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Abstract: Mucormycosis infection may develop after using steroids treatment to improve the severely 

of the symptoms in coronavirus patients. The rising in the infection rate of mucormycosis has been 

noticed in patients after COVID-19 infection. To understand the high morbidity mucormycosis 

coinfection, the cell surface Glucose Regulated Protein 78 (CS-GRP78) was docked to the virus ACE2-

SARS-CoV-2 RBD to create the ACE2-SARS-CoV-2 RBD-GRP78 complex which facilitates the virus 

entrance into the cell. The spore coat protein homolog 3 (CotH3) of mucormycosis was modeled and 

docked to the ACE2-SARS-CoV-2 RBD-GRP78 complex. The binding energies of CotH3 with RBD, 

ACE2, and GRP78 were calculated. The binding results show that GRP78 substrate-binding domain β 

weakly binds to the spike RBD combined with ACE2 of the spike RBD-ACE2 complex. Its main 

function is to stabilize the binding between RBD and ACE2, while CotH3 has a strong affinity for the 

SARS-CoV-2 RBD, but not for ACE2 or GRP78. The CotH3 appeared to have the same affinity to 

RBD in the SARS-CoV-2 lineages with some preference to the lineage B.1.617.2 (Delta variant). The 

complex design illustrates that the coat protein of the fungi is more likely linked to the spike protein 

of the SARS-CoV-2 virus, which would explain the increased mortality mucormycosis coinfections in 

COVID-19 patients. 
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1. Introduction 

In early May 2021, the rare disease mucormycosis has been declared an epidemic and a life-

threatening infection in India and other South Asian countries. Mucormycosis, also known as 

zygomycosis and phycomycosis, is a rare and uncommon infection caused by a group of fungi named 

mucormycetes that are found to be residing in the atmosphere and primarily affect individuals with 

comorbidities or immunocompromised health problems. The inhalation of fungus spores is the common 

mode of contamination, however, it can happen as a consequence of a bodily cut or a burn [1,2]. There 

are different types of mucormycosis, including 1) Rhinocerebral mucormycosis which affects the sinus 

and can spread to the brain, commonly occurring in uncontrolled diabetic patients and people who had 

kidney transplant [3–5]; 2) Pulmonary mucormycosis which is commonly observed in cancer patients 

and people who had organ or stem cell transplant [6]; 3) Gastrointestinal mucormycosis which is 

commonly observed in young children and premature born babies who might have surgery or received 

medications that lowered their germ defense ability [7,8], 4) Cutaneous mucormycosis which occurs 

when the fungi break through the skin due to cuts, burns, surgery or skin trauma that can be observed 

in people who do not have compromised immune system [9]; and 5) Disseminated mucormycosis 

which spreads through the bloodstream and mostly affects the brain and other organs including the 

heart and spleen [10].  

India experienced the second wave of coronavirus 2019 (COVID-19) infections nearly a year 

after the pandemic was announced. The dominant strain was then named the Delta variant and 

classified as a strain of concern due to its increased transmissibility and disease severity, according to 

the Centers for Disease Control and Prevention (CDC) variants classification [11]. Virus strains that 

scientists consider are more transmissible or capable of producing more severe illnesses are classified 

as variants of concern (VOC), including B.1.1.7 lineages (Alpha variants), B.1.351 lineages (Beta 

variants), P.1 lineages (Gamma variants), B.1.427 and B.1.429 lineages (Epsilon variants), and 

B.1.617.2 and AY lineages described as Delta variants [12]. 

Mucormycosis symptoms vary depending on where the fungus is growing in the body and some 

of the mucormycosis symptoms are similar to those symptoms reported after COVID-19 infection. 

Symptoms of rhinocerebral mucormycosis can include headache, sinus or nasal congestion, and fever; 

symptoms of pulmonary mucormycosis may include fever, cough, chest pain, and shortness of breath; 

while symptoms of gastrointestinal mucormycosis may include abdominal pain, nausea, and vomiting. 

Mucormycosis is more common in people with diabetes and ketoacidosis, as well as those receiving 

high dosages of corticosteroids after COVID-19 infection. The combination of various clinical data 

and the isolation of the fungus from clinical samples in culture is required for the probable diagnosis 

of mucormycosis [1,13,14]. 

Several risk factors have been reported that would increase the mucormycosis epidemic during 

the COVID-19 pandemic. Diabetes mellitus, chronic hypertension, cardiovascular diseases, and renal 

diseases are among the most prominent risk factors linked to an elevated mucormycosis infection rate 

among COVID-19 patients in India, South Asia, the United States of America, Egypt, Iran, Brazil, 

Chili [15–18]. Patients with a past medical history of one or more comorbidities and those who have 

recovered from COVID-19 infection are more susceptible to mucormycosis infection. In addition, it 

has been noted that unwarranted medication used for treating severe COVID-19 symptoms might have 

increased patients’ likelihood of mucormycosis infection, where steroids are the most frequently 

prescribed medication for COVID-19, followed by Remdesivir, antibiotics, and Tocilizumab [16,19]. 
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The infection rates have been noted to vary among different regions where high infection rates in the 

United Kingdom, France, Italy, Austria, and Mexico, is reported among COVID-19 patients with organ 

transplants and immunocompromised people [20–23].  

Mucormycosis disease incidence and infection rates have been increasing, particularly during and 

after infection with the virus causing the COVID-19, and have been observed in India during its second 

wave of infection [24,25]. Patients with severe COVID-19 symptoms, particularly those admitted to 

the hospital and into the intensive care unit, are more prone to develop this fungal infection, which has 

been associated with serious illness and death [22]. COVID-19 specific treatments, such as receiving 

high-dosage corticosteroids that had been used to treat severe COVID-19 cases, are more likely to 

increase the risk of mucormycosis in COVID-19 patients [17,26].  

Mucormycosis is not a new form of fungus, it is also known as the black fungus, and it is caused 

by species called Mucorales with Rhizopus Oryzae being known the most. Up to 70% of all cases of 

mucormycosis are caused by this fungus [27–29]. Mucormycosis infection is more likely in individuals 

who have a weak immune system. Patients with comorbidities like diabetes are more susceptible to 

contract mucormycosis, as are those taking steroids to treat severe COVID-19 symptoms. 

Mucormycosis, on the other hand, is not a contagious disease [30]. Intravenous catheterization and the 

use of broad-spectrum antibiotics are risk factors for getting mucormycosis. Mucormycosis can also 

develop as a result of surgical procedures, hyperalimentation, or malnutrition [31].  

Global epidemiological studies of mucormycosis are reasonable in assessing the disease pattern 

and the infection incidence among people who are at high risk in different countries. Mucormycosis 

has diverse causal agent factors depending on the geographic location. Rhizopus arrhizus is reported 

to be the most common agent isolated globally, however, other agents such as Apophysomyces is found 

to be dominant in Asia, Lichtheimia species are found to be dominant in Europe, while Rhizopus 

homothallicus, Mucor irregularis, and Thamnostylum lucknowense are reported mostly in Asia [32], [33]. 

The number of epidemiological studies determining the burden of infection is limited, and disease 

agents have been associated with geographic dispersion. Study findings showed some significant results 

of mucormycosis coinfection rate reported in certain countries may be due to the frequency of in 

COVID-19 patients.  

From molecular approach, Mucorales bind to the host cell using the endothelium cell receptor 

glucose-regulated protein 78 (GRP78) [34–37]. The pathogenesis of mucormycosis is complicated by 

the fungus' interaction with the endothelium cells that line the blood vessels. Induced endocytosis allows 

Rhizopus Oryzae strains to attach to human umbilical vein endothelial cells and invade them. [38–40]. 

Gebremariam et al. found the spore coat protein homolog 3 (CotH3) cell surface protein that binds to 

GRP78 and examined its role in mucormycosis pathogenesis, where CotH3 acts as a fungal ligand 

during cell-surface attachment and invasion [41]. 

The spore coat protein homolog (CotH) cell surface proteins, particularly CotH3, are fungal 

ligands that enable attachment to the host cell invasion [27–29]. Mucormycosis is characterized by 

vascular infiltration. The fungal ligands for GRP78 were discovered to be Mucorales spore coat protein 

homologs (CotH). CotH proteins, which were abundant in Mucorales, were absent in noninvasive 

pathogens [41]. By binding to GRP78, the heterologous development of CotH3 and CotH2 in 

Saccharomyces cerevisiae was able to gain the ability to penetrate host cells. According to homology 

modeling research, GRP78 and both CotH3 and CotH2 have structurally compatible interactions [35,42]. 

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the coronavirus 

disease COVID-19. Understanding SARS-CoV-2 transmission and pathophysiology requires knowledge 
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of the entrance receptor. Early research suggested that the SARS-CoV-2 entrance receptor is angiotensin-

converting enzyme 2 (ACE2), the receptor for entrance into the lung epithelial cells [43], [44–46]. The 

cell-surface Glucose Directed Protein 78 (Cs-GRP78) can also act as a multifunctional receptor 

interacting with many ligands and proteins [47–49]. GRP78's substrate-binding domain beta (SBD) 

has been identified as the binding site for the C480-C488 region within the SARS-CoV-2 spike 

receptor-binding domain (RBD) [50,51]. Therefore, CS-GRP78 has been predicted to bind to the 

SARS-CoV-2 spike protein near the putative host cell receptor ACE2 [52,53], where GRP78 depleting 

antibodies blocks the viral entry; hence, GRP78 in association with both ACE2 and the spike proteins 

would prevent SARS-CoV-2 invasion of the cell [54,55].  

The current work is a computational modeling design of the molecular multi-complex formed by 

the binding between ACE2 (an entry point in human cells for the coronavirus SARS-CoV-2), RBD 

(the receptor-binding domain of the coronavirus spike protein), GPR78 (a glucose-regulated protein, 

which acts as a receptor for host cell invasion of fungi belonging to the Mucorales species, responsible 

for mucormycosis infection), and CotH3 (a spore coat protein that binds to GPR78 and has a role in 

the mucormycosis pathogenesis). The assumption is that multiple binding with molecular interactions 

favors the coinfection between the coronavirus SARS-CoV-2 and the mucormycosis fungi, which 

would explain why patients with COVID-19 are more likely to develop mucormycosis infection 

resulting in high morbidity and mortality rates. 

2. Materials and methods 

2.1. ACE2-RBD interactions 

The Protein Data Bank (PDB ID: 6M0J) provided the crystal structure of the SARS-CoV-2 spike 

receptor-binding domain bound to ACE2 (ACE2-RBD). The binding energy of ACE2-RBD (6M0J) 

was calculated using the end-point free energy calculation approach called the Molecular Mechanics-

Generalized Born Surface Area (MM/GBSA) by using HawkDock web server, a tool used for the 

protein-protein complex structural prediction and analysis [56]. This method is extensively used to 

estimate the free binding energies and to find the correct binding conformations for protein-protein 

systems, treating water molecules explicitly is a rigorous technique to account for the solvent effect. 

The docked structure is then uploaded to PDBePISA for analyzing the interactions of the proteins. 

Hydrogen bonds, salt bridges, nonbonded contacts, Gibb’s free energy of binding, interactive interfaces, 

tunnels, and pores are all identified in protein complexes. PDBePISA is available at 

(https://www.ebi.ac.uk/msd-srv/pisa/cgi-bin/piserver?qi=6jpf). 

2.2. GRP78 and ACE2-RBD molecular docking 

GRP78/BiP (PDB ID: 5E84) was docked to the spike receptor-binding domain ACE2 of the 

SARS-CoV-2 crystal structure of the bound with (RBD-ACE2) (PDB ID: 6M0J) using the ClusPro 2 

website [57–59]. To evaluate the interactions established, the binding energies of the complexes were 

assessed using the HawkDock webserver's end-point free energy calculation approach MM/GBSA and 

the PDBePISA tool. 

 



76 

AIMS Biophysics  Volume 9, Issue 1, 72–85. 

2.3. CotH3 modeling 

The Rhizopus Oryzae CotH3 (RO3G_11882) sequence was obtained from the UniProt database 

(https://www.uniprot.org). CotH3 was modeled by SWISS-MODEL workspace, a fully automated 

homology-modeling for the protein structure, using the 5JD9.1 chain A template [60–63]. The 

generated model was then verified using three webservers: PROCHEK, [64,65], VERIFY 3D [66], and 

ERRAT [67], available online from the University of California UCLA-DOE LAB using the SAVES 

v.6.0 webserver (https://saves.mbi.ucla.edu). 

2.4. CotH3 and ACE2-RBD-GRP78 molecular docking 

The ClusPro 2.0 webserver for docking protein-protein interactions was used to dock the modeled 

CotH3 to the RBD-ACE2-GRP78 complex. The binding energies of complexes were calculated using 

the end-point free energy calculation methodology MM/GBSA of the HawkDock webserver, and the 

PDBePISA v1.52 tool was used to analyze the interactions formed. The model was examined for 

SARS-CoV-2 virus variants including the Wildtype PDB ID: 6M0J chain E, Alpha lineage (B. 1.1.7), 

Beta lineage (B. 1.351), Gamma lineage (P.1), Delta lineage (B.1.617.2), and Delta plus (or Kappa) 

lineage (B.1.617.2.1) using PyMol software to map and visualize the complexes [68]. The software is 

available at (https://pymol.org). 

3. Results 

The binding energy of ACE2-RBD (6M0J) was first calculated using the MM/GBSA of the 

HawkDock webserver. The PDBePISA tool was then used to evaluate the expected interface features 

and key atoms between the docked structures, such as hydrogen bonds and salt bridges, using the 

PDBePISA tool. The predicted salt bridges and hydrogen bonds are listed in Table 1. The number of 

hydrogen bonds and salt bridges is used to assess the likely stability of the interface. 

 

Figure 1. GRP78 was docked to ACE2-RBD (ID: 6M0J) using ClusPro 2.0. 
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Table 1. The interactions of ACE2-RBD and ACE2-RBD-GRP78 complexes analyzed 

using PDBePISA. The binding energies were calculated using MM/GBSA of the 

HawkDock webserver. 

ACE2-RBD Complex (6M0J) ACE2-RBD-GRP78 Complex 

ACE2-RBD interactions 

(-60.55 ± 0.75) kcal/mol 

ACE2-RBD interactions 

(-87.50 ± 0.85) kcal/mol 

GRP78-RBD interactions 

(-18.5 ± 0.19) kcal/mol 

11 Hydrogen bonds 2 Salt bridges 14 Hydrogen bonds 4 Salt bridges 3 Hydrogen bonds  No Salt bridges 

ACE2  

residues 

RBD 

residues 

ACE2 

residues 

RBD  

residues 

ACE2  

residues 

RBD 

residues 

ACE2 

residues 

RBD  

residues 

GRP78 

residues 

RBD 

residues 

GRP78 

residues 

RBD 

residues 

GLN 24 

ASP 30 

GLU 35 

GLU 37 

ASP 38 

TYR 41 

GLN 42 

TYR 83 

LYS 353 

ARG 393 

 

LYS 417 

GLY 446 

TYR 449 

ASN 487 

TYR 489 

GLN 493 

THR 500 

ASN 501 

GLY 502 

TYR 505 

ASP 30 

 

LYS 417 

 

GLN 24 

ASP 30 

GLU 35 

GLU 37 

ASP 38 

GLN 42 

TY R83 

LYS 353 

  

 

LYS 417 

GLY 446 

TYR 449 

ASN 487 

TYR 489 

GLN 493 

GLY 496 

GLN 498 

GLY 502 

TYR 505 

ASP 30 

LYS 31 

 

LYS 417 

GLU 484 
LYS 435 PRO 479 

LYS 480 

ASN 481 

- - 

ClusPro 2.0 was then used to dock GRP78 to ACE2-RBD. The resulting complexes were ranked 

by the binding energies calculated using MM/GBSA where the complex that had the highest binding 

energy was selected. The results are displayed in Figure 1. The binding energies between GRP78 and 

ACE2 with RBD within the ACE2-RBD-GRP78 complex were calculated using MM/GBSA. Table 1 

Table 1 displays the results of the PDBePISA for the salt-bridge and hydrogen bond interface interactions. 

 

Figure 2. (A) SWISS-MODEL homology model of CotH3 using the 5JD9.1 chain A 

template. (B) A Ramachandran plot of the CotH3 model reveals that 96.6% of the model 

residues are in the allowed region. 
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The CotH3 model of Rhizopus Oryzae was created by the SWISS-MODEL workspace using the 

5JD9.1 chain A template (18.68% sequence similarity). The model is shown in Figure 2A. According 

to the Ramachandran plot, 96.6% of the model residues are within the allowed regions, as shown in 

Figure 2B. The VERIFY tool assessed approximately 81.5% of the residues to have a 3D-1D score ≥ 

0.2, and the overall ERRAT quality factor was 86.12%. 

ClusPro 2.0 was used again to dock the CotH3 model to the ACE2-RBD-GRP78 complex. The 

binding energies of CotH3 and ACE2, RBD, and GRP78 were calculated using MM/GBSA. The 

complex that had the highest binding energy was selected. Results are ranked by the binding energies 

and shown in Figure 3. PDBePISA was then used to predict the number of the salt bridges and hydrogen 

bonds of the interacting interface. Results are listed in Table 2 and the interacting sites are displayed 

in Figure 4. Approximately 2961 mutations in Spike protein have been found based on the genome 

sequences of the SARS-CoV-2. We obtained information on all S protein mutations found in the RBD 

domain. Table 3 displays the binding energies of CotH3 and SARS-CoV-2 RBD for the lineages 

examined including Alpha, Beta, Gamma, Delta, and Delta plus variants. 

 

Figure 3. CotH3 docked to the ACE2-RBD-GRP78 complex using ClusPro 2.0. 

Table 2. The interactions of ACE2-RBD-CotH3-GRP78 complex analyzed using PDBePISA. 

The binding energies were calculated using MM/GBSA of the HawkDock webserver. 

ACE2-RBD- CotH3-GRP78 Complex 

RBD-CotH3 interactions 

(-117.40 ± 0.69) kcal/mol 

ACE2-CotH3 interactions 

(20.55 ± 0.61) kcal/mol 

GRP78-CotH3 interactions 

(-2.56 ± 0.28) kcal/mol 

16 Hydrogen bonds 2 Salt bridges 1 Hydrogen bond No Salt bridges 4 Hydrogen bonds 1 Salt bridge 

RBD 

residues 

CotH3 

residues 

  ACE2  

residues 

CotH3 

residues 

ACE2  

residues 

CotH3 

residues 

GRP78 

residues 

CotH3 

residues 

GRP78 

residues 

CotH3 

residues 

ARG 346 

TYR 351 

ASN 354 

LYS 356 

ARG 357 

ASP 442 

ASN 450 

ILE 468 

TYR 128 

ILE 129 

SER 131 

ARG 240 

ASN 245 

ASP 466 

GLU 468 

GLN 475 

GLN 476 

ARG 346 ASP 466 GLU35 

 

TYR164 - - VAL 429 

ARG466 

LYS 470 

 

TYR 164 

ASN 170 

SER 194 

 

LYS 

470 

ASP 197 
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Figure 4. (A) Interactions sites for CotH3 and RBD (cyan), ACE2 (green) and GRP78 

(black). (B) Interaction residues given by Escript3.  

Table 3. The binding energy between CotH3 and RBD for the SARS-CoV-2 virus variants 

calculated using MM/GBSA of the HawkDock webserver. 

SARS-CoV-2 Variants of Concern RBD-CotH3 Binding Energy 

(kcal/mol) 

Wildtype −117.40 ± 0.69 

Alpha (B.1.1.7) −117.87 ± 0.10  

Beta (B.1.351) −112.53 ± 2.79 

Gamma (P.1) −113.64 ± 1.30 

Delta (B.1.617.2) −120.42 ± 2.24 

Delta plus (B.1.617.2.1) −122.16 ± 0.56 
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4. Discussion 

The findings of GRP78 binding to the RBD are consistent with Ibrahim et al. study findings [50], 

which presented that GRP78 binds to 4 regions with the Spike protein of the SARS-CoV-2 virus, 

among which regions III (C391-C525) and IV (C480C488) show stronger Spike RBD affinity [46]. 

The results show that the substrate-binding domain β of GRP78 weakly binds to region IV of WT RBD 

(C480-C488) (−18.5 kcal/mol) forming three hydrogen bonds with PRO479, CYS480, and LYS481, 

as shown in Table 1. Figure 1 and Figure 3 show that GRP78 and ACE2 bind to the spike RBD surface 

in roughly the same sites and bind to each other. This is consistent with the findings of Aguiar et al. [69] 

who showed that the GRP78-binding location overlaps with the ACE2-binding location, albeit the 

residues engaged in the interactions may differ somewhat. The binding energy between the RBD and 

ACE2 is increased by around 45%, from −60.55 kcal/mol to −87.5 kcal/mol due to GRP78. In the 

ACE2-RBD complex, RBD forms 11 hydrogen bonds and two salt bridges with ACE2, whereas in the 

GRP78-RBD-ACE2 complex, the complex forms 14 hydrogen bonds and four salt bridges with ACE2, 

as shown in Table 1. Therefore, GRP78 stabilizes the binding of RBD and ACE2, which improves the 

successful entry of the virus.  

The results of CotH3 binding to the ACE2-RBD-GRP78 complex show that while CotH3 weakly 

attaches itself to GRP78 (−2.63 kcal/mol) and repels from ACE2 (+21.15 kcal/mol), it strongly binds 

to RBD (−116.91 kcal/mol) as it forms 16 hydrogen bonds and doubles the number of salt bridges with 

the spike RBD, as listed in Table 2. CotH3 shows a similar affinity for the SARS-CoV-2 virus variants 

of RBD with some preference for the Delta variants as shown in Table 3. This means that the fungus 

can enter the cell via the spore coat protein attached to the SARS-CoV-2 RBD spike, which would 

explain the high coinfection rate of mucormycosis in COVID-19 patients. 

5. Conclusions 

Mucormycosis, known as black fungus, is a life-threatening fungal infection. The growing 

number of case mortality and morbidity reported globally during the second wave of the Corona Virus 

Disease 2019 infection (COVID-19) suggested a high coinfection rate of mucormycosis among 

COVID-19 patients, where the infection rates of Mucormycosis in COVID-19 patients have been 

increased. 

Current work presents a hypothesis of the molecular interactions that favor the coinfection 

between the coronavirus SARS-CoV-2 and the mucormycosis fungi. The present research work 

explains the observed increased morbidity and mortality coinfection in COVID-19 patients with 

mucormycosis by using the proposed computational molecular model of the fungus spore coat protein 

that binds to the spike protein of the SARS-CoV-2 virus. The SARS-CoV-2 RBD complex with ACE2 

and GRP78 binds to the CotH3 ligand of mucormycosis, carrying it into the host cells during COVID-19 

infection. The findings from this study explain that the COVID-19 infection generates an appropriate 

environment for the spread of Mucorales, resulting in a high infection rate of mucormycosis. The 

outcome from this study suggests that COVID-19 patients with severe symptoms be evaluated for 

mucormycosis infection when comorbidities are present, and further research is needed to evaluate the 

potential association between both infections. 
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