]. 

𝑋 (𝑡 + 1) = 𝐷′⃗⃗⃗⃗ ∙ 𝑒𝑏𝑙 ∙ cos(2𝜋𝑙) + 𝑋∗⃗⃗ ⃗⃗ (𝑡)      (41) 

where, 𝑏  represents a constant value used to define the shape of the logarithmic spiral, 𝑙 

represents a random number in the interval [−1,1] and 𝐷′⃗⃗⃗⃗  indicates the best solution obtained so far. 

As the humpback whales simultaneously swim around a spiral-shaped path and a shrinking circle around 

the prey, the probability of choosing between the spiral path or shrinking encircling mechanism is 50%. 

The mathematical representation of this simultaneous behaviour is represented using Eq. (42) [32]. 

𝑋 (𝑡 + 1) = {
𝑋∗⃗⃗ ⃗⃗ (𝑡) − 𝐴 ∙ �⃗⃗� , 𝑖𝑓 𝑝 < 0.5

𝐷′⃗⃗⃗⃗ ∙ 𝑒𝑏𝑙 ∙ cos(2𝜋𝑙) + 𝑋∗⃗⃗ ⃗⃗ (𝑡), 𝑖𝑓 𝑝 ≥ 0.5
     (42) 

where, 𝑝 is a random number in the interval [0,1]. 

Algorithm 6 Pseudocode for the WOA 

1: Start  

2: Initialize the number of decision variables (𝑑) and the number of populations (𝑛)  

3: Initialize the upper and lower boundary of the decision variables (𝑢𝑏, 𝑙𝑏)  

4: Initialize the maximum number of iteration (Max_iter)  

5: Generate random initial positions of the whales 𝑋𝑖𝑗  (𝑖 = 1,2, …𝑛 𝑎𝑛𝑑 𝑗 = 1,2, …𝑑)  

6: while (iteration number < Max_iter) 

7:  Calculate the fitness values of every whale position using objective function  

8:  𝑋∗  = Best solution obtained so far  

9:  for each whale position 

10:   Update the values of 𝑎, 𝐴, 𝐶, 𝑙 and 𝑝  

11:   if_1 (𝑝 <  0.5) 

12:    if_2 (|𝐴|  <  1) 

13:     Update the position of the current whale using the Eq. (38) 

14:    else if_2 (|𝐴|  ≥  1) 

15:     Select a random whale position (𝑋𝑟𝑎𝑛𝑑) 

16:     Update the position of the current whale using the Eq. (37) 

17:    end if_2 

18:   else if_1 (𝑝 >  0.5) 

19:    Update the position of the current whale using the Eq. (41) 

20:   end if_1 
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21:  end for 

22:  iteration number = iteration number + 1  

23: end while 

24: return 𝑋∗ (optimal solution in the search agents)  

25: end 

5. Extraction of Cole parameters from simulative experiments 

5.1. Preparation of datasets for simulation  

In order to verify the accuracy of the proposed optimization algorithms, a large number of data is 

generated through simulation and Cole parameters are extracted using those algorithms with 

predefined sets of parameters. For the detail accuracy comparison, simulated datasets are generated 

using three different sets of Cole parameters. Further, two different levels of random noise (0 to ± 5 % 

and 0 to ± 10 %) are introduced in each dataset. Thus, a total of six different sets of simulated datasets 

are generated and considered for investigation. The entire dataset matrix is shown in Table 1. In our 

tables, 1𝐸𝑋 represents 10𝑋. 

Table 1. Specification of the Cole parameters for simulated datasets. 

Set No. R0 (Ω) R∞ (Ω) α C (Fsα-1) Random 

Noise 

1 8350 450 0.65 1.5E-07 5% 

2 8350 450 0.65 1.5E-07 10% 

3 12500 600 0.7 4.0E-08 5% 

4 12500 600 0.7 4.0E-08 10% 

5 18550 750 0.75 2.0E-08 5% 

6 18550 750 0.75 2.0E-08 10% 

Each simulated dataset consists of 50 distributed frequency points (𝑓1, 𝑓2, … , 𝑓50) ranging from 

1 Hz to 50 kHz. The chosen dataset values of Cole parameters are based on some typical range of Cole 

parameters of root vegetables. The random noises in the datasets are imposed using the mathematical 

equations are represented using Eq. (43) and (44)10. 

𝑥𝑖 = 𝑥𝑟𝑖 + 𝛽 × 𝑟𝑎𝑛𝑑 × 𝑟0 × cos(𝜃𝑖)          𝑖 = 2,4, … ,50    (43) 

𝑦𝑖 = 𝑦𝑟𝑖 + 𝛽 × 𝑟𝑎𝑛𝑑 × 𝑟0 × sin(𝜃𝑖)          𝑖 = 2,4, … ,50    (44) 

where, (𝑥𝑟𝑖 , 𝑦𝑟𝑖) is the reference simulated data evaluated from Eq. (3) and (4), 𝑟𝑎𝑛𝑑 is a random 

number with continuous uniform distributions between the interval [−1,1], 𝑟0 is the radius of the 

Cole plot evaluated from Eq. (8) and the value of the coefficient 𝛽 is 0.05 when the random noise 

level is 5%, or 0.1 when the random noise level is 10%. Here 𝜃𝑖 indicates the angle between the 

horizontal axis and the radial direction. The mathematical representation of 𝜃𝑖 is represented using 

Eq. (45)10. 

𝜃𝑖 = cos−1 (
𝑥𝑟𝑖−𝑥0

𝑟0
)           (45) 
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where, (𝑥0, 𝑦0) represents the centre of the circle of Cole Plot. 

5.2. Simulation procedure 

To implement this experiment, Python programming language is used to write every algorithm, 

and the Google Colabotary cloud platform is used to run every algorithm. Except for NLS, functions 

for optimizing the objective function of all the nature-inspired algorithms are written manually using 

their mathematical models and implemented in the python programming language. Throughout the 

experiment, the population size is set to 100 and the maximum iteration is set to 1000 for each 

algorithm. The same upper and lower boundaries of the Cole parameters [𝑅0, 𝑅∞, 𝛼, 𝑐] are maintained 

for all the algorithms, which are: 

𝐿𝑏 = [(𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑅0) − 400𝛺, (𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑅∞) − 1000𝛺, 0, 0] 

𝑈𝑏 = [(𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑅0) + 400𝛺, (𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑅∞) − 1000𝛺, 1, 0.001] 

In the case of the NLS algorithm, the parameters extracted by the algorithm consisted of several 

non-realistic values, which imply the negative capacitance of the Cole model. To avoid these non-

realistic values in NLS, all the invalid solutions are rejected and only the realistic solutions are 

considered for accuracy comparison. 

As the random noise generation is different (randomly) at every algorithm runtime, simulated BIS 

data points distribution differs. This problem of the randomness of fitting performance is avoided by 

running ten times for each dataset for every algorithm. The mean and standard deviation of the 

extracted Cole parameters are considered to evaluate the fitting performance of a given optimization 

algorithm. Also, for better evaluation, the mean and standard deviation of the percentage error of the 

Cole parameters [𝑅0, 𝑅∞, 𝛼, 𝑐] are estimated and compared for every dataset. 

6. Results and discussion 

The first portion of this section contains results the from simulation, while the second portion 

contains results from our experimentation. Simulation results are obtained for seven optimizing 

algorithms. Every algorithm is executed for six different data sets and ten independent runs for a given 

data set. As a representative, the best fit result of ten independent runs for the seven optimization 

algorithms on each data set is shown in Figure 6. 
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Figure 6. Simulated real vs imaginary impedance fitting curve along with the BIS data 

points. (a) Set–1; (b) Set–2; (c) Set–3; (d) Set–4; (e) Set–5; (f) Set–6. 

The results from the simulated data sets are tabulated in Table 2 to Table 7. The mean, standard 

deviation (SD), error percentage of mean and percentage error of the standard deviation of the Cole 

parameters [𝑅0, 𝑅∞, 𝛼, 𝑐]  of ten independent executions for every algorithm on the six different 

simulated datasets are presented in these tables. In addition to this, we have computed the regression 

coefficients of the curve fitting process and execution time taken by each algorithm for each run. The 

average runtime (average of ten run) and average regression coefficient (average of ten) for the six 

simulated datasets are shown in Table 8 and Table 9, respectively. 
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Table 2. Fitting result for dataset–1.  

Algorithm 
Cole 

Parameter 
Mean SD 

Mean 

(% Error) 

SD 

(% Error) 

CS 

𝑅0 8355.107 43.60109 0.465499 0.18987 

𝑅∞ 442.4472 82.89779 13.86056 11.3591 

𝑐 1.53E-07 1.07E-08 5.752247 4.345003 

𝛼 0.648145 0.008704 1.047105 0.815723 

GWO 

𝑅0 8516.781 106.3356 2.05287 1.171322 

𝑅∞ 174.1789 189.1883 66.50499 32.05469 

𝑐 1.98E-07 2.98E-08 32.61239 18.32311 

𝛼 0.616692 0.020714 5.363011 2.715322 

MFO 

𝑅0 8360.918 38.99457 0.399048 0.245265 

𝑅∞ 434.6529 63.47616 12.20855 6.803532 

𝑐 1.52E-07 8.5E-09 4.775471 2.935314 

𝛼 0.648539 0.007158 0.91522 0.581483 

NLS 

𝑅0 8263.502 186.4706 1.96585 1.373121 

𝑅∞ 609.1896 220.0543 51.5426 28.80889 

𝑐 1.23E-07 2.38E-08 17.87038 15.85562 

𝛼 0.675495 0.022221 4.188214 3.04805 

PSO 

𝑅0 8340.11 41.43019 0.384905 0.311703 

𝑅∞ 477.8626 61.75531 12.92831 6.724278 

𝑐 1.47E-07 9.9E-09 5.537009 3.7995 

𝛼 0.653336 0.008239 1.090729 0.759869 

SCA 

𝑅0 8357.048 76.75298 0.766218 0.447792 

𝑅∞ 444.002 149.6776 25.80373 19.19638 

𝑐 1.49E-07 2.1E-08 12.122 5.743632 

𝛼 0.65141 0.01762 2.305968 1.221606 

WOA 

𝑅0 8504.626 173.7235 2.152788 1.728975 

𝑅∞ 133.7984 207.1295 73.3777 40.27614 

𝑐 2E-07 4.72E-08 36.01673 28.12397 

𝛼 0.615262 0.027475 5.716818 3.645498 
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Table 3. Fitting result for dataset–2.  

Algorithm 
Cole 

Parameter 
Mean SD 

Mean 

(% Error) 

SD 

(% Error) 

CS 

𝑅0 8331.722 76.51469 0.654319 0.645926 

𝑅∞ 465.1783 162.6117 28.02085 21.1196 

𝑐 1.47E-07 1.77E-08 8.572788 7.967813 

𝛼 0.65353 0.01626 1.918356 1.580041 

GWO 

𝑅0 8452.877 101.8353 1.490724 0.839543 

𝑅∞ 277.8791 268.2778 55.95175 41.24714 

𝑐 1.8E-07 3.58E-08 23.29324 20.04868 

𝛼 0.629623 0.027445 3.963949 3.359825 

MFO 

𝑅0 8317.254 75.80308 0.817763 0.501983 

𝑅∞ 441.2954 139.1722 24.47761 17.17324 

𝑐 1.4E-07 1.71E-08 11.20951 5.900589 

𝛼 0.656545 0.015108 2.148144 1.183898 

NLS 

𝑅0 8264.379 174.9025 1.923262 1.202436 

𝑅∞ 482.3303 298.8084 56.14603 31.04705 

𝑐 1.25E-07 4.03E-08 26.27051 15.94482 

𝛼 0.671793 0.025564 4.337916 2.654937 

PSO 

𝑅0 8341.505 100.6884 1.030344 0.534797 

𝑅∞ 461.9448 214.6655 32.36107 33.46414 

𝑐 1.49E-07 2.55E-08 14.37228 7.818858 

𝛼 0.652838 0.02335 2.893109 1.953449 

SCA 

𝑅0 8468.51 167.1672 2.010102 1.325415 

𝑅∞ 416.6004 243.5087 46.93615 23.27339 

𝑐 1.69E-07 4.48E-08 24.7908 19.78185 

𝛼 0.641366 0.03315 4.174989 2.93321 

WOA 

𝑅0 8658.739 247.6407 3.838772 2.75908 

𝑅∞ 69.69175 121.1835 84.51294 26.92966 

𝑐 2.48E-07 6.14E-08 65.36786 40.93951 

𝛼 0.594155 0.023889 8.591613 3.675166 
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Table 4. Fitting result for dataset–3.  

Algorithm 
Cole 

Parameter 
Mean SD 

Mean 

(% Error) 

SD 

(% Error) 

CS 

𝑅0 12450.87 55.49121 0.476386 0.341444 

𝑅∞ 678.4986 110.1393 18.17756 12.64957 

𝑐 3.84E-08 2.54E-09 5.929007 4.474517 

𝛼 0.705548 0.008083 1.093483 0.838239 

GWO 

𝑅0 12673.83 124.8358 1.488115 0.827992 

𝑅∞ 285.7712 300.7492 64.46219 30.70736 

𝑐 4.96E-08 7.36E-09 27.13063 12.82874 

𝛼 0.67566 0.0203 4.11711 1.734764 

MFO 

𝑅0 12545.12 107.578 0.715419 0.562783 

𝑅∞ 550.6673 116.7497 15.45127 13.72848 

𝑐 4.15E-08 4.17E-09 8.586247 6.512555 

𝛼 0.696389 0.010951 1.327676 0.885781 

NLS 

𝑅0 12463.08 289.2797 1.881489 1.232587 

𝑅∞ 621.031 353.4196 46.2917 33.19973 

𝑐 4.2E-08 1.35E-08 24.2581 22.78328 

𝛼 0.700222 0.030797 3.314769 2.673716 

PSO 

𝑅0 12530.22 68.91849 0.506973 0.288677 

𝑅∞ 607.0494 136.1877 16.50515 14.63016 

𝑐 4.16E-08 3.03E-09 6.883215 4.696619 

𝛼 0.696964 0.008893 1.125444 0.64481 

SCA 

𝑅0 12639.39 174.8895 1.426418 1.038444 

𝑅∞ 406.8377 198.6138 36.74458 27.3345 

𝑐 4.61E-08 5.27E-09 16.6081 11.24021 

𝛼 0.683891 0.01345 2.338657 1.870694 

WOA 

𝑅0 12874.45 323.1007 3.286846 2.15601 

𝑅∞ 183.37 322.5368 81.95685 27.99813 

𝑐 6.06E-08 1.57E-08 54.92737 33.91322 

𝛼 0.658268 0.029334 6.519934 3.133591 
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Table 5. Fitting result for dataset–4.  

Algorithm 
Cole 

Parameter 
Mean SD 

Mean 

(% Error) 

SD 

(% Error) 

CS 

𝑅0 12502.32 61.33392 0.369068 0.299659 

𝑅∞ 549.9559 138.6465 15.80066 18.27194 

𝑐 3.98E-08 2.23E-09 4.758746 2.5133 

𝛼 0.699875 0.007043 0.86891 0.417034 

GWO 

𝑅0 12629.15 125.8793 1.200762 0.773473 

𝑅∞ 346.0288 190.3282 45.71005 25.98966 

𝑐 4.85E-08 7.42E-09 22.74106 16.35365 

𝛼 0.678427 0.017144 3.282569 2.139709 

MFO 

𝑅0 12549.38 115.955 0.759485 0.626907 

𝑅∞ 530.4325 211.9546 30.57157 18.94237 

𝑐 4.34E-08 4.89E-09 10.09335 10.75526 

𝛼 0.691655 0.013009 1.636477 1.434387 

NLS 

𝑅0 12517.75 317.5052 1.514212 1.98157 

𝑅∞ 646.6096 245.5864 35.70713 18.0482 

𝑐 4.82E-08 1.74E-08 36.81652 29.24245 

𝛼 0.688352 0.035007 4.230395 2.863788 

PSO 

𝑅0 12499.69 104.5448 0.669112 0.449495 

𝑅∞ 550.781 180.5882 25.34567 16.33646 

𝑐 4.11E-08 5.54E-09 9.545965 9.950231 

𝛼 0.697345 0.014724 1.634168 1.271646 

SCA 

𝑅0 12546.87 187.3758 1.073665 1.059448 

𝑅∞ 513.4876 269.9033 36.0485 28.47221 

𝑐 4.46E-08 7.95E-09 16.03272 15.95669 

𝛼 0.689799 0.019263 2.412952 1.860901 

WOA 

𝑅0 12849.17 437.3355 3.941174 1.910974 

𝑅∞ 7.114067 11.44318 98.81432 1.907196 

𝑐 6.22E-08 2.03E-08 61.70747 42.03971 

𝛼 0.653749 0.029382 6.737378 3.961003 
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Table 6. Fitting result for dataset–5.  

Algorithm 
Cole 

Parameter 
Mean SD 

Mean 

(% Error) 

SD 

(% Error) 

CS 

𝑅0 18555.91 94.87219 0.397649 0.294966 

𝑅∞ 729.8596 94.24359 10.46909 6.643216 

𝑐 2.01E-08 9.09E-10 3.639885 2.473776 

𝛼 0.749318 0.004535 0.479505 0.345444 

GWO 

𝑅0 18784.93 168.1242 1.266462 0.90633 

𝑅∞ 258.1689 246.5849 65.57748 32.87798 

𝑐 2.52E-08 2.95E-09 25.75131 14.72728 

𝛼 0.722671 0.013899 3.643881 1.853204 

MFO 

𝑅0 18612.97 59.7197 0.400888 0.230501 

𝑅∞ 726.4454 73.78095 8.662824 4.934799 

𝑐 2.1E-08 1.07E-09 5.098716 5.138468 

𝛼 0.745282 0.005357 0.690903 0.647591 

NLS 

𝑅0 18710.67 439.5838 1.993988 1.425252 

𝑅∞ 411.4352 328.1535 54.13914 30.36275 

𝑐 2.58E-08 6.22E-09 32.36994 27.14105 

𝛼 0.724784 0.021317 3.387174 2.808978 

PSO 

𝑅0 18558.02 78.95401 0.341309 0.231954 

𝑅∞ 713.694 140.9648 14.03412 12.66729 

𝑐 2.01E-08 1.14E-09 4.646816 2.994997 

𝛼 0.749179 0.006885 0.722506 0.525275 

SCA 

𝑅0 18507.79 137.7677 0.581341 0.483328 

𝑅∞ 711.0349 159.9498 17.14317 12.58069 

𝑐 1.99E-08 1.52E-09 5.917017 4.383132 

𝛼 0.74975 0.008204 0.839742 0.643549 

WOA 

𝑅0 19128.02 435.5667 3.131305 2.325331 

𝑅∞ 6.223259 13.02977 99.17023 1.737302 

𝑐 3.25E-08 7.96E-09 62.34656 39.8234 

𝛼 0.698191 0.02071 6.907921 2.761304 

 

 

 

 

 

 



157 

AIMS Biophysics  Volume 10, Issue 2, 132–172. 

Table 7. Fitting result for dataset–6.  

Algorithm 
Cole 

Parameter 
Mean SD 

Mean 

(% Error) 

SD 

(% Error) 

CS 

𝑅0 18557.85 119.6812 0.538261 0.310374 

𝑅∞ 764.4975 156.0411 17.47819 9.878758 

𝑐 2E-08 1.43E-09 5.819743 3.635751 

𝛼 0.750182 0.007329 0.800355 0.493881 

GWO 

𝑅0 18792.46 289.5872 1.66525 1.11991 

𝑅∞ 264.3645 322.357 71.41609 28.96572 

𝑐 2.46E-08 4.68E-09 25.19877 20.86608 

𝛼 0.725975 0.021315 3.563367 2.317313 

MFO 

𝑅0 18545.69 210.0749 0.779122 0.780148 

𝑅∞ 808.1307 177.9713 21.57527 10.6125 

𝑐 2.08E-08 3.15E-09 10.57595 11.80627 

𝛼 0.74811 0.014348 1.284671 1.377204 

NLS 

𝑅0 18636.1 417.4551 1.928049 1.083227 

𝑅∞ 559.6838 330.8975 39.02931 31.13624 

𝑐 2.25E-08 5.42E-09 20.25525 21.23026 

𝛼 0.739264 0.021631 2.073376 2.412223 

PSO 

𝑅0 18577.52 183.9966 0.740051 0.632287 

𝑅∞ 763.5787 160.4681 17.99791 10.07489 

𝑐 2.09E-08 1.78E-09 8.561778 4.777371 

𝛼 0.746066 0.009173 1.141617 0.594705 

SCA 

𝑅0 18673.97 194.1458 1.040875 0.622789 

𝑅∞ 666.2049 225.8871 20.06227 24.46616 

𝑐 2.26E-08 2.74E-09 13.88682 12.47085 

𝛼 0.738022 0.013347 1.722621 1.644273 

WOA 

𝑅0 18659.04 504.2598 1.602743 2.217953 

𝑅∞ 26.16849 73.51608 96.51087 9.802145 

𝑐 2.52E-08 8.02E-09 28.24628 38.23291 

𝛼 0.721951 0.024105 3.739877 3.213961 

 

 

 

 

 

 



158 

AIMS Biophysics  Volume 10, Issue 2, 132–172. 

Table 8. Average execution time (in seconds) of optimization algorithms.  

Algorithm Set–1  Set–2  Set–3  Set–4  Set–5 Set–6  

CS 355.8 334.8 335.6 409.7 401.1 410.3 

GWO 206.5 205.8 206.5 207.1 199.9 196.8 

MFO 211.8 204.1 205 202.6 203.2 206 

NLS 0.317 0.399 0.441 0.429 0.522 0.433 

PSO 204.8 208.3 206.9 201.9 258.8 205.5 

SCA 177.9 178.7 178.1 204.9 177.4 173.7 

WOA 200.1 200.8 201.2 204.6 198.2 197.5 

Table 9. Average regression coefficients of optimization algorithms. 

Algorithm Set–1  Set–2  Set–3 Set–4  Set–5 Set–6  

CS 0.99995 0.99974 0.99988 0.99991 0.99994 0.99989 

GWO 0.99931 0.99923 0.99938 0.99939 0.9994 0.99925 

MFO 0.99994 0.9997 0.99984 0.99971 0.99992 0.99967 

NLS 0.99793 0.99607 0.99718 0.9972 0.99702 0.99833 

PSO 0.99993 0.99955 0.99988 0.99972 0.99993 0.99974 

SCA 0.99953 0.99903 0.99859 0.99884 0.99962 0.99943 

WOA 0.99896 0.99753 0.99792 0.99706 0.99781 0.99839 

From Table 2 to Table 7, it is evident that the CS algorithm consistently shows the lowest 

percentage error in all simulated datasets. In few cases, where 𝑅∞ is extracted, the MFO algorithm 

exhibits more efficiency than the CS. However, when all Cole parameters are taken into consideration; 

in terms of the regression coefficient (see Table 9), CS is the most dexterous in extracting Cole 

parameters, among other algorithms. According to Table 8, CS required the longest execution time 

(runtime), whereas NLS required the least execution time. Contrariwise, the fitting performance of the 

NLS algorithm is the poorest as it shows the maximum percentage error with the widest standard 

deviation for extracting the Cole parameter compared to other algorithms investigated in this study. 

From Table 2 to Table 7, it is clear that consequent to NLS, WOA is the second weakest algorithm in 

this study for extracting the Cole parameters after NLS, while the performance level of MFO and SCA 

algorithms is highest after the CS algorithm when applied to the simulated BIS dataset. 

Analogous to the simulated dataset, the Cole parameters [𝑅0, 𝑅∞, 𝛼, 𝑐] are also extracted from 

the measured BIS data using the selected algorithms on the Google Colabotary cloud platform using 

the python programming language. As the measured BIS data points are fixed, the algorithms were 

executed just once for each dataset. The upper and lower boundaries of the Cole parameters 

[𝑅0, 𝑅∞, 𝛼, 𝑐] were arranged according to the requirements of the algorithms, whereas the value of 

population size and maximum iterations were kept unchanged. As in the simulated BIS dataset, here 

also, all the non-realistic solutions generated by NLS were eliminated, and only the valid solutions 

were taken into account for parameter extraction. The values of the Cole parameters with the 

corresponding relaxation time (τ), estimated from the data collected on the first and final day’s 

measurement, are documented in Table 10 and Table 11. The fitting results of experimentally measured 
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BIS datasets are illustrated in Figure 7 for the entire domain of this investigation. 

Table 10a. Extracted Cole parameters from measured BIS data: day–1, sample: ginger. 

Algorithm Dataset R0 R∞ c α τ 

CS 

1 7693.462 280.0287 9.40E-08 0.701359 3.16E-05 

2 12184.9 485.7388 3.98E-08 0.73637 2.99E-05 

3 15609.6 558.5504 2.94E-08 0.72922 2.51E-05 

4 14792.02 588.8886 2.21E-08 0.762386 2.54E-05 

5 10626.37 415.4719 4.62E-08 0.72362 2.53E-05 

GWO 

1 8115.717 37.86172 1.42E-07 0.655319 3.27E-05 

2 12107.67 521.9325 3.77E-08 0.742136 2.97E-05 

3 15754.38 50.37131 3.63E-08 0.708293 2.63E-05 

4 15548.78 537.6413 2.92E-08 0.729418 2.49E-05 

5 11283.15 18.71866 7.34E-08 0.672344 2.60E-05 

MFO 

1 7931.077 188.2996 1.17E-07 0.678634 3.26E-05 

2 12976.62 266.6878 5.67E-08 0.698996 3.20E-05 

3 15483.69 588.6315 2.81E-08 0.733602 2.49E-05 

4 15164.21 468.9528 2.65E-08 0.744051 2.62E-05 

5 10747.86 347.6836 5.13E-08 0.712747 2.56E-05 

NLS 

1 8003.091 863.3357 5.79E-08 0.767075 3.88E-05 

2 12571.79 388.0774 4.65E-08 0.719687 3.08E-05 

3 15771.71 114.9977 3.68E-08 0.70813 2.66E-05 

4 15848.6 284.6169 3.48E-08 0.709111 2.48E-05 

5 11014.15 38.84329 6.66E-08 0.681393 2.50E-05 

PSO 

1 10334.96 507.148 3.91E-08 0.741208 2.47E-05 

2 14525.98 705.2819 1.96E-08 0.775768 2.53E-05 

3 15416.33 615.4721 2.73E-08 0.73686 2.48E-05 

4 12108.06 523.3497 3.77E-08 0.742132 2.97E-05 

5 7688.86 281.2723 9.38E-08 0.701615 3.16E-05 

SCA 

1 7761.756 282.2747 1.03E-07 0.692948 3.23E-05 

2 12127.68 483.7753 3.91E-08 0.738666 2.99E-05 

3 10926.46 15.31069 6.93E-08 0.677718 2.48E-05 

4 14649.72 505.4236 2.27E-08 0.759351 2.51E-05 

5 16480.96 17.39955 4.52E-08 0.681999 2.59E-05 

WOA 

1 8715.451 16.48389 2.00E-07 0.624807 3.82E-05 

2 12408.9 5.692578 5.20E-08 0.700875 2.81E-05 

3 11452.96 12.4093 7.88E-08 0.665989 2.68E-05 

4 15889.66 6.209528 3.78E-08 0.696796 2.38E-05 

5 14117.94 582.2971 1.74E-08 0.784072 2.37E-05 
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Table 10b. Extracted Cole parameters from measured BIS data: day–1, sample: potato. 

Algorithm Dataset R0 R∞ c α τ 

CS 

1 6784.437 425.3812 3.48E-08 0.809036 3.03E-05 

2 5277.018 262.023 4.84E-08 0.793358 2.78E-05 

3 6006.424 351.0566 3.80E-08 0.803374 2.72E-05 

4 5290.569 270.2913 4.99E-08 0.786737 2.65E-05 

5 4610.466 217.6271 6.11E-08 0.777827 2.56E-05 

GWO 

1 6768.645 428.502 3.41E-08 0.811087 3.03E-05 

2 5383.424 221.2819 5.56E-08 0.778362 2.81E-05 

3 6011.314 346.668 3.85E-08 0.801911 2.72E-05 

4 5306.499 260.6123 5.28E-08 0.781323 2.66E-05 

5 4661.523 210.6044 6.34E-08 0.773852 2.59E-05 

MFO 

1 7108.213 330.9348 4.70E-08 0.777231 3.17E-05 

2 5577.777 170.2114 6.93E-08 0.755561 2.92E-05 

3 6321.668 242.4349 5.44E-08 0.765269 2.83E-05 

4 5086.238 11.24548 1.18E-07 0.705962 2.74E-05 

5 5462.398 206.6779 6.44E-08 0.76027 2.73E-05 

NLS 

1 5654.859 536.8856 4.20E-08 0.818849 3.32E-05 

2 5971.736 409.5504 6.52E-08 0.767889 3.31E-05 

3 7409.137 127.2044 6.57E-08 0.738335 3.18E-05 

4 4918.507 524.2405 4.61E-08 0.81995 3.13E-05 

5 6606.82 24.48344 7.98E-08 0.721148 2.83E-05 

PSO 

1 6769.721 427.5139 3.42E-08 0.810862 3.03E-05 

2 5290.549 263.7434 4.87E-08 0.792756 2.79E-05 

3 6027.266 340.8468 3.93E-08 0.799828 2.72E-05 

4 5301.377 262.3339 5.24E-08 0.782009 2.66E-05 

5 4538.746 268.7027 5.15E-08 0.796312 2.55E-05 

SCA 

1 6884.14 436.2437 3.45E-08 0.81102 3.14E-05 

2 5650.121 228.6919 6.25E-08 0.767744 3.02E-05 

3 6237.115 302.272 4.37E-08 0.788547 2.83E-05 

4 5789.634 46.7237 9.88E-08 0.713622 2.83E-05 

5 4506.641 144.2519 6.76E-08 0.765918 2.46E-05 

WOA 

1 5330.423 29.97276 1.44E-07 0.689759 3.01E-05 

2 5864.459 30.19123 9.85E-08 0.716684 3.01E-05 

3 6557.359 5.60435 7.76E-08 0.722844 2.77E-05 

4 5771.794 12.32718 9.92E-08 0.711542 2.77E-05 

5 7972.236 70.49039 9.35E-08 0.703928 3.56E-05 
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Table 10c. Extracted Cole parameters from measured BIS data: day–1, sample: sweet potato. 

 

 

 

 

 

Algorithm Dataset R0 R∞ c α τ 

CS 

1 6123.375 24.04412 6.83E-08 0.697379 1.42E-05 

2 7251.924 410.3964 4.27E-08 0.727617 1.39E-05 

3 6693.603 108.3904 5.69E-08 0.702039 1.32E-05 

4 7375.01 227.2882 5.26E-08 0.700534 1.29E-05 

5 7763.477 496.6175 3.54E-08 0.733095 1.27E-05 

GWO 

1 5982.713 0.651743 6.33E-08 0.70257 1.35E-05 

2 6722.472 39.62169 6.26E-08 0.691622 1.30E-05 

3 6729.071 605.3094 2.49E-08 0.778225 1.24E-05 

4 7342.617 11.78605 5.75E-08 0.687722 1.24E-05 

5 8113.687 14.06057 5.79E-08 0.675618 1.18E-05 

MFO 

1 5950.225 80.7733 5.85E-08 0.712758 1.38E-05 

2 6747.265 113.5152 6.18E-08 0.695581 1.35E-05 

3 7358.113 107.5596 5.60E-08 0.693426 1.29E-05 

4 7501.023 10.01125 6.90E-08 0.670085 1.25E-05 

5 7999.286 230.4358 4.88E-08 0.696923 1.23E-05 

NLS 

1 6778.698 373.2401 7.70E-08 0.702169 1.95E-05 

2 8344.803 672.7779 6.34E-08 0.703372 1.95E-05 

3 8248.519 1010.959 3.22E-08 0.759184 1.64E-05 

4 7216.378 258.003 4.68E-08 0.71126 1.25E-05 

5 6972.685 798.0274 3.91E-08 0.762757 1.81E-05 

PSO 

1 5667.132 264.7178 3.84E-08 0.756982 1.36E-05 

2 6229.905 462.3135 3.02E-08 0.770612 1.33E-05 

3 6844.226 468.3709 2.90E-08 0.762473 1.27E-05 

4 6822.419 541.3155 2.84E-08 0.764231 1.25E-05 

5 7470.83 632.5326 2.53E-08 0.766193 1.23E-05 

SCA 

1 5947.563 18.95877 6.22E-08 0.704955 1.35E-05 

2 6667.987 15.72864 6.38E-08 0.690488 1.31E-05 

3 7436.287 57.85414 6.06E-08 0.684803 1.28E-05 

4 7356.143 20.11032 6.15E-08 0.680708 1.22E-05 

5 8032.947 12.17506 5.51E-08 0.678429 1.14E-05 

WOA 

1 7027.179 64.32452 1.42E-07 0.637806 1.95E-05 

2 8992.707 40.16405 1.75E-07 0.594842 1.93E-05 

3 8103.199 10.02672 1.01E-07 0.64108 1.53E-05 

4 8545.552 162.7257 7.52E-08 0.65906 1.39E-05 

5 6291.105 5.020217 4.13E-08 0.724691 1.13E-05 
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Table 11a. Extracted Cole parameters from measured BIS data: day–12, sample: ginger. 

Algorithm Dataset R0 R∞ c α τ 

CS 

1 8089.163 344.4093 8.01E-08 0.701555 2.68E-05 

2 13188.74 572.8677 5.18E-08 0.687805 2.34E-05 

3 17018.87 643.7514 2.89E-08 0.712157 2.15E-05 

4 8746.319 173.5967 7.13E-08 0.693259 2.31E-05 

5 16887.76 621.8004 3.65E-08 0.695528 2.29E-05 

GWO 

1 8536.6 35.53251 1.22E-07 0.653039 2.70E-05 

2 8630.923 215.2551 6.61E-08 0.701577 2.29E-05 

3 14124.2 45.809 8.41E-08 0.634149 2.43E-05 

4 16524.59 774.3449 3.16E-08 0.710998 2.26E-05 

5 17884.17 117.2234 4.17E-08 0.671674 2.19E-05 

MFO 

1 8371.311 169.8329 1.05E-07 0.671378 2.70E-05 

2 14177.22 21.28948 8.59E-08 0.631837 2.43E-05 

3 17349.28 515.3969 3.25E-08 0.699779 2.18E-05 

4 17570.15 322.2399 4.81E-08 0.666509 2.38E-05 

5 8852.288 99.99986 7.92E-08 0.681867 2.33E-05 

NLS 

1 8459.787 823.0296 5.80E-08 0.746709 3.22E-05 

2 8913.16 11.76575 8.59E-08 0.671935 2.30E-05 

3 13897.54 251.7571 7.21E-08 0.651751 2.43E-05 

4 17602.12 209.9712 4.92E-08 0.662588 2.35E-05 

5 18043.99 367.402 3.91E-08 0.681145 2.29E-05 

PSO 

1 16964.93 686.7735 2.77E-08 0.716736 2.14E-05 

2 8515.147 274.2588 5.98E-08 0.712239 2.27E-05 

3 16685.3 700.2542 3.38E-08 0.703767 2.27E-05 

4 13023.27 649.6595 4.72E-08 0.697314 2.31E-05 

5 7866.42 355.6623 7.03E-08 0.713224 2.54E-05 

SCA 

1 8765.61 1.841247 1.36E-07 0.643498 2.85E-05 

2 9117.976 4.978508 9.22E-08 0.666332 2.42E-05 

3 17001.82 159.631 4.28E-08 0.67443 2.19E-05 

4 18169.32 3.580493 4.79E-08 0.657861 2.23E-05 

5 13968.02 1.096694 8.34E-08 0.6336 2.34E-05 

WOA 

1 8893.761 84.86687 1.41E-07 0.642066 2.99E-05 

2 9512.243 13.89443 1.14E-07 0.647163 2.63E-05 

3 17832.06 6.464344 5.54E-08 0.648992 2.34E-05 

4 13747.73 8.61681 7.52E-08 0.642903 2.27E-05 

5 17545.07 5.005655 3.89E-08 0.675934 2.07E-05 
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Table 11b. Extracted Cole parameters from measured BIS data: day–12, sample: potato. 

Algorithm Dataset R0 R∞ c α τ 

CS 

1 11354.01 477.0587 3.06E-08 0.785927 3.76E-05 

2 10351.2 534.2516 2.89E-08 0.796439 3.52E-05 

3 9846.035 290.6359 4.60E-08 0.752332 3.45E-05 

4 10985.53 395.7851 3.79E-08 0.755685 3.20E-05 

5 10714.54 453.3936 2.97E-08 0.782035 3.19E-05 

GWO 

1 11297.24 487.8637 2.98E-08 0.788744 3.73E-05 

2 11185.56 79.90168 5.16E-08 0.730766 3.66E-05 

3 9710.933 187.9522 4.80E-08 0.745655 3.32E-05 

4 11085.74 352.8716 4.07E-08 0.748011 3.22E-05 

5 10613.08 479.3758 2.78E-08 0.788931 3.16E-05 

MFO 

1 11793.12 377.4077 3.76E-08 0.763817 3.91E-05 

2 10608.92 387.3821 3.53E-08 0.774038 3.57E-05 

3 11467.22 269.3131 4.88E-08 0.729013 3.35E-05 

4 11104.55 349.2311 3.65E-08 0.7602 3.31E-05 

5 9188.68 420.5378 3.27E-08 0.788397 3.21E-05 

NLS 

1 10151.08 68.83828 5.96E-08 0.722111 3.46E-05 

2 12150.31 15.44233 5.92E-08 0.707095 3.58E-05 

3 11489.92 150.2142 5.20E-08 0.731216 3.84E-05 

4 11936.62 845.9927 3.64E-08 0.769042 3.87E-05 

5 11944.94 233.7714 4.25E-08 0.748977 3.89E-05 

PSO 

1 11328.71 478.1987 3.03E-08 0.786877 3.74E-05 

2 9996.586 538.2481 2.48E-08 0.811579 3.37E-05 

3 10902.72 422.4363 3.64E-08 0.759879 3.18E-05 

4 10619.08 479.078 2.78E-08 0.788796 3.16E-05 

5 9008.531 468.42 2.88E-08 0.801525 3.15E-05 

SCA 

1 11774.9 34.0268 6.33E-08 0.710167 3.93E-05 

2 11294.13 534.7263 3.41E-08 0.778449 3.85E-05 

3 10128.16 159.2286 5.94E-08 0.723457 3.46E-05 

4 11121.71 491.949 3.65E-08 0.760945 3.29E-05 

5 10990.76 279.8179 3.63E-08 0.758628 3.20E-05 

WOA 

1 11007.83 5.550665 4.13E-08 0.740194 3.05E-05 

2 11681.56 82.58986 4.20E-08 0.746602 3.66E-05 

3 9843.775 17.87512 5.57E-08 0.727193 3.27E-05 

4 11543.47 120.0501 5.38E-08 0.716344 3.29E-05 

5 11827.67 8.182302 6.59E-08 0.706241 3.97E-05 
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Table 11c. Extracted Cole parameters from measured BIS data: day–12, sample: sweet potato. 

Algorithm Dataset R0 R∞ c α τ 

CS 

1 6282.79 139.9804 6.48E-08 0.708097 1.58E-05 

2 5429.221 42.76051 9.44E-08 0.684769 1.55E-05 

3 6440.23 140.8335 7.17E-08 0.693234 1.49E-05 

4 5595.099 90.06884 7.27E-08 0.703801 1.49E-05 

5 5108.452 149.2411 7.48E-08 0.710006 1.47E-05 

GWO 

1 5356.193 10.6423 9.55E-08 0.682721 1.51E-05 

2 6223.901 53.90237 6.77E-08 0.700804 1.51E-05 

3 6573.887 11.2678 8.64E-08 0.671988 1.47E-05 

4 5557.628 66.28854 7.20E-08 0.703783 1.46E-05 

5 5102.785 128.3797 7.57E-08 0.708069 1.46E-05 

MFO 

1 5314.295 112.8894 8.55E-08 0.697357 1.56E-05 

2 6281.868 47.59866 7.15E-08 0.695846 1.53E-05 

3 6638.101 10.24548 9.17E-08 0.666995 1.51E-05 

4 5192.593 85.39897 8.61E-08 0.694906 1.48E-05 

5 5516.8 98.56848 6.75E-08 0.710763 1.46E-05 

NLS 

1 6516.524 742.4549 4.21E-08 0.772364 2.09E-05 

2 5568.885 635.3518 6.03E-08 0.754651 2.12E-05 

3 5673.011 413.588 7.71E-08 0.721474 1.99E-05 

4 5764.902 581.7115 4.84E-08 0.763412 1.92E-05 

5 6487.986 876.537 3.68E-08 0.78346 1.98E-05 

PSO 

1 5934.796 271.4696 4.49E-08 0.745577 1.51E-05 

2 5071.576 225.3133 6.01E-08 0.733289 1.51E-05 

3 6257.866 305.3983 5.40E-08 0.724314 1.51E-05 

4 5341.448 229.8399 5.09E-08 0.741371 1.46E-05 

5 5013.395 195.0978 6.49E-08 0.724707 1.46E-05 

SCA 

1 5515.792 3.105888 1.19E-07 0.664306 1.61E-05 

2 5362.137 1.136358 1.15E-07 0.666575 1.52E-05 

3 6258.297 263.4314 5.30E-08 0.72465 1.49E-05 

4 6199.124 1.530367 6.64E-08 0.699264 1.44E-05 

5 5470.83 14.6649 6.56E-08 0.708326 1.37E-05 

WOA 

1 7092.482 48.92921 1.31E-07 0.645007 1.96E-05 

2 5649.366 47.02315 1.37E-07 0.653687 1.72E-05 

3 5451.039 5.000219 1.05E-07 0.67424 1.56E-05 

4 6638.117 11.05685 9.16E-08 0.667093 1.51E-05 

5 5377.788 160.4328 5.56E-08 0.730294 1.43E-05 

 

 

 

 



165 

AIMS Biophysics  Volume 10, Issue 2, 132–172. 

 

Figure 7. Experimental real vs imaginary impedance fitting curve along with the data 

points (a) potato (b) sweet potato (c) ginger. 

ANOVA results Maintaining the proposed experimental protocol, impedance is measured at five 

different positions for every root vegetable for each day of measurement. As the relaxation time (𝜏) 

contains all the Cole parameters [𝑅0, 𝑅∞, 𝛼, 𝑐] , and it is considered as the most significant tissue 

characterizing parameter [4,5]. From the extracted Cole parameters (from measured BIS data), the 

relaxation time (τ) was estimated for each case using Eq. (2). Afterwards, the two-factor analysis of 

variance (ANOVA) without replication was performed between the relaxation time (𝜏) of the first 

and final day of bioimpedance measurement in order to analyze the significant physiological difference 

due to the aging effect of the root vegetables. The calculated values achieved a confidence level greater 

than 95% when ANOVA assessment was performed between the first and final days of bioimpedance 

measurement for every root vegetable. This concludes that the relaxation time, which contains all the 

Cole parameters, successfully distinguishes the biological tissue properties due to the aging effect of 

the root vegetables. The ANOVA assessment (based on τ) between relaxation time (τ) for each root 

vegetable and every optimization algorithm with decreasing sample size is documented in tables 12 

to 14. 
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Table 12. Result of ANOVA for ginger (day 1 vs. day 12). 

Algorithm 
Sample 

Size 
F P-value F crit 

Level of 

Confidence (%) 
Distinguishability 

CS 

5 x 5 24.8813 0.007554 7.708647 99.24462644 Yes 

4 x 4 23.39763 0.016851 10.12796 98.31490629 Yes 

3 x 3 35.81479 0.026804 18.51282 97.31960973 Yes 

2 x 2 42.5831 0.096805 161.4476 90.31954007 No 

GWO 

5 x 5 14.39856 0.019194 7.708647 98.08064059 Yes 

4 x 4 36.55552 0.009075 10.12796 99.09250643 Yes 

3 x 3 17.88388 0.051625 18.51282 94.83754476 No 

2 x 2 7.604831 0.221464 161.4476 77.8535507 No 

MFO 

5 x 5 15.64896 0.016735 7.708647 98.32646484 Yes 

4 x 4 14.68687 0.031311 10.12796 96.86891841 Yes 

3 x 3 16.73596 0.054879 18.51282 94.51208521 No 

2 x 2 41.16376 0.098433 161.4476 90.15666501 No 

NLS 

5 x 5 9.264688 0.03826 7.708647 96.17402081 Yes 

4 x 4 8.094946 0.065368 10.12796 93.46315811 No 

3 x 3 11.15806 0.07913 18.51282 92.08702105 No 

2 x 2 128.3425 0.056049 161.4476 94.39506438 No 

PSO 

5 x 5 18.91051 0.01217 7.708647 98.78297543 Yes 

4 x 4 12.21625 0.039619 10.12796 96.03814133 Yes 

3 x 3 55.40886 0.017573 18.51282 98.24266761 Yes 

2 x 2 59.32272 0.082195 161.4476 91.78047092 No 

SCA 

5 x 5 35.77091 0.003928 7.708647 99.60717848 Yes 

4 x 4 30.93322 0.011467 10.12796 98.85325888 Yes 

3 x 3 24.86668 0.037941 18.51282 96.20594256 Yes 

2 x 2 26.69693 0.121706 161.4476 87.82937211 No 

WOA 

5 x 5 7.682347 0.050243 7.708647 94.9756793 No 

4 x 4 4.992793 0.111534 10.12796 88.84660499 No 

3 x 3 5.107624 0.15229 18.51282 84.77098654 No 

2 x 2 2.328958 0.369284 161.4476 63.07160781 No 
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Table 13. Result of ANOVA for potato (day 1 vs. day 12). 

Algorithm 
Sample 

Size 
F P-value F crit 

Level of 

Confidence (%) 
Distinguishability 

CS 

5 x 5 351.9783 4.75E-05 7.708647 99.99524732 Yes 

4 x 4 242.2716 0.000576 10.12796 99.94237632 Yes 

3 x 3 36944.9 2.71E-05 18.51282 99.99729338 Yes 

2 x 2 12885.06 0.005608 161.4476 99.43917728 Yes 

GWO 

5 x 5 150.2486 0.000254 7.708647 99.97456088 Yes 

4 x 4 115.1328 0.001731 10.12796 99.82691606 Yes 

3 x 3 105.5329 0.009343 18.51282 99.06568748 Yes 

2 x 2 123.9913 0.057019 161.4476 94.29808127 No 

MFO 

5 x 5 158.8314 0.000228 7.708647 99.9771826 Yes 

4 x 4 157.0944 0.001095 10.12796 99.89051222 Yes 

3 x 3 93.41091 0.010536 18.51282 98.94635091 Yes 

2 x 2 227.1336 0.04218 161.4476 95.78203201 Yes 

NLS 

5 x 5 12.21076 0.025023 7.708647 97.49769743 Yes 

4 x 4 9.989781 0.050845 10.12796 94.91548167 No 

3 x 3 5.546781 0.142687 18.51282 85.73134519 No 

2 x 2 10.92836 0.187005 161.4476 81.29948922 No 

PSO 

5 x 5 163.3491 0.000216 7.708647 99.97840277 Yes 

4 x 4 97.86574 0.002197 10.12796 99.78032759 Yes 

3 x 3 59.39373 0.016423 18.51282 98.35768314 Yes 

2 x 2 91.19525 0.066422 161.4476 93.3577674 No 

SCA 

5 x 5 107.4769 0.000489 7.708647 99.95112902 Yes 

4 x 4 64.49205 0.004032 10.12796 99.59683299 Yes 

3 x 3 138.1587 0.00716 18.51282 99.28395932 Yes 

2 x 2 1469.758 0.016602 161.4476 98.33980639 Yes 

WOA 

5 x 5 16.46303 0.015381 7.708647 98.4619227 Yes 

4 x 4 10.03395 0.050572 10.12796 94.9427546 No 

3 x 3 4.546235 0.166645 18.51282 83.33551799 No 

2 x 2 1.242755 0.465479 161.4476 53.45214235 No 
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Table 14. Result of ANOVA for sweet potato (day 1 vs. day 12). 

Algorithm 
Sample 

Size 
F P-value F crit 

Level of 

Confidence (%) 
Distinguishability 

CS 

5 x 5 384.9446 3.98E-05 7.708647 99.99602011 Yes 

4 x 4 431.3412 0.000244 10.12796 99.9755867 Yes 

3 x 3 788.8108 0.001265 18.51282 99.87346745 Yes 

2 x 2 53884.47 0.002742 161.4476 99.72575064 Yes 

GWO 

5 x 5 136.4999 0.000307 7.708647 99.96931206 Yes 

4 x 4 160.0414 0.001065 10.12796 99.89347818 Yes 

3 x 3 91.47587 0.010756 18.51282 98.92442086 Yes 

2 x 2 67.32295 0.077208 161.4476 92.27920594 No 

MFO 

5 x 5 330.1862 5.39E-05 7.708647 99.99460595 Yes 

4 x 4 234.1584 0.000606 10.12796 99.93938652 Yes 

3 x 3 210.3663 0.00472 18.51282 99.52800152 Yes 

2 x 2 45356.66 0.002989 161.4476 99.70107903 Yes 

NLS 

5 x 5 8.979817 0.040075 7.708647 95.99252096 Yes 

4 x 4 7.388535 0.07266 10.12796 92.73395116 No 

3 x 3 11.62828 0.076287 18.51282 92.3713315 No 

2 x 2 78.39841 0.071596 161.4476 92.84037777 No 

PSO 

5 x 5 148.5445 0.00026 7.708647 99.97398679 Yes 

4 x 4 97.43371 0.002211 10.12796 99.77889995 Yes 

3 x 3 51.89439 0.01873 18.51282 98.12697815 Yes 

2 x 2 94.07476 0.065405 161.4476 93.45948752 No 

SCA 

5 x 5 644.7746 1.43E-05 7.708647 99.99857157 Yes 

4 x 4 387.2781 0.000287 10.12796 99.97133091 Yes 

3 x 3 194.757 0.005095 18.51282 99.49046064 Yes 

2 x 2 113.2637 0.059643 161.4476 94.03567181 No 

WOA 

5 x 5 0.412782 0.555535 7.708647 44.44653678 No 

4 x 4 0.024784 0.884906 10.12796 11.50935184 No 

3 x 3 0.481568 0.55948 18.51282 44.05199484 No 

2 x 2 0.683734 0.560147 161.4476 43.9852576 No 

In the factorial analysis, if the value of 𝐹 is greater than the value of 𝐹𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙, then the datasets 

are considered statistically distinguishable (see Table 12 to Table 14). Using this fact, it is evident that 

WOA and NLS algorithms exhibit the lowest level of confidence; in contrast, CS and SCA exhibit the 

highest level of confidence compared to other algorithms for discriminating the aging effect of the 

biological samples. 

We have also investigated the efficiency of each algorithm from the perspective of sample size 

requirement. If the level of confidence is considered with decreasing number of sample sizes (reducing 

the number of datasets) for analyzing the efficacy of proposed algorithms, in that case, the CS 

algorithm requires the lowest number of sample sizes, whereas the NLS algorithm demands the highest 

number of sample sizes for discriminating the aging effect of the biological samples. Therefore, the 

CS algorithm can demonstrate the physiological state of a biological tissue using a smaller number of 

sample size. Figure 8 depicts the graphical representation of the ANOVA results for each root vegetable 
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and each algorithm with sample size variation. 

 

Figure 8. Graphical representation of the ANOVA results for each root vegetables and for 

each algorithm with sample size variation. (a) potato (b) sweet potato (c) ginger. 

7. Conclusions 

In this research, the efficiency of six different types of nature-inspired optimization algorithms is 

investigated with respect to the conventional NLS algorithm when applied to both simulated BIS data 

and experimentally measured BIS data of root vegetables (ginger, potato and sweet potato). In the case 

of simulated BIS data, the CS algorithm outperforms the other selected algorithms by achieving the 

highest fitting results and extracting the Cole parameters most accurately and consistently. Though the 

conventional NLS algorithm is found to be the fastest and simplest algorithm, it is not a reliable 

optimization method as it is susceptible to converge in local minima as a result of its dependance on 

the initial solution vector. Consequently, it exhibited the least efficient level of performance in 

comparison to the other selected algorithms. When ANOVA is performed based on relaxation time 

estimated by fitting experimental data using the selected nature-inspired optimization algorithms, the 

CS algorithm is found to be the best one that provides a higher confidence rate for distinguishability. 
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Additionally, the CS algorithm requires the least amount of sample size to discriminate the change of 

the physical properties due to the aging effect of root vegetables compared to the other selected 

algorithms. Therefore, with statistical relevance, it can be inferred that the CS algorithm is the most 

resilient against unnecessary noise, and it is the most reliable choice to characterize physiological 

attributes of any biological tissue or body using the least amount of sample size. The findings are very 

general and hence, can be directly applied to a wide range of applications of BIS data for physiological 

diagnosis.  
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