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Abstract: The number of daily new cases of an epidemic is assumed to evolve as the exponential of
a Wiener process with Poissonian jumps that are exponentially distributed. The model parameters can
be estimated by using the method of moments. In an application to the COVID-19 pandemic in the
province of Québec, Canada, the proposed model is shown to be acceptable. General formulas for the
probability that a given increase in the number of daily new cases is due to the normal variations of the
continuous part of the process or rather to a jump of this process are given. Based on these formulas,
the probability of observing the likely start of a new wave of infections is calculated for the application
to the COVID-19 pandemic.
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1. Introduction

Let
Y(t) = eW(t) for t ≥ 0, (1.1)

where {W(t), t ≥ 0} is a Wiener process with drift µ and diffusion coefficient σ2. Then {Y(t), t ≥ 0} is
a geometric Brownian motion. Its infinitesimal parameters are given by (µ + 1

2σ
2)y and σ2 y2 (see [1],

p. 186).
Because Y(t) > 0 for any t ≥ 0, geometric Brownian motions are used extensively in financial

mathematics to forecast the future price of stocks; see, for example, [2]. However, it is well known
that diffusion processes with fixed infinitesimal parameters cannot reproduce the sudden increases or
decreases of stock prices or financial indices like the Dow Jones.

A more realistic model is obtained by adding random jumps to the diffusion process, so that it
becomes a jump-diffusion process. The jumps are generally assumed to occur according to a Poisson
process {N(t), t ≥ 0} with rate λ, which is independent of the diffusion process. Moreover, for the sake
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of simplicity, the jumps are often taken to be exponentially distributed independent random variables
U1, U2, . . . with parameter α. Finally, the jumps are assumed to be independent of the Poisson process.

In the case of epidemics, the basic model is the Susceptible–Infected–Recovered (SIR) model in-
troduced by Kermack and McKendrick [3] in 1927 and that has been generalized in various ways since
then. In particular, stochastic versions have been proposed. An optimal control problem for a stochastic
version of the Kermack-McKendrick model has been considered by the author [4].

Since the beginning of the COVID-19 pandemic, many papers have been published on the potential
spread of the disease. Premarathna et al. [5] tried various models to forecast the number of cases in
Sri Lanka. Bhattacharyya et al. [6] also attempted to forecast daily new cases of COVID-19, by using
a hybrid time series model. Ghosh et al. [7] took the transmission of the infection through Brownian
motion-like dynamics into account in their study.

In a mainly theoretical paper, Tesfay et al. [8] proved the existence and uniqueness of the global
positive solution for a stochastic COVID-19 model with jump-diffusion. El Kharrazi and Saoud [9]
simulated the spread of the COVID-19 epidemic by adding a jump-diffusion process in a SIR model.
Finally, Fabiano and Radenović [10] were able to reproduce correctly the first two COVID-19 waves
in Italy by making use of a geometric Brownian motion.

In this paper, our aim is first to find a one-dimensional model for the number X(t) of daily new cases
of a given epidemic at time t. In Section 2, we will assume X(t) evolves as the exponential of a Wiener
process with Poissonian jumps that are exponentially distributed. There will be four model parameters.
We will see how to estimate these parameters by using the method of moments.

In Section 3, the model will be applied to the COVID-19 pandemic, using real data from the
province of Québec, Canada. For this application, it will be shown that the proposed model is ac-
ceptable. Then, general formulas for the probability that a given increase in the number of daily new
cases can be attributed to the normal variations of the continuous part of the process or is rather due
to a jump of this process will be derived. Making use of these formulas, the probability of observing
the likely start of a new wave of infections for the application to the COVID-19 pandemic will be
calculated. Finally, we will end this paper with a few remarks in Section 4.

2. The mathematical model

Let {B(t), t ≥ 0} be a standard Brownian motion (starting from zero) and {N(t), t ≥ 0} be a Poisson
process with rate λ. We assume that the two processes are independent. The stochastic process {Z(t), t ≥
0} defined by

Z(t) = Z(0) + µt + σB(t) +

N(t)∑
n=1

Un, (2.1)

where µ ∈ R and σ > 0 are constants, and U1, U2, . . . are independent and identically distributed (i.i.d.)
random variables that are also independent of the Poisson process, is a Wiener process with Poissonian
jumps. In this paper, we suppose that U1, U2, . . . have the common density function

fU(u) = αe−αu for u > 0. (2.2)

That is, the parent variable U has an exponential distribution with parameter α, so that its expected
value is E[U] = 1/α.
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Next, let X(t) denote the number of new cases of a certain epidemic on day t. We consider the
following model:

X(t) = eZ(t) for t ≥ 0. (2.3)

It follows that {X(t), t ≥ 0} is a stochastic process whose logarithm is a Wiener process with jumps. If
the rate λ of the Poisson process decreases to zero, then {X(t), t ≥ 0} reduces to a geometric Brownian
motion.

There are four parameters in our model: µ, σ, λ and α. In order to estimate these parameters, we
will use the method of moments. Since µt +σB(t) has a Gaussian distribution N(µt, σ2 t), we can write
that

E
[
e−s[µ t+σB(t)]

]
= exp

{
−µt s +

1
2
σ2 t s2

}
, (2.4)

where s is assumed to be a positive constant. Furthermore (see [11]),

E

exp

−s
N(t)∑
n=1

Un


 = exp

{
λt

(
α

α + s
− 1

)}
= exp

{
−λt

( s
α + s

)}
. (2.5)

With the help of Eqs. (2.4) and (2.5), and the fact that the two parts of the jump-diffusion process
are assumed to be independent, we can calculate Ek := E

[
Zk

0(t)
]

for any k ∈ N, where

Z0(t) := Z(t) − Z(0). (2.6)

Here, because there are four parameters to estimate, we must calculate Ek for k = 1, 2, 3, 4. Actually,
the jump-diffusion process {Z(t), t ≥ 0} was recently used by the author in hydrology as a model for
river flows and the four moments that we need were computed. It was found that

E1 = µt +
λ

α
t, (2.7)

E2 = µ2 t2 + σ2 t +
λt (λt + 2)

α2 +
2µλ t2

α
, (2.8)

E3 = µ3 t3 + 3µσ2 t2 +
λt (λ2 t2 + 6λt + 6)

α3 (2.9)

+
3µλ t2 (λt + 2)

α2 +
3λt2 (µ2 t + σ2)

α

and

E4 = µ4 t4 + 6µ2σ2 t3 + 3σ4 t2 +
4µλ t2 (λ2 t2 + 6λt + 6)

α3 (2.10)

+
6λt2 (µ2 t + σ2)(λt + 2)

α2 +
4µλ t3 (µ2 t + 3σ2)

α

+
λt (λ3 t3 + 12λ2 t2 + 36λt + 24)

α4 .

Moreover, because both the Wiener and Poisson processes have stationary and independent increments,
we can write that Z(1) − Z(0), Z(2) − Z(1), Z(3) − Z(2), . . . are i.i.d. random variables.
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Now, let {x1, . . . , xn} be a set of observed daily new cases of the epidemic of interest. We define
zi = ln(xi+1) − ln(xi) for i = 1, . . . , n − 1. To estimate µk := E[Zk

0(1)] by the method of moments, we
compute the point estimates

µ̂k :=
n−1∑
i=1

zk
i

n − 1
(2.11)

and we set µ̂k = µk. In our problem, to obtain point estimates of the four parameters µ, σ, λ and α, we
must solve the system of non-linear equations µ̂k = µk for k = 1, 2, 3, 4. This can be done numerically.

Remark. In the case when there is at least one value of xi which is equal to zero in the data set, we can
simply define the new variable X∗(t) = X(t) + 1, so that xi becomes x∗i := xi + 1.

An alternative procedure to estimate the parameters µ, σ, λ and α is the following:

• from Eq. (2.7) with t = 1 and the equation µ̂1 = µ1, we have

µ = µ̂1 −
λ

α
; (2.12)

• substitute the above expression for µ into the equation µ̂2 = µ2 and then solve for σ in terms of λ
and α;
• substitute the expression for σ into the equation µ̂3 = µ3 and then solve for λ in terms of α;
• substitute the expression for λ into the equation µ̂4 = µ4 to obtain a polynomial equation of degree

9 in α.

If there is only one admissible root of the polynomial equation, then point estimates of the other
three parameters can be calculated by working backwards.

3. Application to the COVID-19 pandemic

We will implement our model using the data for the COVID-19 pandemic in the province of Québec,
Canada, that can be found on the web site https://www.donneesquebec.ca. The data set gives, from
January 23rd, 2020, the number of daily new cases, the cumulative number of cases, the number of
new deaths in various places (home, nursing homes, etc.), the cumulative numbers of deaths in these
various places, as well as the total new deaths and cumulative numbers of deaths.

In our study, we are interested in the observed daily new cases. We used the data until June 16th,
2022. There are 876 observations in the data set.

Remarks. (i) Actually, the first case occurred on February 25th, 2020. Therefore, there are many zeros
at the beginning of the data set, which affects the values of the point estimates of the model parameters.

(ii) We could use the data only from February 25th, 2020. However, there are a few zeros after this date.
So, as mentioned in the previous section, we will consider the variable x∗i := xi + 1 for i = 1, . . . , 876.

The values of xi and ln(x∗i ) for i = 1, . . . , 876 are shown in Figures 1 and 2, respectively. We can see
the various waves of infections since the beginning of the pandemic. Because the penultimate wave is
much larger than the others, the waves appear more clearly in Fig. 2. It seems unlikely that especially
the penultimate wave (in the case of Fig. 1) or the first one (in the case of Fig. 2) could be interpreted
as values taken by a Wiener process with constant drift. It is more plausible to assume that these are
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Figure 1. Number of daily new cases from January 23rd, 2020 to June 16th, 2022.

Table 1. Point estimates µ̂k of the moments µk for k = 1, 2, 3, 4.

k 1 2 3 4
µ̂k 0.00708 0.04620 0.00946 0.01823

observations from a diffusion process with jumps. The consecutive jumps of the Poisson process are
the probable cause of the observed waves.

In Figure 3, the histogram of the differences xi+1 − xi from February 25th, 2020 to June 16th, 2022
is presented. It is clear that the differences are not normally distributed. This is confirmed by the
probability plot shown in Figure 4.

The histogram and the probability plot of the differences ln(xi+1) − ln(xi) from February 25th, 2020
to June 16th, 2022 are presented respectively in Figures 5 and 6. We see that the normality assumption
is much more plausible. However, performing the Anderson-Darling normality test with the help of
the statistical software program Minitab, this assumption is strongly rejected. This is hardly surprising.
Indeed, there are 843 observations in the data set. It is well known in statistics that by increasing the
size of the random sample, every potential model for the data will eventually be rejected.

A mathematical model for a phenomenon like an epidemic is obviously a simplification of the real
process. It is impossible to find an exact model, even a stochastic one. The aim of this paper is to
propose a model that reasonably describes the evolution of the epidemic and that can be useful.

To justify the use of our model, we drew a random sample of size 30 from the data set. The
probability plot of this random sample is shown in Figure 7. This time, the normality assumption is
easily accepted. The p-value of the test is equal to 0,814. Therefore, though not perfect, the proposed
model seems at least acceptable.

Next, the point estimates µ̂k of the moments µk are given in Table 1 for k = 1, 2, 3, 4. Then, proceed-
ing as explained above, we find that the parameter α satisfies the following ninth-degree polynomial
equation:

8 × 10−21α9 + 1 × 10−17α6 + 1 × 10−16α4 + 1 × 10−14α3 + 0.0116α = 0.0034. (3.1)
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Figure 2. Logarithm of the number of daily new cases (+1) from January 23rd, 2020 to June
16th, 2022.

Table 2. Point estimates µ̂k, k = 1, 2, 3, 4, for the time periods I (January 23rd, 2020 to April
4th, 2021) and II (April 5th, 2021 to June 16th, 2022).

Period µ̂1 µ̂2 µ̂3 µ̂4

I 0.01610 0.05164 0.01531 0.03000
II −0.00192 0.04078 0.00363 0.00645

This equation has actually only one real root:

α = 2.9273, (3.2)

which is positive, as required. From the point estimate α̂ = 2.9273 of α, we deduce that

λ̂ = 0.0355, σ̂ = 0.1946 and µ̂ = −0.00503. (3.3)

Hence, according to the model, the annual rate of events of the Poisson process is approximately
equal to 13. Furthermore, the average percentage increase of daily new cases produced by an event is
e1/α − 1 ' 41%.

Remark. Another way to estimate the parameters λ and α is to first define what constitutes a jump
and then compute the average increase caused by a jump. However, this technique is rather subjective,
because in practice there are several instances when it is not obvious whether the observed increase in
daily new cases is due to the variations of the continuous part of the stochastic process or is indeed the
result of a new event of the Poisson process. Therefore, the method proposed above to estimate the
four model parameters simultaneously seems to us more reliable.

In practice, the model parameters are not constants, but are rather functions of the time t. The point
estimates µ̂k, k = 1, 2, 3, 4, for the periods from January 23rd, 2020 to April 4th, 2021 (437 data points)
and from April 5th, 2021 to June 16th, 2022 (438 data points) are presented in Table 2. Proceeding as
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Figure 3. Histogram of the differences xi+1− xi from February 25th, 2020 to June 16th, 2022.

above, we find that for the time period I, the point estimates of the model parameters are

α̂ = 2.4226, λ̂ = 0.0304, σ̂ = 0.2025 and µ̂ = 0.00356. (3.4)

These point estimates are close to the corresponding values computed from the whole data set. How-
ever, in the case of the time period II, we calculate

α̂ = 10.3709, λ̂ = 0.7185, σ̂ = 0.1656 and µ̂ = −0.0712. (3.5)

While σ̂ is comparable to the previous values, the other point estimates are much larger (in absolute
value). This can at least partly be explained by the fact that at the beginning of the first time period,
there were many zeros and small values of ln(x∗i ). In the second time period, there was much more
volatility. At any rate, it is clear that the point estimates should be updated frequently.
Remark. In the time period II, the polynomial equation satisfied by the parameter α is

7 × 10−22α9 − 1 × 10−18α6 − 2 × 10−17α4 + 1 × 10−14α3 − 0.0015α = 0.0050. (3.6)

This equation has two real roots: 10.3709 and 194.1176. The solution α = 194.1176 must however be
discarded, because it leads to a negative value of σ̂2.

We will now compute the probability that the increase of observed new cases likely indicates that a
new wave of infections has started, or is rather simply due to the normal variations that we can expect,
according to our model.

A jump-diffusion process is a continuous-time stochastic process. However, the observations are
available on a daily basis. Therefore, if a new wave has indeed started, the number of new daily
cases is expected to increase significantly. This increase cannot in general be attributable solely to the
continuous part of the stochastic process.

Let F denote the event that there is no jump on a given day. If the event F occurs, the probability
that the number of new cases increases by at least r%, compared to the previous day, is given by

p1(r) := P
[

X(t)
X(t − 1)

≥ 1 + r
∣∣∣∣∣F]

= P
[
eµ+σ [B(t)−B(t−1)] ≥ 1 + r

]
(3.7)
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Figure 4. Probability plot of the differences xi+1 − xi from February 25th, 2020 to June 16th,
2022.

= P
[
eµ+σZ0 ≥ 1 + r

]
,

where Z0 is a standard Gaussian random variable. We thus have

p1(r) = 1 − Φ

(
ln(1 + r) − µ

σ

)
, (3.8)

where Φ(·) is the distribution function of Z0.
When there is a jump on day t, we have

p2(r) := P
[

X(t)
X(t − 1)

≥ 1 + r
∣∣∣∣∣F′] = P

[
eµ+σZ0+U ≥ 1 + r

]
. (3.9)

We can write that

p2(r) =

∫ ∞

0
P

[
eµ+σZ0+u ≥ 1 + r

]
αe−αu du (3.10)

=

∫ ∞

0

[
1 − Φ

(
ln(1 + r) − µ − u

σ

)]
αe−αu du.

The probabilities p1(r) and p2(r) are given in Table 3 for various values of r. These probabilities
were computed with the point estimates of the parameters µ, σ and α calculated by using the whole
data set. We see that a daily increase of at least 10% of new cases is not unlikely, even in the case of
no jump on that day. However, a daily increase of at least 20% is much likelier if a jump occurred. If
the number of new cases was already quite large and has doubled on a given day, it is almost certain
that a jump occurred that probably indicates the start of a new wave of infections.

Moreover, let us define the event Gr: the number of new cases increases by at least r%, compared
to the previous day. Neglecting the probability of observing two or more jumps on a given day, we can
write that

P[Gr] = p1(r) · P[F] + p2(r) · P[F′] = p1(r) ·
(
1 − e−λλ

)
+ p2(r) · e−λλ.
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Figure 5. Histogram of the differences ln(x∗i+1) − ln(x∗i ) from February 25th, 2020 to June
16th, 2022.

Table 3. Probabilities p1 and p2 defined respectively in (3.8) and (3.10) for various values of
r computed with the point estimates α̂ = 2.9273, µ̂ = −0.00503 and σ̂ = 0.1946.

r 0.05 0.10 0.20 0.50 1
p1(r) 0.3911 0.3031 0.1678 0.0175 0.00017
p2(r) 0.7776 0.7226 0.6116 0.3493 0.1523

It follows that the probability that a jump took place on a given day, given that the event Gr occurred,
is given by

P[F′ | Gr] = P[Gr | F′]
P[F′]
P[Gr]

= p2(r)
P[F′]
P[Gr]

.

The value of this conditional probability was computed with λ̂ = 0.0355 and can be found in Table 4.
Finally, we could have computed the probability of consecutive daily increases to detect the onset

of a new wave more reliably.

4. Conclusion

In this paper, a jump-diffusion process has been proposed as a model for the logarithm of the num-
ber of daily new cases of a given epidemic. The model was applied to the case of the COVID-19
pandemic. The four model parameters are easy to estimate by using the method of moments. Once
these parameters have been estimated, we could use them to forecast the number of daily new cases for

Table 4. Conditional probability P[F′ | Gr] that a jump took place, computed for various
values of r with the point estimate λ̂ = 0.0355.

r 0.05 0.10 0.20 0.50 1
P[F′ | Gr] 0.0659 0.0780 0.1145 0.4146 0.9695
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Figure 6. Probability plot of the differences ln(x∗i+1) − ln(x∗i ) from February 25th, 2020 to
June 16th, 2022.

Figure 7. Probability plot of a random sample of size 30 from the differences ln(x∗i+1)− ln(x∗i )
between February 25th, 2020 and June 16th, 2022.

any number of days ahead. However, because in practice the model parameters are not fixed, but are
rather varying in time, their point estimates should be updated regularly.

Based on our model, we were able to compute the probability that the increase in the number of
new cases on a given day likely signals the start of a new wave of infections.

Diffusion processes with jumps have been used for several years in financial mathematics to model
the evolution of various stock market indices or commodity prices. In the case of epidemiology, there
are still few papers in which the authors have used these processes as models.

It is unlikely that any one model can be used successfully for every possible type of epidemic, or
even for all countries affected by a certain epidemic. In this paper, we saw that the proposed model
seems at least realistic in the case of the COVID-19 epidemic in the province of Québec. It can be
expected to be acceptable for countries such as the United States and those in Western Europe as well.

AIMS Biophysics Volume 9, Issue 3, 271–281.



281

Finally, instead of using a jump-diffusion process, we could have considered a diffusion process
whose infinitesimal parameters are time-dependent and are estimated by computing, for instance, a
one-week moving average.
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