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Abstract: Using a coarse-grained model, self-organized assembly of proteins (e.g., CorA and its 

inner segment iCorA) is studied by examining quantities such as contact profile, radius of gyration, 

and structure factor as a function of protein concentration at a range of low (native phase) to high (denature 

phase) temperatures. Visual inspections show distinct structures, i.e., isolated globular bundles to 

entangled network on multiple length scales in dilute to crowded protein concentrations. In native 

phase, the radius of gyration of the protein does not vary much with the protein concentration while 

that of its inner segment increases systematically. In contrast, the radius of gyration of the protein 

shows enormous growth with the concentration due to entanglement while that of the inner segment 

remains almost constant in denatured phase. The multi-scale morphology of the collective assembly 

is quantified by estimating the effective dimension D of protein from scaling of the structure factor: 

collective assembly from inner segments remains globular (D3) at almost all length scales in its 

native phase while that from protein chains shows sparsely distributed morphology with D  2 in 

entire temperature range due to entanglement except in crowded environment at low temperature 

where D2.6. Higher morphological response of chains with only the inner-segments due to selective 

interactions in its native phase may be more conducive to self-organizing mechanism than that of the 

remaining segments of the protein chains. 
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1. Introduction 

Self-assembly of proteins [1–8] provides mechanical strength and stable dynamical response to 

the underlying environment such as membrane via its hierarchical morphology. It can provide a 

reliable and responsive pathways in ion channels [9–23] for selective transport of such specific 

elements as potassium ions. There are many examples of protein self-assembly with conflicting (adverse 

and cooperative) effects [3,4]. For example, the self-assembly of proteins into a viral capsids is 

critical in preserving the genome from non-conducing external factors such as digesting enzymes of 

the host cells, undesirable pH, temperature, etc. [3]. On the other hand, the self-assembly of proteins 

triggered by the conformational changes of the proteins may lead to undesirable aggregation such as 

amyloid beta-proteins into fibrils. Of a diverse range of proteins with unique and universal response 

properties, we consider a transmembrane protein CorA [9–22] with a well-defined inner (iCorA) and 

outer (oCorA) segments [23]. Very recently, we have observed an unusual thermal response of CorA 

particularly of its inner segment (iCorA) in its native phase [24]. For example, we find that the size 

of iCorA reduces on heating while that of the oCorA shows less organized response in its response of 

its overall size in its native phase as illustrated in Figure 1. 

 

Figure 1. Snapshots of iCorA (top row) and oCorA (bottom row) at the end of 10
7 

MCS 

time at T = 0.010, 0.013, 0.018 and 0.020 [24]. 

In denatured phase, iCorA expands continuously and oCorA shows abrupt increase in its size in 

a narrow range of temperature [23,24]. Because of a relatively large size of oCorA in comparison to 

iCorA, the snapshots of the entire protein (CorA) is not as clear to identify such trends which is 

dominated by the overall response of oCorA. The functional structure of CorA is, however, known to 

exist as a homo-pentamer [19] to provide coordinated open and close states for the selective transport 

of Mg
2+

 across the ion channels. Transport of ions depends on the permeation pathways and 

consequently on the conformation of individual proteins and their interacting network. How CorA 

proteins assemble collectively into a well-defined morphology is not well understood. 
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Despite numerous experimental investigations, understanding of the underlying pathways 

remain highly speculative. Computer simulations provide a viable tool to probe the structural 

response of proteins and its assembly that may help clarifying such speculative hypothesis. Extensive 

computer simulations have been recently performed to understand the structure of CorA protein 

embedded in a model membrane by all-atom MD simulations [19]. Such atomic-scale investigations 

are insightful in probing the small-scale structural response, however, it is limited to short time scale 

despite large-scale computer simulations; it is not feasible to examine large-scale structural responses 

by such approach without severe constraints. For example, the morphology of a set of five proteins 

with inner segment confined by a nanodisc seems to deform out if they start from a symmetric 

configuration (see Figure 2). Even with a large-scale all-atom MD simulation, it is rather difficult to 

see a significant dissociation besides fusion of the symmetry. Therefore, a large-scale coarse-grained 

analysis [23,24] is needed to augment and clarify the distinctions (see below) if feasible. Perhaps 

protein-protein interaction may not be enough to direct five CorA proteins into a stable pentamer; 

other factors such as a nanodisc or membrane matrix may be needed for the stability. Before 

incorporating additional constitutive components to probe directed assembly, it would be important 

to understand the self-assembly of the proteins first.  

 

Figure 2. Pentamer of CorA (each protein shown in different colors) with inner core 

(iCorA) confined by a nanodisc shown in black. The initial configuration is on the left 

and final configuration on the right after 2 microsecond of coarse-grained MD 

simulations.  

The protein channel involves cooperative response of many proteins along with numerous 

constitutive elements of a cellular environment such as lipid molecules, ions, osmolytes, different 

types of proteins, etc. Although it is not possible to incorporate all constitutive elements in such a 

computer simulation at once but it may be feasible to investigate effect of each component first 

before incorporating many. Effect of crowded environment on protein folding and its structural 

stability has been a subject of intense studies both experimentally [25–27] as well as by computer 

simulations [28–32]; these citations are some as examples as there are too many articles published on 

this subject to cite all. In this article, we focus on the effect of crowded environment created by 

presence of proteins itself in order to investigate their collective structures. Our goal is to understand 

the stability of the multi-scale morphologies of interacting proteins in its native and denatured phases. 
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The model is described in the next section, followed by results and discussion with a concluding 

remark at the end. 

2. Model 

We consider a coarse-grained model [24] of the protein chain on a cubic lattice for simplicity, 

efficiency, and practical utility: it incorporates specificity of each residue, ample degrees of 

freedom (unlike minimalist lattice models) for residues to perform their stochastic movements and 

their covalent bonds to fluctuate. The internal structures of residue (i.e., fine-grained details at 

atomistic scale) are ignored, however, the specificity of residues is considered via their unique 

residue-residue interactions (see below) which is critical in capturing the unique characteristics of the 

protein. In our coarse-grained representation, CorA is a chain of 351 nodes (residues) tethered 

together on a cubic lattice by flexible peptide bonds. A node represents a residue and occupies a unit 

cell (of size (2a)
3
, with lattice constant (a); the bond length between consecutive residues varies 

between 2 and (10) in unit of lattice constant (a) [33]. Typically, a protein chain is placed in the 

simulation box in a random configuration, initially with minimum bond length (2a) between the 

consecutive nodes; this initial configuration is further randomized by allowing each node to perform 

its stochastic movement (to its 26 neighboring cells with varying distance) with the strictly 

implemented excluded volume constraint. The bond-fluctuating mechanism has been used 

extensively in addressing a range of complex problems in polymers [33]; we have extended its utility 

to model protein chains [23,24]. Coarse-graining of the simulation box (cubic lattice) and the 

residues representation by a lattice cell make it one of the efficient computational method for 

modeling such systems while retaining the potential for fine-graining [34] to further enhance the 

degrees of freedom.  

Each residue interacts with the neighboring residues within a range (rc) of interaction with a 

generalized Lennard-Jones potential, 
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where rij is the distance between the residues at site i and j; rc=8 and  = 1 in units of lattice 

constant. We use a knowledge-based residue-residue interaction as input in our phenomenological 

potential (1) for ij. The knowledge-based residue-residue interactions [35,36] are derived from the 

distribution of the amino acids in a growing ensemble of frozen protein structures in protein data 

bank (PDB); the underlying solvent environment is therefore taken into account implicitly. Various 

assumptions and approximations [35,36] are further made in deriving these contact potentials which 

makes it somewhat difficult to calibrate the scales of the physical quantities in absolute units. The 

relative strength of residue-residue interactions is critical for protein to adopt its specific 

conformations. Thus, the potential strength, ij, is unique for each interaction pair with appropriate 

positive (repulsive) and negative (attractive) values selected from the knowledge-based contact 

interactions [35,36].
 
The knowledge-based residue-residue interactions have been used extensively in 

modeling protein structures for decades [37–40]. We use the residue-residue contact matrix by 

Betancourt-Thirumalai (BT) [35], an improved version of classic Miyazawa-Jernigan (MJ) 

interaction [36]. It is worth pointing out that there can be alternate methods to incorporate the 
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specificity of residue interactions in a phenomenological potential (1) including the computed 

interactions involving all-atom MD simulations [41,42]. 

Structural evolution of protein chains (CorA) are analyzed in detail as they interact, associate, 

and dissociate in their native (relatively low temperature) to denatured (high temperature) phases. 

The sample is prepared by inserting protein chains randomly first in the simulation box; protein 

chains are moved around with excluded volume constraints to randomize their conformation and 

distribution further. The protein chain CorA consists of 351 residue, inserting many chains, each of 

length (Lc = 351) in a simulation box of size L
3 

( = 350
3
) become difficult beyond a certain 

number (Nc = 5  100) of chains due to onset of jamming. The computer processing unit (CPU) also 

increases with the number of chains. Therefore, the number of protein chains is restricted to perform 

computer simulations with reasonable CPUs (order of days to week) while capturing the cooperative 

and competing effects of residue-residue, segmental, and overall protein-protein interactions on the 

local and global association and dissociation of protein chains. Further, relaxation time to reach 

steady-state (by examining the temporal evolution of various physical quantities) also increases 

which makes it difficult to assess the thermal response of physical quantities in equilibrium. The 

protein concentration is defined by the fraction p of the lattice sites occupied by the residues of the 

protein chains, i.e., p = 8  Nc  Lc/L
3
. The number of protein chains Nc = 5  100 each with 

length Lc = 351 (protein chain of CorA) and Lc = 61 (inner segment of protein) are considered with 

simulation box of size L = 350, and 150 respectively. Note that the simulation box becomes crowded 

at a lower protein concentrations with longer chain lengths. 

Each residue performs its stochastic movements with the Metropolis algorithm which involves 

selecting a residue randomly at a site say i of a randomly selected protein chain and attempting to 

move it to one of its neighboring site say j. If the excluded volume constraints and limits on the bond 

length for the proposed move are satisfied then we calculate the corresponding change in energy  

∆Eij = Ej − Ei between its old (Ei) and new (Ej) configurations, and move the node with the 

Boltzmann probability exp(− ∆Eij /T) where T is the temperature in reduced unit of the Boltzmann 

constant (kB). Attempts to move each node once defines the unit Monte Carlo step (MCS), i.e., Nc  

Lc attempts to move randomly selected nodes in a simulation box with Nc protein chains each with Lc 

residues defines the unit MCS. Simulations were performed for sufficiently long time steps (typically 10 

million time steps) to make sure that system has reached its steady state equilibrium with a number 

of independent samples (10–100) to estimate the average values of the physical quantities. A number 

of local and global physical quantities were determined such as the energy of each residue and 

protein chain, contact map, their mobility, mean square displacement of the center of mass of the 

protein, radius of gyration, and its structure factor. These physical quantities are in arbitrary units, i.e., 

the length is in units of the lattice constant which is different from many all-atom simulations where 

realistic units for size and time scales are used via calibration of σ and εij from experimental data for 

simplified systems. It is difficult to quantify physical quantities in absolute units due to the 

phenomenological nature of the interactions (Eq 1). The trend in response of the physical quantities 

to such parameters as the temperature and network density should however be qualitatively 

comparable with appropriate observations. 
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3. Results and discussion 

We study the effects of protein-protein interaction on a number of local and global physical 

quantities as proteins organize, associate and disassociate as a function of temperature and their 

concentration (i.e., the number of proteins). Our system has reached the steady-state equilibrium 

during the course of simulations (i.e., in 10
7
 time steps) for almost entire temperature regime and 

concentrations except in extreme limits (i.e., high temperature and higher concentrations) where the 

relaxation time is too large due to entanglement and jamming of extended structures of proteins. 

Nevertheless, it is illustrative to understand the organizing morphologies as the protein chains 

assemble, entangle, and disassociate. 

3.1. Snapshots, contact map and profiles 

Representative snapshots of CorA and that of its inner segments (iCorA) with 100 protein 

chains each in the simulation box is presented in Figure 3 at a low (T = 0.020) and a high (T = 0.040) 

temperature. Both, the protein chains and its inner segments appear to disperse almost uniformly. A 

closer inspection shows that, in native (low temperature) phase, CorA proteins dissociate more on the 

scale comparable to the size of a protein chain in general while the clusters of inner segments appear 

to form isolated globular bundles. The residue-residue interaction is more conducive to 

agglomeration of chain with the inner segments than that of the full protein (CorA). Corresponding 

snapshots at a higher temperature (T = 0.040) show different morphologies where some degree of 

phase-separation seem to occur with CorA as the proteins continue to dissociate, expand, and 

entangle. The spreading of extended inner segments at T = 0.040 reduces the segregation of protein 

clusters seen at the low temperature. Attempts are made to quantify our qualitative observations of 

complex morphologies by analyzing the structure factor (see below). 

Contact maps (Figures S1–S4) of the assembly of CorA chains and inner segments at a low 

temperature (T = 0.020) seem to suggest a more compact morphology of iCorA in crowded protein 

environment than that of CorA. At high temperature (T = 0.040), frequency of segmental contacts is 

much lower in their crowded protein matrices than that at the low temperature; segmental contacts in 

chains with inner segment is still higher than that with CorA. The average number (Nn) of residues 

around each is a measure of the contact profile which is presented in Figures 4 and 5 for a range of 

temperatures (T = 0.0200.040). Obviously, the residue contact density decreases on increasing the 

temperature with more contacts at low temperatures (native phase) and less in denatured phase. 

Variation in pattern of the contact profiles with the temperature however, reveals how the protein 

segments organize during the self-assembly that leads to a global morphology. At the low 

temperature (T = 0.020), most part of the protein chains seem to be surrounded by proteins leading to 

a compact (globular) morphology. Onset of preferential contacts emerges on raising the 

temperature (T = 0.025). For example, second half of residues in chains with only inner 

segment (iCorA) of the protein (residues 
316

F  
351

L) have higher contact density than the first 

half (residues 
291

M  
315

N) (Figure 5). Preferential contact becomes more localized (
316

F  
325

W) on 

increasing the temperature further (T = 0.030). Even though the contact density of many residues is 

relatively high in self-assembled morphology in CorA, its random distribution along the backbone 

makes less defined at higher temperatures (Figure 4). Further, the fraction of segments with 
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relatively low contact density remains appreciably high. Thus, the protein-protein interaction in inner 

segments is likely to provide a more stable support for a collective morphology of CorA protein. 

 

Figure 3. Snapshots of CorA (left column) and iCorA (right column) with 100 protein 

chains at a low (T = 0.020, top) and a high (T = 0.040, bottom) temperature at the end 

of 10
7
 time steps. Five proteins are shown in different colors in each simulation box, 

remaining (95 chains) are golden khaki. 

 

Figure 4. Average number of residues around each of CorA (
1
M 

2
E … 

351
L) residues in a 

crowded matrix with 80 chains at low (T = 0.020, 0.025) and high (T = 0.030, 0.040) 

temperatures. 
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Figure 5. Average number of residues around each of iCorA (
291

M 
293

V … 
351

L) residues 

in a crowded matrix with 80 chains at low (T = 0.020, 0.025) and high (T = 0.030, 0.040) 

temperatures. 

3.2. Radius of gyration 

How does the size of protein chains depend on the protein concentration in native and denatured 

phases? How are residues distributed as the protein chains associate and dissociate? We address it by 

analyzing the radius of gyration of each protein and structure factor of the self-organized assembly. 

Variations of the average radius of gyration of the protein CorA with the concentration is presented 

in figure 6 at representative low and high temperatures. The radius of gyration of the protein does not 

show much variation with the protein concentration at low temperatures (inset Figure 6). At the high 

temperature (T = 0.040) the radius of gyration grows continuously with the concentration reaching a 

steady-state value in the crowded regime. It should be pointed out that the entanglement is enhanced 

at higher protein concentrations. We think that a large increase of the radius of gyration is caused by 

the competition between entanglement and the thermal expansion of chains. 

 

Figure 6. Variation of the average radius of gyration Rg of CorA with the protein 

concentration p at temperature T = 0.020 – 0.040. 
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Figure 7 shows that the radius of gyration of chains with only inner segments increases with the 

protein concentration p systematically at low temperatures (T = 0.015, 0.020) in its native phase and 

exhibits little variation with p at higher temperatures (T  0.025) in its denatured phase. We therefore 

think that the protein-protein interaction among the inner-segments of the protein in its native phase 

may be more responsive to self-organized collective morphology of proteins. 

 

Figure 7. Variation of the average radius of gyration Rg of iCorA with the protein 

concentration p at temperature T = 0.015 – 0.040. 

3.3.  Structure factor 

Overall distribution of residues over multiple length scales can be assessed by analyzing the 

structure factor S(q) which is defined as, 

q

N

j

rqi je
N

qS 



 




2

1

1
)(         (2) 

where rj is the position of each residue in all protein chains and |q| = 2/ is the wave vector of 

wavelength . Using a power-law scaling of the structure factor with the wave vector, i.e., 

S(q)  q
-1/

         (3) 

one may study the spread of residues over the length scale  by evaluating the exponent  which 

describes the mass (residue) distribution. Since we know the overall size of each protein chain via its 

radius of gyration (Figures 6 and 7), we can estimate the dependence of the number of residues on 

multiple length scales (), i.e., from the size of a residue to the linear scale (L) of the simulation box. 

On the spatial length scale comparable to radius of gyration (Rg), we can estimate the scaling 

exponent  from the power-law, Rg  N

, where N is the number of residues (a measure of the 

molecular weight of the protein); the effective (fractal) dimension (D) of each protein D = 1/ ,  = . 

Similarly we can estimate the mass distribution of the protein self-assembly at   Rg. 
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Figure 8. Structure factor S(q) versus the wave length (Lambda ) at temperature T = 0.030 

with a wide range of the number Nc (5–100) of CorA proteins in simulation box. The 

inset shows the variation of the radius of gyration of proteins with the number Nc (5–100) 

of CorA proteins in simulation box. 

Variation of the structure factor (S(q)) with the wave length () of the self-assembly of the 

protein (CorA) is presented in Figure 8 at temperature T = 0.030 for a wide range of protein 

concentrations, dilute (Nc = 5) to crowded (Nc = 100) regime. Note that the radius of gyration has 

reached a steady-state value for all concentrations of the protein at T = 0.030. We see that D2.6 for 

each protein (Rg), D2.2 at Rg    50 (in unit of lattice constant). For all residues distributed 

over the entire simulation box, L, the effective dimension decreases systematically from D2 with 

Nc = 100 to D1 with Nc = 5 where each protein chain appears isolated. At high temperature (T = 0.040), 

it is difficult to reach steady state during the course of simulations for the radius of gyration of CorA 

proteins at higher protein concentrations due to entanglements (Figure S5). Variation of the structure 

factor with the wave vector (Figure S5) reveals a rather tenuous morphology ( from size of a 

residue to about third of the simulation box, L/3 much larger than Rg of protein chains) of the 

entangled fiberous protein chains at the high temperature with an effective dimension D1.7. 

The structure factor of residues’ distribution in a dilute-to-crowded protein environment (Nc = 5  100) 

of chains with inner segments is presented in Figure 9 at a high temperature T = 0.040. Each protein 

chain appear to maintain globular conformation (D  3), at   Rg; on larger scale   Rg, the density 

varies with length scale, i.e., D2.6 and 3.4 with increasing length scale up to about half the size of 

the simulation box ( = L/2). The overall morphology (L), seem to become more tenuous on 

reducing the number of protein chains; D1.6 with Nc = 100. Note that the radius of gyration of the 

protein increases on increasing the number Nc of protein chains (inset Figure 9). 
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Figure 9. Structure factor S(q) versus the wave length (Lambda ) at temperature T = 0.040 

with a wide range of the number Nc (5–100) of chains with inner segment (iCorA) of the 

protein in simulation box. The inset figure shows the variation of the radius of gyration 

of the protein with the number of protein chains at a low temperature (T = 0.015) to show 

a systematic increase on increasing the number of protein chains. 

 

Figure 10. Structure factor S(q) versus the wave length (Lambda ) in a crowded protein 

environment with Nc = 100 at a range of low to high temperatures T = 0.015  0.040 

with the estimates of slopes in brackets; slopes of larger scale data at T = 0.015 are also 

included. Inset is the variation of the radius of gyration of iCorA with the temperature 

with number Nc = 100 proteins in simulation box. 

The variation of the structure factor with the wavelength in the most crowded environment (Nc = 100) 

is presented in Figure 10 for a range of temperatures. The globular morphology (D  3) of individual 

protein chain seems to persist at lower temperatures (T = 0.015, 0.025) at length scale comparable to 

its size (Rg). On a larger-scale (Rg    3 Rg), the assembled structure is not as compact (D2.5), 
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but the overall assembly remains compact (solid with D3) for its spread over the simulation box at 

the low temperature (T = 0.015). The multi-scale morphology of self-organizing proteins is 

heterogenious regardless of its globular conformations in its native phase. The morphology remains 

relatively dense D2.5 even at a much higher temperature, i.e., T = 0.030. On large length scale, (L), 

the self-assembled morphology appears tenuous. The morpholgy adopts to a random coil D1.8 at 

high temperature T = 0.040 where onset of a regular long range structure appear to sets in (with an 

oscillation in S(q)). 

4. Conclusions 

Self-organized structures of interacting proteins (CorA) and its inner segments are investigated 

by a coarse-grained Monte Carlo simulation as a function of protein concentration at a range of low 

to high temperatures. Visual inspection show clear distinctions in morphology of the assembly in 

dilute solution and that in the crowded (dense) matrix at both low and high temperatures. CorA 

proteins seem to dissociate more on the scale comparable to the size of the proteins while the clusters 

of chains with inner segments phase-separate in its native phase (low temperatures). It appears that 

the protein-protein segmental interaction is more conducive to agglomeration of inner segments than 

that of the outer segments of the protein. 

Variation in pattern of the contact profiles with the temperature reveals how the protein 

segments organize during the self-assembly that leads to a global morphology. We find that a 

relatively lower fraction of residues in outer segments (residues 
1
M-

290
V) of the protein participate in 

segmental globularization (with a random distribution) in comparison to that of the inner core 

segment (
291

M… 
351

L) with well-defined globular region. The radius of gyration of the protein does 

not vary much with the protein concentration at low temperatures. However, it shows enormous 

growth as the entanglement increases with the concentration at high temperature. In contrast, the 

radius of gyration of chains with inner segments increases with the protein concentration p 

systematically at low temperatures (T = 0.015, 0.020) in its native phase. We therefore think that the 

protein-protein interaction among the inner-segments of the protein in its native phase is conducive 

to responsiveness of the self-organizing pathways. 

The multi-scale morphology (isolated globular bundles to entangled network) is quantified by 

evaluating an effective dimension D from the scaling analysis of the structure factor with the wave 

vector. In general, the effective dimension of the assembled morphology of protein chains is much 

lower than that of its inner segments. For example, the most compact morphology of the proteins 

with D2.6 (Rg) even at the highest protein concentrations (most crowded) appears at low 

temperature while it remains almost extended in a random configuration with D  2 at almost entire 

temperature and concentration range considered here. In contrast, the self-assembled morphology of 

chains with inner segments remains globular D3 at almost all length scales in its native phase. It is 

difficult to identify main cause of a stable pentamer configuration due to complexity of the crowded 

proteins resulting from inter- and intra-chain residue-residue interactions, competition between the 

self-organizing mechanism and steric constraints, and entanglement. Based on our analysis presented 

here, we believe that a stronger protein-protein interactions among the inner segments of the protein 

is conducing to its collective stable self-assembly. 

 



80 

AIMS Biophysics  Volume 6, Issue 2, 68–82. 

Acknowledgments 

This research has been supported by the Ratchadaphiseksomphot Endowment Fund, 

Chulalongkorn University  to PS, the Chulalongkorn university dusadi phipat scholarship to WR. 

Support from the Chulalongkorn University for a visiting professorship is gratefully acknowledged 

by RBP along with the warm hospitality by the Department of Chemistry. The authors acknowledge 

HPC at The University of Southern Mississippi supported by the National Science Foundation under 

the Major Research Instrumentation (MRI) program via Grant # ACI 1626217. 

Conflict of interest 

We do not have conflict of interest. 

References 

1. Furukawa Y, Nukina N (2013) Functional diversity of protein fibrillar aggregates from 

physiology to RNA granules to neurodegenerative diseases. Biochim Biophys Acta 1832: 1271–

1278. 

2. Bai Y, Luo Q, Liu J (2016) Protein self-assembly via supramolecular strategies. Chem Soc Rev 

45: 2756–2767. 

3. McManus JJ, Charbonneau P, Zaccarelli E, et al. (2016) The physics of protein self-assembly. 

Curr Opin Colloid Interface Sci 22: 73–79. 

4. Sgarbossa A (2012) Natural biomolecules protein aggregation: Emerging strategies against 

amyloidogenesis. Int J Mol Sci 13: 17121–17137. 

5. Sun H, Luo Q, Hou C, et al. (2017) Nanostructures based on protein self-assembly: From 

hierarchical construction to bioinspired materials. Nano Today 14: 16–41. 

6. Garcia-Seisdedos H, Empereur-Mot C, Elad N, et al. (2017) Proteins evolve on the edge of 

supramolecular self-assembly. Nature 548: 244–247. 

7. Pandey RB, Farmer BL, Gerstman BS (2015) Self-assembly dynamics for the transition of a 

globular aggregate to a fibril network of lysozyme proteins via a coarse-grained Monte Carlo 

simulation. AIP Adv 5. 

8. Yang L, Liu A, Cao S, et al. (2016) Self-Assembly of proteins: Towards supramolecular 

materials. Chem Eur J 22: 15570–15582. 

9. Hmiel SP, Snavely MD, Florer JB, et al. (1989) Magnesium transport in Salmonella 

typhimurium: genetic characterization and cloning of three magnesium transport loci. J 

Bacteriol 171: 4742–4751. 

10. Maguire ME (1992) MgtA and MgtB: prokaryotic P-type ATPases that mediate Mg
2+

 influx. J 

Bioenerg Biomembr 24: 319–328. 

11. Kehres DG, Lawyer CH, Maguire ME (1998) The CorA magnesium transporter gene family. 

Microb Comp Genomics 3: 151–169. 

12. Eshaghi S, Niegowski D, Kohl A, et al. (2006) Crystal structure of a divalent metal ion 

transporter CorA at 2.9 angstrom resolution. Science 313: 354–357. 

13. Lunin VV, Dobrovetsky E, Khutoreskaya G, et al. (2006) Crystal structure of the CorA Mg
2+

 

transporter. Nature 440: 833–837. 



81 

AIMS Biophysics  Volume 6, Issue 2, 68–82. 

14. Payandeh J, Li C, Ramjeesingh M, et al. (2008) Probing structure-function relationships and 

gating mechanisms in the CorA Mg
2+

 transport system. J Biol Chem 283: 11721–11733. 

15. Payandeh J, Pai EF (2006) A structural basis for Mg
2+

 homeostasis and the CorA translocation 

cycle. EMBO J 25: 3762–3773. 

16. Dalmas O, Cuello LG, Jogini V, et al. (2010) Structural Dynamics of the Magnesium-bound 

Conformation of CorA in a lipid bilayer. Structure 18: 868–878. 

17. Dalmas O, Sompornpisut P, Bezanilla F, et al. (2014) Molecular mechanism of Mg
2+

-dependent 

gating in CorA. Nat Commun 5: 3590. 

18. Neale C, Chakrabarti N, Pomorski P, et al. (2015) Hydrophobic gating of ion permeation in 

magnesium channel CorA. Plos Comput Biol 11: e1004303. 

19. Kitjaruwankul S, Wapeesittipan P, Boonamnaj P, et al. (2016) Inner and outer coordination 

shells of Mg
2+

 in CorA selectivity filter from Molecular Dynamics simulations. J Phys Chem B 

120: 406–417. 

20. Matthies D, Dalmas O, Borgnia MJ, et al. (2016) Cryo-EM structures of the magnesium channel 

CorA reveal symmetry break upon gating. Cell 164: 747–756. 

21. Chakrabarti N, Neale C, Payandeh J, et al. (2010) An iris-like mechanism of pore dilation in the 

CorA magnesium transport system. Biophys J 98: 784–792. 

22. Nordin N, Guskov A, Phua T, et al. (2013) Exploring the structure and function of Thermotoga 

maritima CorA reveals the mechanism of gating and ion selectivity in Co
2+

/Mg
2+

 transport. 

Biochem J 451: 365–374. 

23. Kitjaruwankul S, Khrutto C, Sompornpisut P, et al. (2016) Asymmetry in structural response of 

inner and outer transmembrane segments of CorA protein by a coarse-grain model. J Chem Phys 

145: 135101. 

24. Kitjaruwankul S, Boonamnaj P, Paudel SS, et al. (2018) Thermal-induced folding and unfolding 

of a transmembrane protein (CorA). Physica A 506: 987–992. 

25. Munishkina LA, Ahmad A, Fink AL, et al. (2008) Guiding protein aggregation with 

macromolecular crowding. Biochemistry 47: 8993–9006. 

26. Minton AP (2001) The influence of macromolecular crowding and macromolecular confinement 

on biochemical reactions in physiological media. J Biol Chem 276: 10577–10580.  

27. Ellis RJ (2001) Macromolecular crowding: an important but neglected aspect of the intracellular 

environment. Curr Opin Struct Biol 11: 114–119.  

28. Alas SJ, González-Pérez PP, Beltrán HI (2019) In silico minimalist approach to study 2D HP 

protein folding into an inhomogeneous space mimicking osmolyte effect: First trial in the search 

of foldameric backbones. BioSystems 181: 31–43. 

29. González-Pérez PP, Orta DJ, Pena I, et al. (2017) A computational approach to studying protein 

folding problems considering the crucial role of the intracellular environment. J Comput Biol 24: 

995–1013.  

30. Tsao D, Dokholyan NV (2010) Macromolecular crowding induces polypeptide com paction and 

decreases folding cooperativity. Phys Chem Chem Phys 12: 3491–3500. 

31.  Ping G, Yuan JM, Vallieres M, et al. (2003) Effects of confinement on protein folding and 

protein stability. J Chem Phys 118: 8042–8048. 

32. Kuznetsova I, Zaslavsky B, Breydo L, et al. (2015) Beyond the excluded volume effects: 

mechanistic complexity of the crowded milieu. Molecules 20: 1377–1409.  



82 

AIMS Biophysics  Volume 6, Issue 2, 68–82. 

33. Binder K (1995) Monte Carlo and Molecular Dynamics Simulations in Polymer Science. Oxford 

University Press. 

34. Pandey RB, Farmer BL (2014) Aggregation and network formation in self-assembly of protein 

(H3.1) by a coarse-grained Monte Carlo simulation. J Chem Phys 141. 

35. Betancourt MR, Thirumalai D. (1999) Pair potentials for protein folding: choice of reference 

states and sensitivity of predicted native states to variations in the interaction schemes. Protein 

Sci 2:361–369. 

36. Miyazawa S, Jernigan RL (1985) Estimation of effective inter residue contact energies from 

protein crystal structures: quasi-chemical approximation. Macromolecules 18:534–552. 

37. Miyazawa S, Jernigan RL (1996) Residue-residue potentials with a favorable contact pair term 

for simulation and treading. J Mol Biol 256: 623–644. 

38. Tanaka S, Scheraga HA. (1976) Medium and long range interaction parameters between amino 

acids for predicting three dimensional structures of proteins. Macromolecules 9: 945–950. 

39. Godzik A (1996) Knowledge-based potentials for protein folding: what can we learn from 

protein structures? Structure 4: 363–366. 

40. Huang SY, Zou X. (2011) Statistical mechanics-based method to extract atomic distance-

dependent potentials from protein structures. Proteins 79: 2648–2661. 

41. Pandey RB, Kuang Z, Farmer BL, et al. (2012) Stability of peptide (P1, P2) binding to a 

graphene sheet via an all-atom to all-residue coarse-grained approach. Soft Matter 8: 9101–9109. 

42. Feng J, Pandey RB, Berry RJ, et al. (2011) Adsorption mechanism of single amino acid and 

surfactant molecules to Au {111} surfaces in aqueous solution: design rules for metal binding 

molecules. Soft Matter 7: 2113–2120. 

© 2019 the Author(s), licensee AIMS Press. This is an open access 

article distributed under the terms of the Creative Commons 

Attribution License (http://creativecommons.org/licenses/by/4.0) 


