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Abstract: Based on the generalized version of Newton’s Shell Theorem [7] the electric field energy 

density, 𝑢𝐹 around two surface-charged spheres surrounded by electrolyte where the smaller sphere is 

inside the larger one is analytically calculated. According to the calculations when the surfaces of the 

spheres are farther from each other than four times of the Debye length the field energy density around 

and inside the smaller sphere is basically independent from the presence of the larger sphere. The 

electric field energy density is maximal when the smaller sphere touches the inner surface of the larger 

sphere and the maximum of 𝑢𝐹 is located at the touching point on the outer surface of the larger 

sphere. 
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1. Introduction 

The head groups of membrane lipids have either single charge (e.g. tetraether lipids [1], 

phosphatidic acid (PA), phosphatidylserine (PS), phosphatidylethanolamine (PE), and 

phosphatidylinositol (PI)) or electric dipole (e.g. phospholipids, such as dimyristoyl-, dipalmitoyl- and 

distearoylphosphatidyl choline (DMPC, DPPC and DSPC, respectively)). 

Between lipids containing head groups with electric dipole there is short range interaction, i.e. 

where the two-body potential decays algebraically at large distances with a power equal or larger than 

the spatial dimension [2]. Theoretical models of lipid membranes usually focus on systems where there 

is short range lateral interactions between nearest neighbor lipids [3,4] because it is enough to consider 

only the interactions between nearest-neighbor lipid molecules. It is much more difficult to model a 
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lipid membrane containing single charged head groups [5]. Between lipids with single charged head 

groups there is long range interaction, i.e. where the two-body potential decays algebraically at large 

distances with a power smaller than the spatial dimension [2] and thus modeling this system one has 

to consider the entire system rather than the interactions between the nearest-neighbor lipids. In order 

to get closer to the solution of this problem recently we developed a generalized version of Newton’s 

Shell Theorem [6,7] to calculate the electric potential, V around a surface-charged sphere (of radius R1) 

surrounded by electrolyte at a distance Z from the center of the sphere (see also Eqs 9,10 in ref.7): 

𝑉(𝑍) =
𝑘𝑒∙𝑄1∙𝜆𝐷 

𝜀𝑟∙𝑍∙𝑅1
∙ 𝑒

−
𝑍

𝜆𝐷 ∙ 𝑠𝑖𝑛ℎ (
𝑅1

𝜆𝐷
)        𝑎𝑡 𝑍 > 𝑅1      (1) 

𝑉(𝑍) =
𝑘𝑒∙𝑄1∙𝜆𝐷 

𝜀𝑟∙𝑍∙𝑅1
∙ 𝑒

−
𝑅1
𝜆𝐷 ∙ 𝑠𝑖𝑛ℎ (

𝑍

𝜆𝐷
)            𝑎𝑡 𝑍 < 𝑅1      (2) 

where 𝑘𝑒 = (4 𝜋 𝜀0)
−1 is the Coulomb’s constant, 𝜆𝐷 is the Debye length, 𝑄1 is the total charge of 

the homogeneously charged surface of the sphere of radius 𝑅1, 𝜀𝑟 is the relative static permittivity of 

the electrolyte. Deriving Eqs.1,2 the general solution of the Screened Poisson Equation was utilized (see 

Eq 4 in ref.7 or A5 in Appendix 1), an equation that is valid if the electrolyte is electrically neutral [8]. 

It is important to note that the Screened Poisson Equation (Eq A4) is different from the Poisson-

Boltzmann equation (see Eqs A1,A3). The Poisson-Boltzmann equation can be used to calculate the 

potential energy of an arbitrary, electroneutral, ion solution (i.e. electrolyte). However, for the solution (see 

Eq A2) one has to know the charge density of the ions in the electrolyte (i.e. the Boltzmann distribution; 

see Eq A3), which depends on the potential, V, itself. Thus only approximative solution is available (the 

Debye- Hückel approximation [9]), that is valid when |𝑧𝑖𝑒𝑉/(𝑘𝐵𝑇)| ≪ 1  (where 𝑒 : charge of an 

electron, 𝑧𝑖: charge number of the i-th type of ion, 𝑘𝐵: Boltzmann constant, 𝑇: absolute temperature). 

Using the Screened Poisson Equation (Eq A4) one can calculate the potential energy of an 

electrolyte that contains also external charges. The external charges are embedded into the electrolyte (like 

the charges of the surface-charged sphere) but not part of the electrolyte itself. For the solution one has 

to know the charge density of the external charges (see Eq 4 in ref.7 or Eq A5 in Appendix 1), i.e. 

distribution of the charges on the surface-charged sphere and not the distribution of the ions in the 

electrolyte. In our case it is assumed that the charges on the surface of the sphere are homogeneously 

distributed and in this case Eqs 1,2 is the exact solution of the Screened Poisson Equation. 

Note that recently by using Eqs 1,2 electric energies have been calculated [10], such as the electric 

potential energy needed to build up a surface-charged sphere, and the field and polarization energy of 

the electrolyte inside and around the surface-charged sphere.  

In this paper the density of electric field energy is calculated around two surface-charged spheres 

where the smaller sphere is located inside the larger one and the entire system is embedded in neutral 

electrolyte. This system is close to a charged vesicle [1] or to a cell [11] where charged lipids are located 

both on the outer and inner leaflet of the membrane, i.e. two concentric surface-charged spheres. It 

also models an eukaryote [12] where neutral phospholipids such as sphingomyelin and zwitterionic 

phosphatidylcholine are located primarily in the outer leaflet of the plasma membrane, and most 

anionic phospholipids, such as phosphatidic acid (PA), phosphatidylserine (PS), 

phosphatidylethanolamine (PE), and phosphatidylinositol (PI) are located in the inner leaflet of the 

plasma membrane (represented by the large surface-charged sphere of our model). Eukaryotes also 

have a single nucleus enveloped by double layer of lipid membranes which may contain charged lipids 

too (representing the smaller surface-charged sphere of our model). Note that these two charged 



63 

AIMS Biophysics  Volume 9, Issue 1, 61–71. 

spheres of an eukaryote are not necessarily concentric. Finally, our model is generalized for the case 

when the large surface-charged sphere contains several smaller surface-charged spheres. This system 

may also model osteoclast cells [12] containing many nuclei.  

In this work the density of the electric field energy inside and outside of two surface-charged 

spheres are calculated at different locations. The density of the electric field energy at a point can be 

calculated by the following equation [13]: 

𝑢𝐹 =
𝜀𝑟𝜀0

2
𝐸 ∙ 𝐸           (3) 

where 𝐸 is the vector of the electric field strength at the considered point, 𝜀0 is the absolute vacuum 

permittivity and 𝜀𝑟 is the relative permittivity of the electrolyte. 

2. Model 

Here by using the recently generalized Shell Theorem [7] we calculate the density of electric field 

energy, 𝑢𝐹 produced by two surface-charged spheres (see Figure 1) surrounded outside and inside by 

electrolyte where the smaller sphere is located inside the larger sphere. 

 

Figure 1. Two surface-charged spheres surrounded outside and inside by electrolyte where 

the smaller sphere is located inside the larger one. 

Z: the distance between the centers of the spheres (dashed blue line); R1 and RL is the radius of 

the smaller and larger sphere, respectively; D1 and DL is the distance between point P1 and the center 

of the smaller and larger sphere, respectively; E1 and EL is the field strength created in point P1 by the 

smaller and larger surface-charged sphere, respectively. 

The origin of the coordinate system (x, y) is attached to the center of the larger sphere and the 

coordinates of point P1 are xp and yp. The coordinates of the center of the larger and smaller sphere 

are (𝑥𝐿 , 𝑦𝐿) = (0, 0) and (𝑥1, 𝑦1) = (−𝑍, 0), respectively.  

In order to calculate the density of electric field energy one has to determine the electric field 

strength (see Eq 3), i.e. the gradient of the electric potential. The potential produced by the smaller 

sphere, 𝑉1 at a distance 𝐷1 from its center can be calculated by Eqs 1,2 (or Eqs 9,10 in ref.[7]). The 

electric field strength created by the smaller sphere at point P1 (see Figure 1) is: 



64 

AIMS Biophysics  Volume 9, Issue 1, 61–71. 

𝐸1 = −𝑔𝑟𝑎𝑑(𝑉1) = −(
𝑑𝑉1

𝑑𝐷1

𝑑𝐷1

𝑑𝑥𝑃
,
𝑑𝑉1

𝑑𝐷1

𝑑𝐷1

𝑑𝑦𝑃
) = −

𝑑𝑉1

𝑑𝐷1
(
𝑑√(𝑥𝑃−𝑥1)

2+(𝑦𝑃−𝑦1)
2

𝑑𝑥𝑃
,
𝑑√(𝑥𝑃−𝑥1)

2+(𝑦𝑃−𝑦1)
2

𝑑𝑦𝑃
) =

−
𝑑𝑉1

𝑑𝐷1
(
𝑥𝑃−𝑥1

𝐷1
,
𝑦𝑃−𝑦1

𝐷1
) = (−

𝑑𝑉1

𝑑𝐷1

𝑥𝑃+𝑍

𝐷1
, −

𝑑𝑉1

𝑑𝐷1

𝑦𝑃

𝐷1
) = (𝐸1𝑥, 𝐸1𝑦)     (4) 

where 

𝑑𝑉1

𝑑𝐷1
=

{
 
 

 
 𝑘𝑒𝑄1𝜆𝐷

𝜀𝑟𝑅1
𝑠𝑖𝑛ℎ(𝑅1/𝜆𝐷) [−

𝑒
−
𝐷1
𝜆𝐷

𝐷1
2 −

𝑒
−
𝐷1
𝜆𝐷

𝐷1𝜆𝐷
]       𝑖𝑓 𝐷1 > 𝑅1 

𝑘𝑒𝑄1𝜆𝐷

𝜀𝑟𝑅1
𝑒
−
𝑅1
𝜆𝐷 [−

𝑠𝑖𝑛ℎ(
𝐷1
𝜆𝐷
)

𝐷1
2 +

𝑐𝑜𝑠ℎ(
𝐷1
𝜆𝐷
)

𝐷1𝜆𝐷
]          𝑖𝑓 𝐷1 < 𝑅1    

    (5) 

where 𝜆𝐷 is the Debye length and 𝑍 ≤ 𝑅𝐿 − 𝑅1. 

Similarly, the electric field strength created by the large sphere at point P1 (i.e. at a distance 𝐷𝐿 

from its center; see Figure 1) is: 

𝐸𝐿 = −𝑔𝑟𝑎𝑑(𝑉𝐿) = −(
𝑑𝑉𝐿
𝑑𝐷𝐿

𝑑𝐷𝐿
𝑑𝑥𝑃

,
𝑑𝑉𝐿
𝑑𝐷𝐿

𝑑𝐷𝐿
𝑑𝑦𝑃

) 

= −
𝑑𝑉𝐿
𝑑𝐷𝐿

(
𝑑√(𝑥𝑃 − 𝑥𝐿)

2 + (𝑦𝑃 − 𝑦𝐿)
2

𝑑𝑥𝑃
,
𝑑√(𝑥𝑃 − 𝑥𝐿)

2 + (𝑦𝑃 − 𝑦𝐿)
2

𝑑𝑦𝑃
) 

= −
𝑑𝑉𝐿

𝑑𝐷𝐿
(
𝑥𝑃−𝑥𝐿

𝐷𝐿
,
𝑦𝑃−𝑦𝐿

𝐷𝐿
) = (−

𝑑𝑉𝐿

𝑑𝐷𝐿

𝑥𝑃

𝐷𝐿
, −

𝑑𝑉𝐿

𝑑𝐷𝐿

𝑦𝑃

𝐷𝐿
) = (𝐸𝐿𝑥, 𝐸𝐿𝑦)     (6) 

where one can construct 
𝑑𝑉𝐿

𝑑𝐷𝐿
 from Eq 5 by changing 𝐷1 to 𝐷𝐿, 𝑅1 to 𝑅𝐿 and 𝑄1 to 𝑄𝐿.  

𝑢𝐹(𝑥𝑃 , 𝑦𝑃) =
𝜀𝑟𝜀0
2
𝐸 ∙ 𝐸 =

𝜀𝑟𝜀0
2
(𝐸1 + 𝐸𝐿) ∙ (𝐸1 + 𝐸𝐿) 

=
𝜀𝑟𝜀0
2
([𝐸1𝑥 + 𝐸𝐿𝑥], [𝐸1𝑦 + 𝐸𝐿𝑦]) ∙ ([𝐸1𝑥 + 𝐸𝐿𝑥], [𝐸1𝑦 + 𝐸𝐿𝑦]) 

= 
𝜀𝑟𝜀0

2
( [𝐸1𝑥 + 𝐸𝐿𝑥]

2 + [𝐸1𝑦 + 𝐸𝐿𝑦]
2
)       (7) 

3. Results 

Here by using Eq 7 the density of the electric field energy, 𝑢𝐹, is calculated around two surface- 

charged spheres (where the smaller sphere is located inside the larger sphere) surrounded in- and 

outside by electrolyte. The radius of the larger and smaller sphere is: 𝑅𝐿 = 10
−6 𝑚  and 𝑅1 = 0.2 𝑅𝐿 , 

respectively. The surface charge density of the homogeneously charged spheres is 𝜌𝑠 = −0.266 𝐶/𝑚
2 (the 

surface charge density of the PLFE lipid vesicles [1]). The total charge of the larger and the smaller 

sphere is, 𝑄2 = 𝜌𝑠4𝜋𝑅2
2 = −3.3427 ∙ 10−12 𝐶 and 𝑄1 = 𝜌𝑠4𝜋𝑅1

2 = −1.337 ∙ 10−13 𝐶, respectively. 

This system is axially symmetric, where the symmetry axis is the straight line connecting the centers 

of the spheres. The center of the attached coordinate system is at the center of large sphere and the x 

axis is defined by the symmetry axis. Because of the axial symmetry of the system it is enough to 

calculate 𝑢𝐹 along straight lines parallel to the symmetry axis (see Figure 2), where the same 𝑦𝑃 



65 

AIMS Biophysics  Volume 9, Issue 1, 61–71. 

coordinate belongs to each straight line. The surface-charged spheres are surrounded by electrolyte 

containing monovalent ions. The considered electrolyte ion concentrations (of the positive ion) 

are: 0.00001, 0.001 and 0.1 𝑚𝑜𝑙/𝑚3 and the respective Debye lengths are: 3.05 ∙ 10−6, 3.05 ∙ 10−7 

and 3.05 ∙ 10−8 𝑚 (see Table 1 in ref.7), and the relative permittivity of the electrolyte is 𝜀𝑟 = 78. 

 

Figure 2. Locations of a small surface-charged sphere inside a large surface-charged sphere. 

Inside a large surface-charged sphere of radius 𝑅𝐿(= 10
−6 𝑚) a small surface-charged sphere 

of radius 𝑅1(= 0.2 𝑅𝐿)  is located. The electric field energy density, 𝑢𝐹  is calculated at the three 

different locations of the small sphere, i.e. in Figure 3, Figure 4 and Figure 5 the center of the small 

sphere is at 𝑍 = 0.8 𝑅𝐿 (see small orange circle), 𝑍 = 0.5 𝑅𝐿 (see small purple circle) and 𝑍 = 0 (see 

small dark red circle at the center of the large circle), respectively. In Figures 3–5 the electric field 

energy densities are calculated along the five horizontal (dashed red, green, blue, grey, black) lines.  

 

Figure 3. Density of the electric field energy around two surface-charged spheres. 

𝑍 = 0.8 𝑅𝐿  

Dotted red line: 𝑦𝑃 = 0.75 𝑅1; green line: 𝑦𝑃 = 𝑅1; blue line: 𝑦𝑃 = 0.7 𝑅𝐿; grey line: 𝑦𝑃 = 𝑅𝐿; 

black line: 𝑦𝑃 = 1.01 𝑅𝐿 . The concentration of the monovalent positive (or negative) ion in the 

electrolyte is: A) 𝐶 = 0.1 𝑚𝑜𝑙/𝑚3; B) 𝐶 = 0.001 𝑚𝑜𝑙/𝑚3; C) 𝐶 = 0.00001 𝑚𝑜𝑙/𝑚3. 

The connection point between the large sphere and the small sphere (represented by orange circle 

in Figure 2) is at 𝑥𝑃 = −𝑅𝐿 and 𝑦𝑃 = 0. At this point there is no electrolyte and Eqs 4–7 are not 
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applicable. Similar situations take place when the horizontal line crosses the circles in Figure 2. The 𝑥𝑝 

coordinates of these cross sections, 𝑥𝑝
𝑐  can be calculated by:  

𝑥𝑝
𝑐 = ±√𝑅𝐿

2 − 𝑦𝑝
2 (crossing the large circle, i.e. 𝑦𝑃 < 𝑅𝐿)    (8) 

and  

𝑥𝑝
𝑐 = −𝑍 ± √𝑅1

2 − 𝑦𝑝
2 (crossing the small circle located at −𝑅𝐿 < 𝑥1 < 0 and 𝑦𝑃 < 𝑅1) (9) 

𝑥𝑝
𝑐 = 𝑍 ± √𝑅1

2 − 𝑦𝑝
2 (crossing the small circle located at 0 < 𝑥1 < 𝑅𝐿 and 𝑦𝑃 < 𝑅1) (10) 

where 𝑥1 is the x coordinate of the center of the small sphere. 

 

Figure 4. Density of the electric field energy around two surface-charged spheres. 

𝑍 = 0.5 𝑅𝐿  

Dotted red line: 𝑦𝑃 = 0.75 𝑅1; green line: 𝑦𝑃 = 𝑅1; blue line: 𝑦𝑃 = 0.7 𝑅𝐿; grey line: 𝑦𝑃 = 𝑅𝐿; 

black line: 𝑦𝑃 = 1.01 𝑅𝐿 . The concentration of the monovalent positive (or negative) ion in the 

electrolyte is: A) 𝐶 = 0.1 𝑚𝑜𝑙/𝑚3; B) 𝐶 = 0.001 𝑚𝑜𝑙/𝑚3; C) 𝐶 = 0.00001 𝑚𝑜𝑙/𝑚3. 

 

Figure 5. Density of the electric field energy around two surface-charged spheres. 

𝑍 = 0  

Dotted red line: 𝑦𝑃 = 0.75 𝑅1; green line: 𝑦𝑃 = 𝑅1; blue line: 𝑦𝑃 = 0.7 𝑅𝐿; grey line: 𝑦𝑃 = 𝑅𝐿; 
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black line: 𝑦𝑃 = 1.01 𝑅𝐿 . The concentration of the monovalent positive (or negative) ion in the 

electrolyte is: A) 𝐶 = 0.1 𝑚𝑜𝑙/𝑚3; B) 𝐶 = 0.001 𝑚𝑜𝑙/𝑚3; C) 𝐶 = 0.00001 𝑚𝑜𝑙/𝑚3. 

Note in Figures 3–5 the sharp maxima of the density of the electric field energy appear where the 

horizontal line at the respective 𝑦𝑃 crosses the charged sphere(s). These crossing points, 𝑥𝑝
𝑐’s, can 

be calculated by Eqs 8–10. In the case of 𝑦𝑃 = 0.75 𝑅1 the values of the crossing points are listed at 

the first column of Table 1. 

It is also important to note that |𝐸1|~𝑄1 and |𝐸𝐿|~𝑄𝐿 (see Eqs 4–6) and thus in the case of total 

surface charges 𝑎 ∙ 𝑄1 and 𝑎 ∙ 𝑄𝐿 (where 0 < 𝑎 < 1 is a constant) the electric field energy density 

will be 𝑎2 times of the above calculated 𝑢𝐹(𝑥𝑃, 𝑦𝑃) values (see Eq 7). 

4. Discussion 

In this work the solution of the screened Poisson equation ([7] and Eq A5 in Appendix 1) is used 

to calculate the field energy density around two surface-charged spheres where the small sphere is 

located inside the large sphere. This solution is not restricted to small potentials (<< 25 mV) like in the 

case of the Debye-Hückel approximation of the Poisson-Boltzmann equation [9] where the superposition 

principle is not applicable either. This is an important advantage because the measured absolute value 

of the Zeta potentials of the cells are usually higher than 25 mV (e.g. –57.89 ± 22.63 mV on ARO 

cells, –40.41 ± 5.10 mV on C32TG cells, −46.99 ± 18.71 mV on RT4 cells, –40.13 ± 9.28 mV on TK 

cells, and −43.03 ± 5.52 mV on UM-UC-14 cells [14].  

The considered two spheres (with homogeneously charged surfaces) electrically interact. If the 

lateral movement of the charges on the spheres would not be restricted the interaction of the smaller 

sphere (located inside the larger sphere) with the larger sphere would result in inhomogeneous 

distribution of the surface charges on both spheres. However, the free lateral diffusion of proteins and 

lipids are usually restricted in biological membranes not only by direct collisions with structures where 

immobile proteins are crowded, but also by electrostatic deflection, hydrophobic mismatches, and 

other mechanisms [15]. 

The density of the electric field energy depends on the electric field strength (Eq 3), i.e. the 

gradient of the electric potential (Eqs 4,6). In the case of a single surface-charged sphere surrounded 

by electrolyte with low ion concentration the potential inside the sphere is close to constant (see red 

curve in Figure 3A in ref. [7]) and thus the absolute value of the electric field strength is close to zero. 

On the other hand, outside the sphere the absolute value of the potential and also the electric field 

strength decrease with increasing distance from the surface of the sphere (see red curve in Figure 3A 

in ref. [7]). At higher electrolyte ion concentration, because of the increased screening effect, the 

absolute value of the potential and also the electric field strength decrease faster with increasing 

distance from the surface of the sphere. In this case inside the sphere toward its center the absolute 

value of the potential and the electric field strength also decrease (see curves in Figure 3A,B in ref. [7]).  

In this work two surface-charged spheres (with the same surface charge density) are considered 

where the smaller sphere is located inside the larger sphere. The above mentioned electric properties 

of a single surface-charged sphere remain the same for the smaller sphere (located inside a larger 

sphere) if the surfaces of the spheres are far enough from each other (farther than 4 𝜆𝐷 ), i.e. the 

absolute value of the potential decreases close to zero between the surfaces of the two spheres. 

However, when part of the surfaces of the two spheres are close enough to each other one sphere 

contributes to the potential and electric field strength around the other sphere. The electric field energy 
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density is particularly high at the place where the surfaces of the two spheres touch each other. This 

maximal electric field energy density is very close to the outer surface of the larger sphere. Thus one 

can detect at the outer surface of the erythrocyte when the nucleus is getting close. 

The electric field energy density has maximum when the horizontal line crosses the circles in 

Figure 2. The 𝑥𝑝 coordinates of these cross sections, 𝑥𝑝
𝑐  can be calculated by Eqs 8–10. When the x 

axis of the coordinate system is the horizontal line (i.e. 𝑦𝑃 = 0 ) the electric field energy density is 

particularly high at the place where the surfaces of the two spheres touch each other (see orange circles 

in Figure 2) at close to zero electrolyte ion concentration (i.e. 𝐶 = 0.00001 𝑚𝑜𝑙/𝑚3 ): 

𝑢𝐹(𝑥𝑃 = −𝑅𝐿+, 𝑦𝑃 = 0;−𝑥1 = 𝑍 = 0.8𝑅𝐿 = 𝑅𝐿 − 𝑅1) 

=
𝜀𝑟𝜀0
2
(∙ [𝐸1𝑥 + 𝐸𝐿𝑥]

2 + [𝐸1𝑦 + 𝐸𝐿𝑦]
2
) 

=
𝜀𝑟𝜀0
2
( [(−

𝑑𝑉1
𝑑𝐷1

)
𝐷1=𝑅1+

𝑥𝑝−𝑥1
𝑅1+

+ (−
𝑑𝑉𝐿
𝑑𝐷𝐿

)
𝐷𝐿=𝑅𝐿+

𝑥𝑝
𝑅𝐿+

]

2

+ [0 + 0]2) 

≅
𝜀𝑟𝜀0

2
( [−

𝑘𝑒𝑄1

𝜀𝑟𝑅1+
2 −

𝑘𝑒𝑄𝐿

𝜀𝑟𝑅𝐿+
2 ]

2

) =
2𝜌𝑠

2

𝜀𝑟𝜀0
= 1.4798 ∙ 108𝐽𝑚−3     (11) 

This maximal electric field energy density is very close to the outer surface of the larger 

sphere (|𝑥𝑃| = 𝑅𝐿+ ≥ 𝑅𝐿) on the x axis of the coordinate system. The x axis also crosses the small and 

large spheres at 𝑥𝑝 = −3 𝑅1 and 𝑥𝑝 = 𝑅𝐿, respectively. Very close to these coss sections, at the outer 

side of the spheres, the field energy density is only a quarter of the above maximal value.  

In general the first maximum of 𝑢𝐹 (see the left maximum in Figures 3–5) is getting smaller when 

the center of the small sphere approaches the center of the large sphere. This is the case because the 

interaction between the spheres is reducing when the average distance between the surfaces of the two 

spheres is increasing.  

In the case of horizontal lines where 𝑦𝑃 > 0  𝐸1𝑦 + 𝐸𝐿𝑦  contributes also to 𝑢𝐹 . This 

contribution is particularly high by 𝐸1𝑦  when 𝑥𝑝 ≅ − 𝑍  or by 𝐸𝐿𝑦  when 𝑥𝑝 ≅ 0  relative to the 

contribution by 𝐸1𝑥 and 𝐸𝐿𝑥, respectively.  

When the location of the center of the small and large sphere is identical (i.e. 𝑍 = 0) then because 

of the additional symmetry 𝑢𝐹(𝑥𝑃, 𝑦𝑃) = 𝑢𝐹(−𝑥𝑝, 𝑦𝑃) at any value of 𝑦𝑝 (see Figure 5). 

When 𝑦𝑝 > 𝑅1the horizontal line crosses only the surface of the large sphere at two points and 

these are symmetric crossing points (where the y axis is the symmetry axis). The distance of the left 

crossing point from the y axis is similar to the distance of the right crossing point from the y axis (see 

Eq 8). Because of this symmetry if the small sphere only slightly affect the field strength along the 

horizontal line then 𝑢𝐹(𝑥𝑃, 𝑦𝑃) ≅ 𝑢𝐹(−𝑥𝑝, 𝑦𝑃) at any location of the small sphere along the x 

axis (see blue, black and grey lines in Figures 3–5). 

In the case of 0 < 𝑦𝑝 < 𝑅1 the horizontal line crosses twice the large and twice the small sphere. 

In the case of the dotted red lines in Figures 3–5 𝑦𝑝 = 0.75 𝑅1 and each curve has four maxima. The 

hight of each maxima depends on the square of the field strength at the respective crossing point (see 

Eq 3), which is related to the x and y components of the field strengths created by the small 

sphere (𝐸1𝑥, 𝐸1𝑦) and by the large sphere (𝐸𝐿𝑥, 𝐸𝐿𝑦) (see Eq 7). In order to find out the reason of the 

hight of each maximum of the curves shown in Figures 3B–5B (i.e. at 𝐶 = 0.001 𝑚𝑜𝑙/𝑚3) in Table 1 

these x and y components of the field strengths are listed. 
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Table 1. Values of the x and y components of the electric field strength at the cross sections 

between a horizontal line (at yp = 0.75 ∙ R1) and two spheres of radii R1 and RL. 

Cross # 𝑥𝑃  [𝑚] 𝑢𝐹  [J] 𝐸1𝑥 [V/m] 𝐸𝐿𝑥 [V/m] 𝐸1𝑦 [V/m] 𝐸𝐿𝑦 [V/m] 

   𝑍 = 0.8 𝑅𝐿      

1 −9.9 ∙ 10−7 7.4 ∙ 107 1.8 ∙ 108 2.47 ∙ 108 −1.42 ∙ 108 −3.74 ∙ 107 

2 −9.4 ∙ 10−7 2.2 ∙ 107 2.29 ∙ 108 −1.16 ∙ 108 −2.45 ∙ 108 1.86 ∙ 107 

3 −6.6 ∙ 10−7 4.65 ∙ 107 −2.29 ∙ 108 −5.45 ∙ 107 −2.45 ∙ 108 1.24 ∙ 107 

4 9.9 ∙ 10−7 2.15 ∙ 107 −9.7 ∙ 104 −2.47 ∙ 108 −8.2 ∙ 103 −3.74 ∙ 107 

   𝑍 = 0.5 𝑅𝐿    

1 −9.9 ∙ 10−7 2.73 ∙ 107 3 ∙ 107 2.47 ∙ 108 −9.22 ∙ 106 −3.74 ∙ 107 

2 −6.4 ∙ 10−7 2.97 ∙ 107 2.29 ∙ 108 −5.16 ∙ 107 −2.45 ∙ 108 1.2 ∙ 107 

3 −3.6 ∙ 10−7 4.1 ∙ 107 −2.29 ∙ 108 −2.2 ∙ 107 −2.45 ∙ 108 9.16 ∙ 106 

4 9.9 ∙ 10−7 2.15 ∙ 107 −3.2 ∙ 105 −2.47 ∙ 108 −3.22 ∙ 104 −3.74 ∙ 107 

   𝑍 = 0.0 𝑅𝐿    

1 −9.9 ∙ 10−7 2.2 ∙ 107 2.6 ∙ 106 2.47 ∙ 108 −3.97 ∙ 105 −3.74 ∙ 107 

2 −1.4 ∙ 10−7 3.63 ∙ 107 2.29 ∙ 108 −7.6 ∙ 106 −2.45 ∙ 108 8.17 ∙ 106 

3 1.4 ∙ 10−7 3.63 ∙ 107 −2.29 ∙ 108 7.6 ∙ 106 −2.45 ∙ 108 8.17 ∙ 106 

4 9.9 ∙ 10−7 2.2 ∙ 107 −2.6 ∙ 106 −2.47 ∙ 108 −3.97 ∙ 105 −3.74 ∙ 107 

For example in the case of 𝑍 = 0.5 𝑅𝐿  (thus 𝑥1 = −𝑍 = −5 ∙ 10
−7 𝑚 ) the reason that the 

maximum at cross section 3 is higher than at cross section 2 is that at cross section 3 both 𝐸1𝑥(3) 

and 𝐸𝐿𝑥(3)  are negative while at cross section 2 𝐸1𝑥(2)  is positive and 𝐸𝐿𝑥(2)  is negative. 

Because of this at cross section 3 [𝐸1𝑥 + 𝐸𝐿𝑥]
2  much larger than at cross section 2. Actually 

because of the symmetry |𝐸1𝑥(3)| = |𝐸1𝑥(2)|  but 𝑠𝑖𝑔𝑛𝐸1𝑥(3) ≠ 𝑠𝑖𝑔𝑛𝐸1𝑥(2)  because 

𝑠𝑖𝑔𝑛 (
𝑥𝑝(3)−𝑥1

𝐷1
) ≠ 𝑠𝑖𝑔𝑛 (

𝑥𝑝(2)−𝑥1

𝐷1
) (see Eq 4). 

As an other example in the case of 𝑍 = 0.0 𝑅𝐿 the maximum at cross section 3 is higher than at 

cross section 4. The reason is that |𝐸𝐿𝑦(4)| ≪ |𝐸𝐿𝑥(4)| while |𝐸1𝑦(3)| ≅ |𝐸1𝑥(3)| ≅ |𝐸𝐿𝑥(4)|. Note 

that |𝐸𝐿𝑦(4)| ≪ |𝐸𝐿𝑥(4)|because the direction of 𝐸𝐿(4) is close to the direction of the x axis. 

Finally, the analytical equation, Eq 7, for the calculation of the electric field energy density of two 

surface-charged spheres (the smaller sphere located inside the larger sphere), can be generalized for 

the case when N small surface-charged spheres are located inside the large sphere (see Appendix 2). 

Also when the radius of the smaller sphere approaches zero the total surface charge of the smaller 

sphere, 𝑄1  approaches zero too and consequently the electric field strength of the smaller 

sphere, 𝐸1approaches zero. Thus, based on Eq 7 one can calculate the field energy density around a 

single charged sphere by: 

𝑢𝐹(𝑥𝑃 , 𝑦𝑃) =
𝜀𝑟𝜀0
2
𝐸 ∙ 𝐸 =

𝜀𝑟𝜀0
2
(𝐸𝐿) ∙ (𝐸𝐿) 

=
𝜀𝑟𝜀0
2
(𝐸𝐿𝑥 , 𝐸𝐿𝑦) ∙ (𝐸𝐿𝑥 , 𝐸𝐿𝑦) 

= 
𝜀𝑟𝜀0
2
( [𝐸𝐿𝑥]

2 + [𝐸𝐿𝑦]
2
) 
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5. Conclusions 

Based on the generalized version of Newton’s Shell Theorem [7] the electric field energy 

density, 𝑢𝐹 around two surface-charged spheres surrounded by electrolyte where the smaller sphere is 

inside the larger one is analytically calculated. According to the calculations when the surfaces of the 

spheres are farther from each other than four times of the Debye length the field energy density around 

and inside the smaller sphere is basically independent from the presence of the larger sphere. The 

electric field energy density is maximal when the smaller sphere touches the inner surface of the larger 

sphere and the maximum of 𝑢𝐹 is located at the touching point on the outer surface of the larger 

sphere.  
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