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Abstract: A major hallmark of Alzheimer’s disease (AD) is the accumulation and deposition of 
fibrillar aggregates of the amyloid- (A) peptide into neuritic plaques. These amyloid deposits 
were thought to play a central role in AD; however, the correlation between plaque load and disease 
is weak. Increasing evidence supports the notion that a variety of small, globular aggregates of A, 
referred to broadly as A oligomers (AO), may in fact be the primary culprits associated with 
neurotoxicity. Evaluation of AO structure and physiological activity is complicated by their 
metastability, heterogeneity, complex aggregation pathways, and dependence on experimental 
conditions. Numerous different types of oligomers have been reported, and these have been 
associated with varying degrees of toxicity and modes of interaction. Here, we briefly review AOs 
with a focus on their formation, structure, and biophysical methods applied to their investigation. 
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1. Introduction 

Alzheimer’s disease (AD) is a fatal neurodegenerative disorder that is the most prevalent form 
of dementia. The neuropathological and neurochemical hallmarks of AD include: Synaptic loss and 
selective neuronal cell death; decreases in markers for certain neurotransmitters; and abnormalities in 
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neurons and their processes as well as in the extracellular space. Two of the main features associated 
with AD are neurofibrillary tangles comprised of the protein tau and cerebrovascular, diffuse, and 
neuritic plaques composed predominantly of the amyloidogenic peptide amyloid-β (Aβ). These 
proteinaceous deposits of tau and A consist of stable amyloid fibrils, which are -sheet rich fibrous 
protein aggregates. Similar deposition of amyloid is associated with numerous other diseases [1]. 

In the early 90’s, the amyloid cascade hypothesis was introduced, which postulated that Aβ 
aggregation and deposition directly lead to neuronal death, resulting in AD [2]. Yet, the correlation 
between plaques and cognitive dysfunction in AD has been questionable for years [3–7], and with 
Aβ-directed therapeutic strategies failing in numerous clinical trials, the role of A in AD 
progression is being re-evaluated [8–11]. This has led to an enhanced research focus on diffuse, 
soluble aggregates of Aβ. Various small, globular aggregates of A, referred to broadly as A 
oligomers (AO), were detected in AD patients a few decades ago [12–14], and these AO were 
originally classified as being intermediates toward the formation of amyloid fibrils. Over the years, 
increasing evidence points toward AOs playing a central role in AD, as AOs correlate more 
strongly with AD progression in patients and animal models [15–19]. For example, AO formation 
and buildup occurs early compared with plaque buildup (much earlier than plaque deposition) in the 
AD brain [20–22]and CSF [23], which has led to extensive efforts to develop assays to detect AOs 
for potential application as biomarkers [24–31]. 

An extensive body of evidence has linked high levels of AOs in the brain to a variety of 
pathogenic consequences associated with AD (summarized in Table 1). As such, there has been 
significant effort made to characterize AβO formation, structure, and biochemical/biophysical 
characteristics (such as interactions with other proteins and lipids) in the hope that underlying modes 
of AβO-related toxicity could be revealed [32–37]. As AβOs are metastable, highly heterogeneous 
in nature, and can form via a variety of different pathways, this remains a challenging task, yet 
progress has been made. Here, we review AβOs with a focus on biophysical characterization of their 
formation and structure. 

Table 1. Toxic mechanisms associated with AβOs. 

Toxic effects of AβOs Model system(s) References 

Reduction in neural plasticity mice, rat [37–40] 

Stimulation of tau phosphorylation cortical neurons (rat), hippocampal neurons, 

neuroblastoma, primary neurons, Tg-Mice 

[41–45] 

Choline acetyltransferase Inhibition cholinergic cell lines [46,47] 

Oxidative stress cortical neurons, hippocampal neurons, in vitro, 

neuroblastoma 

[48–51] 

Endoplasmic reticulum stress cortical astrocytes, cortical neurons (rat), 

fibroblasts, Tg-mice 

[43,52,53] 

Receptor disturbance cortical neurons, hippocampal neurons [54–57] 

Insulin resistance cortical neurons, hippocampal neurons, rat [40,42,57,58]

Synapse deterioration hippocampal neurons, pyramidal neurons (rat), 

Tg-mice 

[21,35,54,59]

Axonal transport cortical neurons, hippocampal, in vitro, Tg-mice [60–62] 

Astrocytes/microglia effects cortical astrocytes, Tg-mice [44,52,63,64]

Continued on next page
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Toxic effects of AβOs Model system(s) References 

Cell cycle disruption cortical neurons, Tg-mice [65,66] 

Selective neuron death Mice [38,67] 

Inhibition of long-term potentiation Mice [37,40] 

Calcium dysregulation cortical neurons (rat), hippocampal neurons, 

primary neurons 

[43,45,48,52]

Modulation of metal toxicity neuroblastoma [49] 

Cytoskeleton disruption primary neurons [50] 

Modulation of Receptor/Channel 

Activity 

hippocampal neurons [48] 

2. The Aβ Peptide 

Aβ is an approximately 4 kDA peptide (typically 40–42 amino acids long) that is derived from 
the transmembrane portion of the amyloid precursor protein (APP; Figure 1). The production of Aβ 
is achieved by the sequential cleavage of APP by two membrane-bound endoprotease activities, β- 
and γ-secretase. The two predominant Aβ peptides produced are 40 and 42 amino acids in length, and 
these peptides are referred to as Aβ40 and Aβ42 respectively. Aβ is amphipathic in nature (having a 
predominately hydrophilic N-terminus and a predominately hydrophobic C-terminus), which is 
thought to drive its aggregation. As the C-terminal end of Aβ coincides with the transmembrane 
portion of APP, Aβ42 has a larger hydrophobic domain, making it more fibrillogenic compared to 
Aβ40 and deposits to a much greater extent in the brain [68–70]. Only about 10% of APP is processed 
via this Aβ producing pathway. Most APP is cleaved by the α-secretase, generating a series of much 
more benign peptide fragments. 

The hydrophilic N-terminal region of Aβ can adopt both an α-helical or β-sheet structure 
dependent on solution conditions, for example pH [71,72]. The hydrophobic C-terminal end of Aβ 
has a propensity to adopt β-sheet structure upon aggregation independent of solvent conditions [71,72]. 
Beyond its amphipathic nature, several other domains have been identified in Aβ. The different 
polyomorphic fibril structures of Aβ are comprised of bundled β-sheets with backbones orthogonal to 
the fiber axis creating a cross-β structure [73], and two β-strand forming domains (residues 11–21 
and 29–39 respectively) that are separated by a turn/bend region (around residues 23–26) identified 
through various experimental and computational studies [74–77]. The central region of Aβ (residues 16–21), 
contained within one of the β-strands, has enhanced amyloidogenic properties and represents a 
hydrophobic core [78]. 
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Figure 1. APP processing and subsequent Aβ amino acid sequence with specific domains 
of interest specified. Proteolytic cleavage of APP is initiated at residue 671 by β-secretase 
followed by either non-amyloidogenic processing, cleavage at residue 687 by α-secretase, 
or amyloidogenic processing, cleavage at residue 711, 713, 714, or 726 by γ- secretase. 
The amino acid sequence below highlights the region of APP from which A is produced 
with the numbering referring the residues in A. The orange highlighted region 
represents the intact Aβ42 sequence. Hydropathy indexes of individual residues are color 
coded according to hydrophobic (blue), slightly hydrophobic (light green), and 
hydrophilic (red). Regions of interest and cites of secretase activity within the APP and 
A are indicated. 

3. Aβ aggregation—a complex mechanism 

The aggregation of Aβ (and other amyloid-forming proteins) is typically characterized in terms 
of fibril formation (Figure 2). Aβ fibril formation occurs via a complex aggregation pathway. 
Fundamentally, AβOs can be subdivided into species that are intermediates in fibrils formation (referred 
to as being on pathway) or species that do not directly lead to fibrils (referred to as being off 
pathway). This is a contributing factor to the immense heterogeneity observed in AβO populations as 
will be discussed in more detail later. In general, amyloid formation proceeds via a nucleation 
dependent polymerization mechanism [79–81]. With this mechanism, aggregation initially occurs via 
a slow nucleation phase (often called the lag phase) that involves the formation of a 
thermodynamically unfavorable critical nucleus that is associated with a transition from a native to 
non-native protein conformation. For Aβ, the critical nucleus is likely a multimeric species [82–84]. 
Once the critical nucleus has formed, an elongation or growth phase (characterized by a relatively 
rapid extension of fibril aggregates) occurs. While numerical models can extract important 
parameters (lag phase times, elongation rates, critical nucleus size) from experimental data [85], the 
actual aggregation pathway toward fibrils can be complicated. For example, other on pathway 
intermediates, like protofibrils, are also observed in Aβ aggregation. Protofibrils are amyloid-like, 
elongated aggregates with filament-like morphologies and are late-stage intermediate precursors on 
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the aggregation pathway to fibrils. A key aspect that facilitates on and off pathway aggregation routes 
and complicates investigations of AβOs is that they possess structural plasticity and are metastable 
and transient in nature. 

 

Figure 2. Production and aggregation Aβ. Aβ is a cleavage product of APP, a 
transmembrane protein. Monomeric Aβ transitions between ordered and disordered states. 
Once dimerization occurs, subsequent aggregation occurs either on pathway or off 
pathway with respect to fibril formation. The aggregates associated with these different 
pathways increase in molecular weight from the left to the right of the schematic. 
Fibrillization can proceed via several potential pathways that can populate various 
intermediate aggregate states, including oligomers and protofibrils. Off-pathway 
oligomers of various size may also form. Annular aggregates of Aβ can also form and are 
thought to potentially be associated with forming pore-like structures. 

Further complicating the issue is the observation that A can aggregate into a variety of 
morphologically distinct fibril structures, referred to as polymorphs [86–90]. This phenomenon is 
predicated on subtle changes of environmental conditions associated with aggregation, and as a result, 
preparatory protocols employed in experiments determines the resulting A fibril morphology [87]. 
While polymorphic aggregates are readily observed with in vitro studies using synthetic Aβ, 
polymorphic structures have been observed in amyloids derived from tissue, and it is thought that 
variations in A aggregate morphologies may play an important role in AD [91,92]. For example, 
polymorphic aggregates and fibrils may result in distinct biological activities and levels of toxicity 
that could underlie variations in AD [76], and distinct fibril structures can be directly associated with 
individual AD patients and clinical phenotype [93,94]. 

A complicating factor in evaluating and comparing studies aimed at elucidating AβO formation, 
structure, and physiological impact is divergent experimental conditions, such as Aβ preparation 
protocols, heavily influences experimental outcomes. In terms of oligomers, the emergence of 
distinct fibril structure strongly suggests that there would also be distinct oligomeric precursors 
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associated with their formation. Indeed, distinct AβO species can be observed within in vitro 
aggregation assays under conditions that result in fibril polymorphs [95] (Figure 3). For studies 
conducted with synthetic peptide, there are a variety of protocols used to solubilize A (Table 2). 
Typically, these protocols consist of a disaggregation step and a reconstitution step. The 
disaggregation steps usually involves the use of hydrogen bond disrupting solvents, i.e., 
hexafluoroisopropanol (HFIP) or trifluoroacetic acid (TFA), that break down pre-existing aggregates 
within lyophilized stocks of A. These solvents are often removed under vacuum, leaving a peptide 
film. The reconstitution step involves dissolving these peptide films into a solvent that facilitates 
dilution into an appropriate buffer. Dimethyl sulfoxide (DMSO) is often used, creating a 
concentrated stock that is diluted into the desired buffer. Disaggregation and reconstitution can also 
be facilitated by changes in pH. Sometimes reconstitution is performed directly into the final buffer. 
Importantly, variations in preparatory protocols indeed result in different populations of oligomers (Table 2 
and Figure 3), and these variations can complicate direct comparisons between different reports 
within the literature. Further complicating the issue, there are often distinctions observed between 
studies performed with synthetic A and naturally derived A [96]. In many studies aimed at 
elucidating activity of AβOs, specific preparations are used to obtain a particular population of 
oligomer species. These are then directly applied to different model systems, ranging from cell 
culture to animal models. However, there is often a lack of effort to verify that once added to the 
model system (which can often be a pronounced change in chemical environment) that these AβO 
species do not dissociate or aggregate into a different AβO or Aβ aggregate. To truly relate specific 
AβOs to a neurotoxic activity, effort should be invoked to attempt additional controls of this type. 

Table 2. Representative disaggregation, reconstitution, and miscellaneous protocols for 
the preparation of Aβ and observed AβOs. 

Classification Disaggregation Reconstitution Miscellaneous Result References

ADDLs None F12 Media 4 ℃
Centrifuged 14,000 ×g for 

10 mins 

5–6 nm by AFM 

(height) 
[38] 

ADDLs HFIP 
DMSO at 5 mM 

Aβ 

Sonicate 5 mins, dilute with 

DMEM/F12 Media 
A11+ [97] 

Globulomers HFIP 
DMSO at 5 mM 

Aβ 

Sonicate 10 mins, dilute 

PBS + 0.05% SDS 

16–56 kDa by 

SDS-PAGE 
[98] 

Globulomers HFIP 
DMSO at 5 mM 

Aβ 

Dilute PBS + 0.05% SDS, 

Dialyze 

38–48 kDa by 

SDS-PAGE 
[99] 

Aβ*56 HFIP 
DMSO at 5 mM 

Aβ 

Sonicate 20 min, PBS + 

0.2% SDS incubate 6 h, 

dilute and incubated 18 h; 

centrifuge 3000 ×g, dialysis

56 kDa by 

Native-PAGE 
[100] 

AβOs HFIP DMSO 
F12 Media incubated at 

4 ℃ for 24 h 
1–4 nm by AFM [101,102] 

AβOs HFIP/NH4OH 
10 mM 

Tris-HCl 
Addition of Zn2+ 10–12 nm by 

AFM 
[97] 

AβOs TFA/HFIP (2Xs) 2 mM NaOH PBS Centrifuge 386,000 ×g 2.5 nm by AFM [87,95] 

Continued on next page
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Classification Disaggregation Reconstitution Miscellaneous Result References

AβOs 

TFA salt/2 mM 

NaOH, pH ~10.5, 

1 min sonication 

PBS - 
3–12 nm by 

AFM  
[103] 

AβOs 

10% NH4OH 

(w/v) sonicated 5 

mins, lyophilized 

60 mM NaOH - 
1–10 nm by 

DLS 
[104] 

AβOs LMW - DMSO 

Sonicate 1 min, centrifuge 

16,000 ×g, SEC, PBS, 

PICUP crosslinking 

4–26 kDa by 

SDS-PAGE 
[105] 

 

Figure 3. Heterogeneity of AβOs. A series of atomic force microscopy images and size 
analysis, i.e. height histograms, of AβOs formed from synthetic Aβ that had been 
prepared by some of the protocols described in Table 2. The AβOs were prepared in the 
following way: (A) protocol provided in the AggreSure β-amyloid kits available from 
AnaSpec which consists of a reconstitution step directly into Tris buffer with bath 
sonication; (B) 10% NH4OH disaggregation buffer, followed by additional treatment 
with HFIP, and reconstitution in 2 mM NaOH (pH > 11) with subsequent dilution into 
Tris buffer; (C) 10% NH4OH disaggregation buffer, and reconstitution in 60 mM 
NaOH (pH > 11) with subsequent dilution into HEPES buffer; (D) HFIP disaggregation, 
reconstitution in DMSO, followed by dilution into PBS; (E) TFA disaggregation with 
sonication, an additional HFIP disaggregation step, reconstitution with NaOH, and dilution 
into PBS; (F) No disaggregation step and direct reconstitution in to phosphate buffer. 
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4. Classifying AβOs 

Enormous efforts have been extended in identifying the most toxic/disease-relevant AO species 
and the relevant underlying structure [9,106,107]. This is a daunting endeavor due to the transient 
nature and extensive heterogeneity associated with AOs [108–110]. It is possible that different AβO 
species may activate different deleterious changes associated with AD [9,106,107]; however, there 
may also be relatively benign AO species or even experimental artifacts [96,108,111]. Unraveling the 
physiological activity of AβOs may require separate analysis of these different species, which may 
be altered by preparatory protocols. The ability of smaller AβO (like dimers and trimers) to further 
aggregate into large, more stable synaptotoxic assemblies [107] must be accounted for in assessing 
the toxic effects of specific AβO species. That is, upon the addition of preparations of AβO to cell 
culture or other models, AβOs may further assemble into other higher order species that may 
influence the associated toxic effects. Despite the inherent complexity of this endeavor, progress has 
been made. Aβ trimers have been linked to playing a role in inducing pathological conformational 
changes in tau [112]. However, crosslinked Aβ dimers were shown not to be toxic themselves, but 
rather contributed to toxicity by further assembling into larger assemblies [113]. A 56 kDa 
SDS-stable Aβ0 (referred to as Aβ*56) has been identified as a prominent specie in the AD brain [16], 
CSF [22], and in transgenic mouse models of AD [32,114]. In terms of an actual biological activity, 
Aβ*56 interacts with N-methyl-D-aspartate receptors (NMDARs), increasing NMDAR-dependent 
Ca2+ influx and activation of Ca2+/calmodulin-dependent kinase IIα (CAMKIIα) [115]. Activation of 
CAMKIIα correlates with enhanced site-specific phosphorylation and mis-sorting of tau [115]. 
Smaller AβOs, namely dimers and trimers, do not appear to elicit these specific effects. 

There appears to be some common themes emerging with respect to toxicity. Toxic AβOs appear 
to react with oligomer specific antibodies like A11 (generic for amyloid oligomers in general, [116]) 
and NU4 (specific for AβOs) [117]; whereas, nontoxic AβOs demonstrate reactivity with anti-fibril 
antibodies like OC [116]. Importantly, toxic AβOs appear to be unrelated to plaques [116,118]. AβOs 
related to amyloid plaques temporally, spatially, and structurally are nontoxic [118]. A number of 
toxic AβO species are larger than 50 kDa [21,54,118], like the previously mentioned Aβ*56 [32]. 
Smaller AβOs appear to be less toxic or even benign [21,54,118,119], except for their ability to 
further aggregated into larger assemblies. This has led to distinguishing between high molecular 
weight (HMW) and low molecular weight (LMW) oligomers [120]. Aggregation mechanisms 
differentiating between the eventual formation of HMW and LMW AβOs already appear to deviate at 
the dimer stage [121]. Furthermore, LMW and HMW Aβ oligomers differentially impact synapses 
and memory [122,123]; although, LMW AβOs are not always associated with memory 
dysfunction [116,117]. HMW AβOs are the predominant Aβ species in the native soluble protein 
fraction of AD brains [124]. These HMW species in the AD brain sometimes appear to be 
constructed from smaller ~7 kDa Aβ species [125]. Neurohistopathological and biochemical analyses 
of AβOs in the temporal cortex of AD brains implicated an Aβ dodecamer (~55 kDa) [126]. HMW 
AβOs bind cultured synapses [21,54,118], induce reactive oxygen species (ROS) production [123], 
and disrupt memory function [116,117]. With respect to the previously defined aggregation pathways, 
LMW AβOs are typically on pathway to fibril formation; HMW AβOs are off-pathway [127,128]. 
This is consistent with HMW AβOs being potent, as off pathway AβOs appear more toxic [129]. 
Collectively, these observations point to the complex interplay between different AO species and 
their specific activity with respect to neurotoxicity. 
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Table 3. Methods used for analyzing AβOs. 

Technique Features of AβOs Obtained 

Atomic Force Microscopy (AFM) Morphology, population distributions 

Electron Microscopy (EM) Morphology, population distributions 

Ion-Mobility Mass Spectroscopy (IM-MS) Secondary structure, multimeric configurations 

Nuclear Magnetic Resonance 2D (NMR) Secondary structure, multimeric configurations, atomic resolution structure

Electron Paramagnetic Resonance (EPR) Secondary structure, multimeric configurations, atomic resolution structure

Powder X-ray Diffraction (PXRD) Atomic resolution structure 

Small Angle X-ray Scattering (SAXS) Atomic resolution structure 

Single Crystal X-ray Diffraction (SCXD) Atomic resolution structure 

SDS-Page Size distribution of multimers 

5. Characterizing AβO structure and activity 

To facilitate structure/activity analysis, significant efforts have been made to obtain structural 
details of AβOs using a variety of methods (Table 3). This is required to fully elucidate the modes of 
interaction of AβOs with other biomolecules and related toxic mechanisms [32,33,35–37,130]. 
Structural characterization of specific AOs is challenging due to their transient nature and 
heterogeneity. AβOs can exhibit conformational plasticity that can be heavily influenced by 
environmental factors, further complicating such analysis. Despite these inherent challenges, efforts 
have been made to separate, isolate, and characterize distinct AβO species obtained from synthetic 
Aβ or from AD brain tissue and cell cultures [18,32,35–37,114,129,131–136]. With regard to HMW 
and LMW AβOs, they are separable in vitro by size exclusion chromatography [137] or ultrafiltration 
with a 50 kDa molecular weight cutoff [21,54,118]. Quick characterization of AOs can be 
accomplished by chromatographic techniques, SDS PAGE, and by the use of a variety of oligomer 
specific antibodies (Table 4). 

Table 4. Anti-AβO specific antibodies. 

Antibody Epitope References 

A11 Soluble amyloid oligomers [17,138] 

NAB61 Dimeric, oligomeric, higher order aggregates [139] 

NU-1 ADDLs specific [140] 

NU-2 ADDLs weak binding; no Aβ monomer staining [140] 

NU-4 ADDL trimer, tetramer, and 12–24 mer specific [140] 

One strategy that has been used to overcome obstacles associated with characterizing AOs has 
been to stabilize oligomers via cross-linking. Such methods can lead to not only structural but also 
functional characterization of AOs. Photo-induced crosslinking (PICUP) was initially used to 
stabilize and characterize LMW AOs of A40 and A42 [33,141–143].While A40 primarily formed 
an equilibrium of dimers, trimers, and tetramers, A42 aggregated into pentamers/hexamers that 
further assembled into protofibrils [143]. Using mutated A42 (F10, Y42), AOs ranging from dimer 
to dodecamers were stabilized using PICUP [141], opening up the ability to perform structure/activity 
analysis on AOs up to 50 kDa in size. AOs can also be stabilized using dityrosine crosslinking, 
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which occurs under elevated copper concentrations and oxidative stress [144]. Both of these 
conditions have been linked to AD, suggesting that the crosslinking associated with this method may 
be more physiologically relevant [145,146]. In fact, dityrosine crosslinked proteins are observed in 
amyloid plaques and CSF from AD patients [145]. Dityrosine linkages are associated with 
copper-mediated stabilization of AOs [147]. Copper stabilization is effective enough to allow for 
3D structural characterization of AOs by small-angle x-ray scattering [148], and the copper to A 
ratio could push aggregation toward ellipsoidal oligomers of 38 peptides (excess copper) or 
fibrils (excess A) [119]. 

Another method to overcome the metastability of Aβ species and control the aggregation 
process is to complex/fuse Aβ sequences within other protein. Aβ sequences are often based on 
previously identified regions of the peptide that have been identified as playing a role in Aβ 
aggregation (Figure 1). Such a strategy has been successful in studying monomeric structure of Aβ 
sequences [149]. With careful design, this method has been applied to stabilizing oligomers derived 
from Aβ fragments for structural characterization. Fusion of Aβ18–41 with the CDR3 loop region of a 
shark Ig new antigen receptor single variable domain antibody resulted in the formation and 
stabilization of tightly associated Aβ dimers, which could pair to form tetramers [150]. This dimer 
had a compact structure rather than a β-turn/β-sheet structure. Several engineered peptide 
macrocycles that incorporate Aβ sequences (Aβ15–23 and Aβ17–36) have been designed to contain 
aggregation to the oligomeric state, and these systems have been structurally characterized by X-ray 
crystallography and NMR spectroscopy [151–153]. Collectively, this macrocycle strategy has 
revealed numerous dimers, trimers, tetramers, and higher order oligomer species that display a 
variety of β-sheet based structural heterogeneity. 

Due to the complex nature of Aβ aggregation, techniques that allow for distinguishing and 
characterizing distinct morphological features of AβOs within heterogeneous aggregation reactions 
are of enormous benefit. Both atomic force microscopy (AFM) and electron microscopy (EM) 
provide this capability. In particular, AFM has emerged as a particularly useful technique in studying 
AβO formation and morphology [95,101,134,135,154–160]. As AFM can be operated in solution, it 
has the ability to observe and track the behavior of individual AβOs on surfaces under physiological 
buffer conditions [158,160]. The surfaces used in AFM experiments have become progressively 
more biologically relevant and include lipid membranes [135,161–164]. With regard to Aβ 
aggregation on lipid membranes, in solution AFM studies have demonstrated the formation of 
distinct oligomeric aggregates associated with point mutation in Aβ [165], the formation of pore-like 
AβO morphologies [154–156], that preparation history influences AβO formation on bilayers [95], 
and that mechanical changes occur in bilayers associated with the presence of AβOs [166]. AFM 
based force spectroscopy has even been used to understand the energetics of AβO formation and 
stability [167,168]. 

With the recent development of high-speed AFM in solution, insights into the dynamics and fate 
of individual AβOs has been achieved [128,169]. Using high-speed AFM to track the dynamics of 
PICUP-stabilized LMW AβOs demonstrated that these AβOs were highly dynamic in structure, 
fluctuating between single and multi-globular assemblies [169]. Direct visualization of Aβ 
aggregation with high-speed AFM imaging demonstrates that LMW AβOs much more quickly 
transition to form fibrils with distinct morphologies compared with HMW AβOs [128]. Despite being 
classified as being off-pathway, HMW AβOs can still contribute to fibril formation by serving as a 
reservoir of Aβ. That is, HMW AβOs may dissociate into smaller LMW AβO that seed 
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fibrillization [128]. This again points to the necessity to track the fate of AβO species when 
evaluating their physiological activities. For example, the LMW AβOs that are dissociation products 
of HMW AβOs may actually be more toxic [170]. 

Another technique that is capable of characterizing heterogeneous populations of AβOs is ion 
mobility mass spectrometry (IM-MS). These IM-MS studies ascertained qualitative differences in AβO 
structure associated with Aβ40 and Aβ42 [131,132]. Aβ40 tetramers displayed an enclosed ring-shaped 
configuration that would inhibit additional contacts required to assemble into larger AβO species [131,132]. 
Aβ42 tetramers preferentially had a bent structure that would provide oligomer ends capable of 
additional contacts and enabling further aggregation. Indeed, Aβ42 was capable of forming larger 
donut-shaped dodecamers. 

Another strategy to perform structural analysis of AβOs is utilizing specific conditions to stabilize 
them via a kinetic trap. Such an approach has been successfully used to enable NMR spectroscopy of 
AβOs [171,172]. By incubation of Aβ at 4 ℃ and freeze-trapping with liquid nitrogen, heterogeneous, 
spherical AβOs were analyzed with 2D NMR and shown to possess in-register parallel β-strand structure 
similar to fibrils [172]. Based on NMR analysis, Aβ42 pentamers stabilized at a low 4 ℃ and 10 mM salt 
concentration were disordered [171]. These Aβ42 pentamers displayed enhanced toxicity compared with 
protofibrils or fibrils [171]. An atomic model of Aβ42 oligomers consisting of approximately 15–24 
peptides has been proposed from a combination of biophysical techniques [173]. These oligomers 
were prepared by disaggregation in HFIP followed by resuspension in dilute ammonium hydroxide, 
preventing fibril formation. These were not end-stage AβOs, as subsequent dilution in PBS resulted 
in fibril formation. Powder X-ray diffraction patterns of the AβOs were consistent with helical 
β-sheet pairs wrapped together into a super-helix. This wrapping results in a hole along the 
super-helix axis, which is consistent with proposed toxic mechanisms in which Aβ forms pathogenic 
pores. Another proposed structure, based on site-directed spin labeling and electron paramagnetic 
resonance, shares similarities with this structure [174]. This study used Aβ42 fused to 
GroES-ubiquitin that formed stable oligomers that were A11 positive. Based on the EPR data, an 
AβO model was proposed that consisted of a β-sheet with three antiparallel strands with these strands 
being arranged head to tail. These sheets are further packed face to back as a group of four. 

Even just tracking AβO formation has been challenging. A number of straight forward 
spectroscopic assays are well-established to track formation and kinetic parameters of fibrils (e.g., 
ThT), but methods to easily track AO formation have been lacking. Recently, the use of 
4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) dyes have been utilized to fluorescently 
detect the AOs in vitro [175,176]. These BODIPY fluorescent probes have high quantum yields 
with the capability of selectively binding to AβOs [177]. Importantly, increases and decreases in 
the “BD-Oligo” dye fluorescence also correlated with increasing and decreasing intensities of A11 
staining, directly relating this signal to an established methods to detect AOs [175]. In addition, the 
BD-Oligo dye can be used in parallel with ThT assays that detect fibril formation, allowing for the 
direct investigation of the correlation between oligomer and fibril formation [175]. A BODIPY-based 
probe (BAP-1) has also facilitated the direct visualization of Aβ plaques in transgenic mice [177], 
and rational modifications of BAP-1 also allowed for near-infrared selective detection of tau 
neurofibrillary tangles [178]. The ability to rationally modify BODIPY dyes for fluorescent detection 
of specific aggregate species, the tunability of their spectroscopic properties, and their insensitivity to 
solvent and pH changes have made BODIPY dyes a recently promising avenue for high throughput 
studies of AβO formation and stability. 
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6. Conclusion 

While the aggregation of Aβ has been extensively studied, there is still much to understand at 
the molecular level about AβO formation, structure, and activity. Due to the transient nature of AβOs, 
their morphological heterogeneity, and the continuing debate concerning specific toxic aggregate 
species associated with AD, structural details and physiological activities of the variety of AβOs still 
need to be fully elucidated. The exact mechanisms associated of how AβOs lead to cellular 
dysfunction and death have not fully been explained. Understanding these phenomenon may prove 
crucial in the effectiveness of therapeutic strategies based on manipulating Aβ production, clearance, 
and aggregation. Here, we highlighted some specific features of AβOs and techniques that have 
provided insight into their structure and formation. While this review is far from exhaustive, we hope 
that collectively they provide a compelling argument toward the importance of understanding the 
nature of AβOs, highlight some of the intrinsic obstacles associated with studying AβOs, and provide 
some insight into methods that will play a role in pushing our knowledge of AβOs further. 
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