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Abstract: As the number of patients with heart failure increases, machine learning (ML) has
garnered attention in cardiomyopathy diagnosis, driven by the shortage of pathologists. However,
endomyocardial biopsy specimens are often limited in sample size and require techniques such
as feature extraction and dimensionality reduction. This study investigated the effectiveness of
texture features in the context of feature extraction for the pathological diagnosis of cardiomyopathy.
Furthermore, model designs that contributed to improving generalization performance were examined
by applying feature selection (FS) and dimensional compression (DC) to several ML models. The
obtained results were verified by visualizing the inter-class distribution differences and conducting
statistical hypothesis testing based on texture features. Additionally, they were evaluated using
predictive performance across different model designs with varying combinations of FS and DC
(applied or not) and decision boundaries. The obtained results confirmed that texture features may
be effective for the pathological diagnosis of cardiomyopathy. Moreover, when the ratio of features
to the sample size is high, a multi-step process involving FS and DC improved the generalization
performance, with the linear kernel support vector machine achieving the best results. This process
was demonstrated to be potentially effective for models with reduced complexity, regardless of whether
the decision boundaries were linear, curved, perpendicular, or parallel to the axes. These findings are
expected to facilitate the development of an effective cardiomyopathy diagnostic model for its rapid
adoption in medical practice.
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texture analysis; dimensionality reduction; low sample size

1. Introduction

1.1. Background

With the aging of society, heart failure is increasing worldwide. Various physiological and
imaging examinations, such as echocardiography, cardiac computed tomography, and cardiac magnetic
resonance imaging are used to determine the causes of heart failure. An endomyocardial biopsy is the
only in vivo method for obtaining histopathological information about the myocardium [1]. It is useful
for discriminating between primary cardiomyopathies, such as hypertrophic, dilated, restrictive, and
arrhythmogenic right ventricular, as well as secondary cardiomyopathies, such as cardiac amyloidosis,
cardiac sarcoidosis, lymphocytic myocarditis, giant cell myocarditis, and Fabry disease [2, 3].
However, a worldwide shortage of pathologists who can make such a diagnosis has emerged. Machine
learning (ML) has recently been used for pathological diagnoses [4, 5]. If ML could be used to
enumerate differential diseases based on image analysis and automatically calculate the likelihood
of each disease, it would be useful for pathological diagnosis. It may also prevent misdiagnosis due to
limited access to expert pathologists. Realizing this objective requires the development of an ML model
capable of making pathological diagnoses based on histopathological information (myocardial cell
diameter, myocardial cell morphology, nuclear diameter, nuclear morphology, presence and frequency
of cellular infiltration, types of infiltrating cells, myocardial cell arrangement, fibrosis, and definitive
diagnosis) obtained from myocardial biopsy or autopsy specimens of patients with a history of cardiac
disease.

1.2. Comparison of deep and non-deep learning methods

Convolutional neural networks (CNNs) are widely used to predict disease states using medical
images [6, 7]. One reason for this is that, in contrast to traditional ML methods, CNNs automate three
processes that would typically require manual intervention (Figure 1: ML (non-deep learning (DL))
model process) [8]: (1) feature extraction, which quantifies the visual information inherent in the
input image (such as color, brightness, patterns, textures, shapes, and object scale), (2) dimensionality
reduction, which aims to improve analysis efficiency and prevent overfitting by selecting useful
features for predicting and eliminating irrelevant or noisy features (this involves feature selection
(FS) to select features deemed useful for recognizing the target, and dimensional compression (DC)
to transform high-dimensional feature spaces into lower-dimensional ones), and (3) model building,
which maximizes both the goodness of fit on training data and the generalization performance on
unseen data (both performances are collectively referred to as predictive performance in this study).
CNNs mainly consist of convolutional, pooling, fully connected, and output layers (Figure 1: CNNs
model process). The convolutional and pooling layers extract visual features useful for recognition
from the input image, which are then transformed into a low-dimensional feature vector by the fully
connected layer [9,10]. This vector is fed into the output layer to yield a continuous value for regression
or class probabilities for classification. Consequently, CNNs eliminate the need to design handcrafted
features based on deep domain expertise, which is typically required in non-DL methods, as well as
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dimensionality reduction of the feature space. Moreover, CNNs have the potential to extract features
that may not be visible to humans, with diagnostic performance potentially comparable to that of expert
pathologists [11, 12].
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Figure 1. Visual summary of the Introduction.

However, to achieve a high predictive performance with CNNs, a vast amount of image data
is required to sufficiently capture the diversity of the training data. Therefore, CNNs applied in
the medical field often target X-ray, CT, and MRI images [13–16]. This is because these tests
are non-invasive, are widely used in clinical settings, and allow for easier collection of high-
quality images. In contrast, endomyocardial biopsy is a highly invasive procedure with associated
risks, which necessitates careful examination [17]. Consequently, the frequency of these tests is
relatively low, making it difficult to collect a sufficiently diverse set of histopathological images of
the myocardium [18, 19]. Histopathological images of the myocardium often include small sample
sizes with insufficient diversity. When constructing predictive models using small sample size data,
it has been reported that the risk of overfitting increases when the ratio of features to the sample size
or the complexity of ML models is high [20]. Here, model complexity refers to the extent to which a
model can capture data patterns, which is determined by the structure of the algorithm and the number
and values of the hyperparameters. Therefore, it is necessary to reduce the dimensionality of the dataset
prior to training or adopt ML models with lower complexity. In conclusion, for the pathological
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diagnosis of cardiomyopathy using small sample histopathological images of the myocardium, ML
models with lower complexity that handle relatively low-dimensional data, such as non-DL models,
are considered more suitable than complex CNNs that require high-dimensional input data.

Moreover, from the perspective of interpretability of the diagnostic rationale, non-DL ML models
are considered more suitable. In deep image recognition models based on convolutions, methods
that apply class activation mapping (CAM) are widely used to visualize the rationale behind
predictions [21–23]. CAM visually emphasizes the areas within the input image that contribute
significantly to the prediction results [24]. One advantage of this approach is that the reasoning
behind the model can be confirmed visually, allowing even those unfamiliar with ML to understand
it intuitively. This makes it easy to compare the reasoning of the model with the judgment rationale
of experts in the relevant field. However, as CAM provides qualitative reasoning, it is challenging
to identify the specific conditions that contribute to the prediction in non-structured images, which
lack distinct shapes [25]. Therefore, in the case of cardiomyopathy pathology images, it is difficult
to interpret the specific reasons for the predictions from the CAM, such as color, surface roughness,
regularity, and directionality. In such cases, the application of statistical methods, as used in non-DL
models for feature extraction and selection, is considered effective for interpreting the specific grounds
for predictions.

1.3. Research problems

To achieve a pathological diagnosis of cardiomyopathy using a non-DL ML model, it is necessary
to consider (1) the extraction of image features from histopathological images of the myocardium and
(2) model design, which is robust to small sample sizes.

First, the extraction of image features from cardiomyopathy pathology images is described
(Figure 1: Research problem A). Raw images contain a wide variety of visual information, such as
color, shape, patterns, texture, and composition. This visual information is interrelated and numerically
represented at the pixel level. Therefore, when analyzing the visual information of an entire image, raw
images are interpreted as high-dimensional data, represented by the product of the height, width, and
depth. These data include not only the visual information necessary for prediction (e.g., information
about the animal itself in animal classification) but also irrelevant visual information (e.g., background
information in animal classification). These irrelevant details increase the risk of the ML model
generating incorrect decision criteria, which can reduce its generalization performance. Furthermore,
in the case of high-dimensional data, the sample size required for learning is enormous, making it
difficult to ensure sufficient data density. A decrease in data density is one factor that can prevent
the model from appropriately learning important features for prediction. Therefore, to improve the
generalization performance, it is essential to extract the relevant visual information that contributes
toward solving the problem from high-dimensional data and to summarize it into a lower-dimensional
feature vector [26]. In DL, a process is performed to summarize diverse visual information embedded
in image data into numerical representations using several parameters across multiple layers. In
contrast, non-DL models generally lack such transformation mechanisms, making feature extraction
necessary to summarize the visual information of image data into meaningful features. Texture
information, such as surface patterns and regularities of histopathological images of the myocardium,
are generally considered useful for differentiating cardiomyopathies [27, 28]. This suggests that
texture features are particularly suitable for feature extraction from histopathological images of the
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myocardium. Texture features are widely employed in the construction of diagnostic models using
medical images in ML, and their effectiveness has been widely reported [29, 30]. However, to the best
of our knowledge, few studies have been conducted to evaluate the effectiveness of texture features
from histopathological images of the myocardium for the pathological diagnosis of cardiomyopathies
using ML. Thus, it is crucial to verify whether texture features from histopathological images of the
myocardium are effective in predicting the pathological diagnosis of cardiomyopathies.

Next, the design of models robust to small sample sizes is discussed (Figure 1: Research problem
B). Data with small sample sizes often present various challenges, such as a reduction in the data
density within the feature space [31] and domain shift [32]. Collectively, these issues contribute to
the risk of overfitting. Therefore, achieving high generalization performance with small sample size
data requires model designs that demonstrate robust performance against these challenges. When
constructing ML models using small sample size data, the use of a reduced-dimensional feature space
is recommended [33]. This approach increases data density by reducing dimensionality, which is
expected to enhance generalization performance. However, the degree to which the dimensionality
should be reduced may vary depending on the specific task. For instance, a higher-dimensional
feature space allows the incorporation of more information regarding target prediction, potentially
improving the prediction performance. Conversely, the inclusion of irrelevant information may also
increase, resulting in the generation of decision criteria based on meaningless data, which could cause
overfitting and reduce the generalization performance. Therefore, it is essential to carefully determine
an acceptable level of dimensionality.

In addition, it is important to consider not only the dimensionality of the feature space but also the
complexity of the ML model (Figure 1: Research problem C). A model with controlled complexity can
avoid overfitting to the training data [34]. Consequently, even with a small dataset, high generalization
performance on unseen data can be expected. However, within this context, decision boundaries
such as straight lines, curves, or boundaries perpendicular or parallel to the axes may exist, and
the suitability of the decision boundary depends on the specific task. In general, models that use
linear decision boundaries tend to exhibit simpler internal structures, which helps suppress overfitting.
However, achieving high prediction performance may be difficult [34]. Conversely, models with
nonlinear decision boundaries exhibit relatively complex internal structures, which can result in a
higher goodness of fit, but may suffer from lower generalization performance [34]. To construct a
classification model that approximates the optimal prediction performance, it is necessary to carefully
determine an acceptable level of model complexity.

1.4. Objective of this study

This study investigates two aspects: the effectiveness of texture features from histopathological
images of the myocardium for pathological diagnosis of cardiomyopathies, and the design of models
suitable for pathological diagnosis of cardiomyopathies using small sample size data. As reported
in previous research, we constructed a preliminary ML model based on a single model design and
performed a simple investigation of the potential of texture features for pathological diagnosis of three
types of cardiomyopathies [35]. The obtained results indicated that texture features clearly represent
differences in myocardial conditions. Based on this, this study constructs a three-class classification
model based on texture features and multiple model designs. Through visualization and statistical
analysis of texture features, and performance evaluation of the classification models, a more rigorous
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validation of the effectiveness of the texture features and the optimal model design was conducted. The
clarification of these aspects will contribute to the pathological diagnosis of cardiomyopathies based on
high diagnostic performance in environments where large sample sizes cannot be collected. Moreover,
it is anticipated that, in the future, rapid and accurate diagnoses enable timely treatment for patients.

The remainder of this paper is organized as follows: Section 2 provides an overview of the ML
methods used in this study. Section 3 describes the experimental procedures, details of the datasets, and
the parameters employed in the experiments. Section 4 presents the experimental results and discusses
their implications. Section 5 concludes the paper with a summary of the study, its limitations, and
future prospects.

2. Machine learning (non-deep learning) methods

2.1. Texture feature extraction

In this study, the following texture analysis methods were employed: first-order statistics (FOS),
gray level difference statistics (GLDS), the gray level co-occurrence matrix (GLCM), the gray level
run length matrix (GLRLM), the angular distribution function based on the Fourier power spectrum
(ADF), and the radial distribution function based on the Fourier power spectrum (RDF). FOS refers
to statistical measures derived from a distribution in which the gray level values of image pixels are
plotted on the x-axis, and the corresponding occurrence probabilities are plotted on the y-axis. GLDS
represents statistical measures derived from distributions in which the gray level differences between
a given pixel and its neighboring pixel, at a specified direction and distance, are plotted on the x-axis,
with the occurrence probabilities of these differences plotted on the y-axis. These distributions are
calculated for the horizontal, vertical, and diagonal directions, and the resulting statistics are averaged
across all directions. The GLCM is a matrix that aggregates the occurrence probabilities of pairs of
gray level values in pixels adjacent to a given pixel at specified distances and directions. The GLRLM
is a matrix that aggregates the occurrence probabilities of consecutive runs of pixels with the same
grey-level value in a specified direction. The ADF refers to the distribution derived from the power
spectrum image obtained via a two-dimensional Fourier transform, where the angular directions from
the center of the spectrum are plotted on the x-axis, and the intensity of the frequency components
along these directions is plotted on the y-axis. The RDF is a distribution in which the distance from the
center of the power spectrum image obtained via a two-dimensional Fourier transform is plotted on the
x-axis, and the intensity of the frequency components at that distance is plotted on the y-axis.

Texture features were calculated from various statistical measures derived from the distributions and
matrices obtained using texture analysis methods. Table 1 lists the texture analysis methods and their
corresponding statistical measures. For FOS, GLDS, the ADF, and the RDF, seven statistical measures
were adopted: mean, contrast, variance, skewness, kurtosis, energy, and entropy. The mean quantifies
the center of mass of the probability distribution. The value decreases as the distribution shifts to the
left and increases as it shifts to the right. The contrast is an indicator that quantifies the magnitude of
the probability distribution, excluding the sign. Regardless of the sign, it increased as the probability
distribution moved further from 0. Variance quantifies the extent to which the data deviate from the
mean of the probability distribution. The value is smaller when the data are concentrated around
the mean, and larger when they are spread out. Skewness quantifies the asymmetry of a probability
distribution compared to a normal distribution. If the distribution is skewed to the left with a longer
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right tail, the value is positive; if it is skewed to the right with a longer left tail, the value is negative.
In addition, the magnitude of skewness increases as the degree of asymmetry increases, resulting in
larger positive or negative values. Kurtosis is a measure that quantifies the sharpness of the peak and the
heaviness of the tails of a probability distribution in comparison with a normal distribution. When the
distribution peaks have heavier tails than a normal distribution, kurtosis has a positive value; when the
distribution is flatter with lighter tails, it has a negative value. Furthermore, the stronger this tendency,
the larger the value is in the positive or negative direction. Energy quantifies the concentration of the
probability distribution. The value is higher when the distribution is concentrated at specific values,
and lower when it is spread out over a wider range. Entropy quantifies the closeness of a distribution
to a uniform distribution. The value increases as the distribution approaches uniformity, and decreases
as the distribution concentrates around specific values.

For the GLCM, six statistical measures were adopted: contrast, correlation, joint energy, joint
entropy, inverse difference moment (IDM), and inverse variance. Correlation is a measure that
quantifies the linear dependence of shade changes between adjacent pixels. Strong linear dependence
between shade changes in adjacent pixels (e.g., when bright pixels are surrounded by similar pixels
and the shade changes in a step-like manner), the value is close to 1. However, when there is a weak
linear dependence (e.g., when bright pixels are surrounded by dark pixels), the value is close to 0.
Joint energy quantifies the degree of continuity of specific shade patterns between adjacent pixels. The
larger the value, the more frequently a specific shade pattern appears between adjacent pixels, while the
smaller the value, the more evenly distributed the various shade patterns are. Joint entropy quantifies
the diversity and irregularity of shade patterns between adjacent pixels. The larger the value, the more
diverse and irregular the shade patterns are between adjacent pixels, while the smaller the value, the
more the pattern is biased toward a specific shade. The IDM is an index that quantifies the uniformity
and smoothness of an image. The larger the value, the more uniform the image is, with pixels of equal
tone values appearing successively; conversely, the smaller the value, the more uneven the image is,
with pixels of high- and low-tone values appearing in succession. Inverse variance is a measure that
quantifies the variation in changes in grayscale values between adjacent pixels. The larger the value,
the more frequently small differences in grayscale values occur between adjacent pixels, indicating
less variation. Conversely, the smaller the value, the larger the differences in grayscale values between
adjacent pixels, indicating greater variation.

For the GLRLM, five statistical measures were adopted: short run emphasis (SRE), long run
emphasis (LRE), gray level non-uniformity (GLN), run length non-uniformity (RLN), and run
percentage (RP). SRE is an index that quantifies the fineness of an image. The higher the value,
the shorter the run length in the image (the finer the image). LRE is an index that quantifies the
coarseness of an image. The higher the value, the longer is the run length in the image (the coarser
the image). GLN is an index that quantifies the uniformity of the distribution of grayscale values. The
larger the value, the more frequently a particular gray value appears compared with other gray values
(the distribution of gray values is uneven). However, the smaller the value, the more even the gray
values appear (the distribution of gray values is even). RLN quantifies the evenness of the distribution
of run lengths. The larger the value, the more frequently a particular run length appears compared with
other run lengths (the distribution of run lengths is uneven). In contrast, the more even the run lengths
(the more uniform the run length distribution), the smaller the value. RP quantifies the coarseness or
fineness of a texture. The shorter the number of runs (the more detailed the image), the larger the value;
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conversely, the longer the runs (the coarser the image), the smaller the value.
In this study, a Python package was developed to analyze the texture information of images and

compute their statistical features. By utilizing this package, a total of 39 texture features, as shown in
Table 1, were calculated. The features related to the GLCM and GLRLM were implemented using the
Python package Pyradiomics (version: 3.1.0) [36].

Table 1. Texture analysis methods and their corresponding statistical measures (© indicates applied).

Statistical measures1 Texture analysis methods2

FOS GLDS GLCM GLRLM ADF RDF
Mean © © — — © ©

Contrast © © © — © ©

Variance © © — — © ©

Skewness © © — — © ©

Kurtosis © © — — © ©

Energy © © — — © ©

Entropy © © — — © ©

Correlation — — © — — —
Joint energy — — © — — —
Joint entropy — — © — — —
IDM — — © — — —
Inverse variance — — © — — —
SRE — — — © — —
LRE — — — © — —
GLN — — — © — —
RLN — — — © — —
RP — — — © — —

1 IDM stands for inverse difference moment. SRE stands for short run emphasis. LRE stands for long run emphasis. GLN stands for
gray level non-uniformity. RLN stands for run length non-uniformity. RP stands for run percentage.

2 FOS stands for first-order statistics. GLDS stands for gray level difference statistics. GLCM stands for gray level co-occurrence
matrix. GLRLM stands for gray level run length matrix. ADF stands for angular distribution function based on the Fourier power
spectrum. RDF stands for radial distribution function based on the Fourier power spectrum.

Because the scale of each texture feature is different, considering the importance of each feature
equally, it is necessary to make the features dimensionless through standardization. For small sample
size datasets, each feature is highly likely to be non-normally distributed. Furthermore, when applying
standardization, robustness to outliers is necessary. Therefore, robust standardization, a standardization
method that is robust to outliers and is not affected by the shape of the distribution, was adopted here.
Scaling through robust standardization was performed as follows:

z(x) =
x − x̃
IQR

, (2.1)

where x is an element of the texture feature, x̃ is the median of the texture feature, and IQR is the
interquartile range of the texture feature.
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2.2. Feature selection

FS is the process of selecting features that are useful for prediction and excluding features that
may be noisy or not useful. This is performed using an algorithm suited to the characteristics of
the dataset and the problem being addressed. In this study, the within-class variance between-class
variance ratio was adopted as the FS method. In this method, the total sum of the Euclidean distances
between the average vectors of all samples and the average vectors of each class were divided by the
sum of the variances of each class, which was considered the final evaluation value. Features with
sufficiently separated inter-class distances and small within-class variances are desirable; therefore, a
higher evaluation value is preferable. This method has the advantage of easily selecting features that
can clearly distinguish different classes of classification problems, because it considers the distance
between classes and the variance of each class simultaneously. In addition, because the separation
relationship between the classes is simple, it is possible to obtain a feature space that is not prone to
overfitting, even in the case of small sample size data. Another advantage is that the selected features
are easy to interpret. However, there is a drawback in that it is not possible to accurately evaluate the
spatial structure seen in anomaly detection, where a specific class is concentrated at a single point in
the feature space and the other classes are scattered around it. Such a spatial structure is expected to
contribute to an improved prediction performance; however, this also increases the risk of overfitting,
making it difficult to interpret the selected features. Therefore, these features were excluded from the
selection in this study.

In this study, the within-class variance between-class variance ratio was applied individually to each
texture feature. The FS evaluation value is calculated using one dimension at a time. This was done to
reduce the search range for FS and reduce the calculation and time costs. For example, when evaluating
a one-dimensional feature from 39 feature types, 39C1 = 39 different evaluations are required. When
evaluating a four-dimensional feature space, 39C4 = 82,251 different evaluations were required. When
evaluating a seven-dimensional feature space 39C7 = 15,380,937 different evaluations are required. It
can be observed that the higher the dimensionality of the evaluated space, the wider the search range,
making it more difficult to obtain an answer that approximates the optimal solution in a realistic amount
of time.

On the other hand, for a one-dimensional evaluation, the existence of feature values that can clearly
classify multiple classes in one dimension is a prerequisite. However, there is a possibility that such
feature values do not exist. Therefore, simplification of feature value selection was attempted by
dividing the multiclass classification problem into multiple two-class classification problems. For
example, in a three-class classification problem (Ca, Cb, Cc), the problem is divided into a combination
of multiple two-class classification problems (Ca, Cb), (Ca, Cc), and (Cb, Cc). Thereafter, the search
for useful features for the two-class classification problem was conducted for each of these, and the
union of the obtained features, excluding duplicates, was extracted as a feature useful for three-class
classification. That is, if n useful features are selected for each two-class classification problem, then
3n features are selected for the entire three-class classification problem. If there are d overlapping
features among them, then 3n − d features are selected after excluding them.
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2.3. Dimensional compression

DC is a method for converting data into a low-dimensional space while minimizing the loss of
information regarding the spatial structure in a multidimensional feature space. In this study, the
supervised DC method, Fisher’s linear discriminant analysis (LDA), was adopted.

LDA is a method for performing a linear transformation that maximizes the between-class variance
and minimizes the within-class variance based on the training data [37]. In this method, by maximizing
the feature values that contribute to class identification, each class is expected to be clearly separated,
even after transformation to a low-dimensional space. However, the dimensionality of the transformed
space depends on the number of classes c, and the dimensionality of the transformed space is
constrained to c − 1 or less [38]. Therefore, the number of dimensions that can be selected is only one
dimension for two-class classification and only one or two dimensions for three-class classification.
In this study, two-dimensional compression was adopted, which considers the interaction of feature
values because it targets three-class classification.

The LDA implementation used the Python package scikit-learn (version: 1.2.2) [39].

2.4. Classification models and evaluation metrics

For small sample size data, a prediction model with limited complexity is used to avoid
overfitting [40]. However, the degree of complexity depends not only on the sample size and number
of features but also on the domain, such as the difficulty of solving a problem [34]. Therefore, it is
not always optimal to choose a simple model, and it is believed that a certain degree of complexity is
necessary at the decision boundary to achieve a high prediction performance. In this study, to verify
this, a support vector machine (SVM) was adopted as a simpler model compared to other classification
models. In this case, a linear kernel (LK) and radial basis function kernel (RBF) were adopted as the
kernel functions. In addition, a decision tree (DT) was adopted as the model with a decision boundary
that is perpendicular or horizontal to the axis based on a tree structure algorithm. This was performed
to verify the appropriate complexity of the decision boundary for myocardial pathology diagnosis by
comparing the evaluation values based on the linearity and nonlinearity of the decision boundaries.
These were implemented using the Python package scikit-learn (version: 1.2.2) [39].

The prediction performance of each classification model is evaluated based on the macro-average
F1-score. The F1-score is an evaluation metric for two-class classification that uses the harmonic mean
of the precision and recall as its evaluation value. Precision is a metric that indicates the proportion of
samples that are predicted to be positive or actually positive. Recall is a measure of the proportion of
samples that were correctly predicted as positive among the samples that were actually positive. The
F1-score enables the prediction performance of each class to be reflected equally, even in the case of
unbalanced data with bias in the samples for each class in two-class classification. The macro-average
F1-score is an indicator that can be extended to multiple classes, and is effective when all classes are
evaluated equally. This evaluation takes values between 0 and 1, with values closer to 1 indicating
better prediction performance.

2.5. Cross-validation and hyperparameter optimization

Cross-validation is a method for statistically evaluating a model’s generalization performance by
repeatedly constructing and evaluating it using a subset of the original dataset as validation or test
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data, while the remaining data are used for training. In this study, stratified K-fold cross-validation
was adopted as a cross-validation method. This method creates a subset from the original dataset,
such that the sample ratio of each class is equal. For example, consider a dataset with 20 samples of
disease cases, 20 samples of borderline cases, and 20 samples of normal cases, which is then divided
into training data and test data (Figure 2: Step 1). The sample size ratio was set to training:test =

8:2. Five subsets were created, each containing four disease cases, four borderline cases, and four
normal cases, with no overlapping samples between the subsets. The training set was then formed by
combining four of these subsets (16 disease cases, 16 borderline cases, and 16 normal cases), while the
remaining subset (four disease cases, four borderline cases, and four normal cases) was allocated to
the test set. Finally, this subset replacement was performed five times. The generalization performance
of the model was statistically evaluated based on the evaluation values of the five subsets. The same
procedure applies to the division of the split training and validation set (Figure 2: Step 2).
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Figure 2. Overview of stratified K-fold cross-validation with a nested structure for K = 5.

Hyperparameter optimization based on minimizing validation error was performed during cross-
validation of the training and validation sets. Hyperparameter optimization is the process of adjusting
hyperparameters that influence the complexity of an ML model using an optimization method. In
this study, the hyperparameters of texture analysis methods and the hyperparameters of the ML
models were the targets of optimization. In this case, Bayesian optimization was adopted as the
optimization method. The hyperparameters that are the target of optimization are shown in Table 2.
For hyperparameters not listed here, the default values of the Python packages used in each method
were adopted.
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Table 2. Hyperparameters to be optimized and their search ranges.

Target1 Hyperparameter Search range2, 3

FOS bin width p1 ∈ {4, 16, 64, 256}

GLDS
bin width p2 ∈ {4, 16, 64, 256}
distance p3 ∈ {1, 2, 3, 4}

GLCM
bin width p4 ∈ {4, 16, 64, 256}
distance p5 ∈ {1, 2, 3, 4}

GLRLM bin width p6 ∈ {4, 16, 64, 256}

ADF infinitesimal angle p7 ∈ {1, 2, 3, 4}

RDF infinitesimal radius p8 ∈ {1, 2, 3, 4}

FS number of FS-selected features pc1 ∈ {2, 3, 4, · · · , 38}

FS + DC number of FS-selected features with DC pc2 ∈ {3, 4, 5, · · · , 38}

SVM with LK cost parameter pc3 ∈ [0.0001, 10000]

SVM with RBF
cost parameter pc4 ∈ [0.0001, 10000]
γ parameter pc5 ∈ [0.0001, 10000]

DT
criterion pc6 ∈ {“gini”, “entropy”, “log loss”}
max depth pc7 ∈ {1, 2, 3, 4, 5}

1 FOS stands for first-order statistics. GLDS stands for gray level difference statistics. GLCM stands for gray level co-occurrence
matrix. GLRLM stands for gray level run length matrix. ADF stands for angular distribution function based on the Fourier power
spectrum. RDF stands for radial distribution function based on the Fourier power spectrum. FS stands for feature selection. DC
stands for dimensional compression. SVM stands for support vector machine. LK stands for linear kernel. RBF stands for radial
basis function kernel. DT stands for decision tree.

2 {·} represents each discrete value or category, and [A, B] represents a continuous value of A or more and B or less.
3 The subscript c of the parameter variable varies depending on the element of the selected model vector (Equation 3.2). For example,

if the combination is FS and SVM with LK (m1 = FS, m2 = None, m3 = SVM with LK), it is c1 = 9 and c3 = 10. If the combination
is FS + DC and DT (m1 = FS, m2 = DC, m3 = DT), it is c2 = 9, c6 = 10, c7 = 11.

The bin width in Table 2 is a parameter that determines the discretization of grayscale image tone
values. For example, if the bin width is set to 64, a conversion process is applied, in which 0 becomes
black and 63 becomes white. The distance in Table 2 is a parameter that determines the distance
between the pixels to be compared when comparing the tone values between the pixels. For example,
if the distance is set to 1, a comparison is made between the pixel and the next pixel. If the distance is set
to 2, then a comparison is made between pixels and two pixels away. The infinitesimal angle in Table 2
is a parameter which determines the smoothness of the angular distribution. The smaller this value,
the smoother the angular distribution and the more detailed the trend that can be captured. However,
its disadvantage is that it requires a longer processing time. The infinitesimal radius in Table 2 is
a parameter which determines the smoothness of the radial distribution. The smaller this value, the
smoother the radial distribution and the more detailed the trend that can be captured. However, its
disadvantage is that it requires a longer processing time. The number of FS-selected features in Table 2
is a parameter that determines the number of features selected in the FS. The same applies to the
number of FS-selected features with DC. When this number is small, fewer features are selected, which
increases the likelihood of excluding features that are important for prediction. On the other hand, the
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larger this value is, the more features are selected; thus, there is a greater chance of selecting features
that could be noisy and unnecessary for prediction. The cost parameter in Table 2 determines the extent
to which misclassification is allowed when there is a mixture of samples. The smaller the value, the
more misclassification is allowed, and the larger the value, the less misclassification is allowed. The
γ parameter in Table 2 is a parameter that determines the complexity of the decision boundary. The
smaller the value, the simpler the decision boundary, and the larger the value, the more complex the
decision boundary. The criterion in Table 2 is a hyperparameter that determines how to split nodes in
a DT. “gini” is the Gini impurity, “entropy” is the information gain based on Shannon entropy, and
“log loss” is the cross-entropy loss. All these metrics measure the uncertainty and/or mixture of the
class distribution. The max depth in Table 2 is a hyperparameter that determines the maximum depth
of the DT. The smaller this value is, the simpler the DT structure becomes, which helps reduce the risk
of overfitting. However, the larger this value, the more complex the DT structure becomes, leading
to a higher goodness of fit on the training data but also an increased risk of reduced generalization
performance.

Stratified K-fold cross-validation was implemented using the Python package scikit-learn (version:
1.2.2) [39]. Bayesian optimization was implemented using the Python package optuna (version:
3.5.0) [41].

3. Experiment

3.1. Objectives and overview

This study aims to verify the effectiveness of texture features in the pathological diagnosis of
cardiomyopathy and to clarify a model design suitable for diagnosis with small sample size data. These
aspects are investigated using a three-class classification problem that diagnoses three patterns: two
types of cardiomyopathy and the normal state. Texture features are extracted from histopathological
images of the myocardium. The effectiveness of the texture features is verified by visualizing them and
investigating the significance of the differences in class distribution using statistical hypothesis testing.
In addition, the model design most suitable for diagnosing cardiomyopathy using small sample data is
clarified by comparing the prediction performance of each model design.

The experimental procedure is shown in Algorithms 1, 2, and 3. First, the collection and processing
of the dataset used in this experiment are explained. Next, additional details on some of the variables
and functions used in the algorithms are provided. Finally, a step-by-step explanation of the specific
experimental procedure is given.
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Algorithm 1 An algorithm for evaluating the predictive performance of a model design.
Input:

D: Dataset . Sec. 3.2
m: Model vector, K: Number of cross-validation splits, B: Iterations in Bayesian optimization

. Sec. 3.3
Output:

(smean
train , sstd

train), (smean
valid , sstd

valid), (smean
test , sstd

test): Mean and standard deviation of macro-average F1-scores
for each dataset . Tab. 3

1: Dataset type: J ← {train, valid, test}
2: Initialize score sets: S j ← ∅, j ∈ J
3: Make subsets: D1, D2, · · · , DK ← CrossVal(D,K) . Sec. 2.5 & 3.3
4: for k ← 1 to K do
5: Make training set: Dtrain ← D \ Dk . Fig. 2
6: Make test set: Dtest ← Dk . Fig. 2
7: svalid, p∗ ← SearchBestParameters(Dtrain, K, B, m) . Alg. 2
8: Extract features: Ftrain, Ftest ← TextureFeatures(Dtrain, Dtest, p∗) . Sec. 2.1
9: Reduce features: Ftrain, Ftest ← DimensionalityReduction(Ftrain, Ftest, m, p∗) . Alg. 3

10: Get scores: strain, stest ← ClassifierScore(Ftrain, Ftest, m, p∗) . Sec. 2.4
11: Merge scores: S j ← S j ∪ {s j}, j ∈ J
12: end for
13: Get means of scores: smean

j ← Mean(S j), j ∈ J
14: Get standard deviations of scores: sstd

j ← Std(S j), j ∈ J
15: return {(smean

j , sstd
j ) | j ∈ J}
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Algorithm 2 Bayesian optimization-based hyperparameter search with cross-validation.
Input:

Dtrain: Training set, m: Model vector, K: Number of cross-validation splits, B: Iterations in
Bayesian optimization . Sec. 3.3

Output:
smax

valid: Maximum score of validation data, p∗: Optimized hyperparameter vector
1: Make subsets: D1, D2, · · · , DK ← CrossVal(Dtrain, K) . Sec. 2.5 & 3.3
2: for b← 1 to B do
3: Initialize validation score sets: S valid ← ∅
4: p← Draw the hyperparameter vector from Table 2 by Bayes. opt. . Sec. 2.5 & 3.3
5: for k ← 1 to K do
6: Make split training set: Dst ← Dtrain \ Dk . Fig. 2
7: Make validation set: Dvalid ← Dk . Fig. 2
8: Extract features: Fst, Fvalid ← TextureFeatures(Dst, Dvalid, p) . Sec. 2.1
9: Reduce features: Fst, Fvalid ← DimensionalityReduction(Fst, Fvalid, m, p) . Alg. 3

10: Get scores: svalid ← ClassifierScore(Fst, Fvalid, m, p) . Sec. 2.4
11: Merge scores: S valid ← S valid ∪ {svalid} . Sec. 2.4
12: end for
13: Record mean score: smean

valid, b ←Mean(S valid)
14: Record hyperparameter: pb ← p
15: end for
16: Get optimal step id.: b∗ ← arg max

b
{smean

valid, b | b ∈ {1, 2, · · · , B}}

17: Get maximum validation score: smax
valid ← smean

valid, b∗
18: Get optimal parameter: p∗ ← pb∗

19: return smax
valid, p∗

Algorithm 3 Feature selection and/or dimensional compression, or no processing, for texture features.
Input:

Fa, Fb: Texture features of datasets a and b, m: Model vector, p: Hyperparameter vector
. Sec. 3.3

Output:
Fa, Fb: Texture features to which dimensionality reduction has not been applied or has been
applied

1: if m1 = FS then . Eq. 3.3
2: Select features: Fa, Fb ← FeatureSelection(Fa, Fb, m, p) . Sec. 2.2
3: end if
4: if m2 = DC then . Eq. 3.4
5: Compress features: Fa, Fb ← DimensionalCompression(Fa, Fb) . Sec. 2.3
6: end if
7: return Fa, Fb
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3.2. Subjects and data description

Four patients histopathologically diagnosed with hypertrophic cardiomyopathy (HCM) at autopsy
from January 1, 2020, to December 31, 2022, at Nihon University Itabashi Hospital and
University Hospital were enrolled. Among them, two patients with histopathologically confirmed
cardiomyocyte disarray characteristics of HCM were considered disease cases, and two patients
without cardiomyocyte disarray were considered borderline cases. In addition, two patients who died
due to reasons other than cardiac disease and were autopsied during the abovementioned period were
considered normal cases. Histological sections 4 micrometers in thickness from myocardial specimens
were prepared and stained with hematoxylin-eosin. Ten histological sections were imaged using a
microscope equipped with a digital camera (Digital microscopic system, DP-70, Olympus Corporation,
Japan; 200× magnification) for each of the six cases. In other words, there were six subjects (two
disease cases, two borderline cases, and two normal cases), and the sample size was 60. The protocol
was approved by the Ethics Review Board of Nihon University Itabashi Hospital (RK-210914-18).

The histopathological images of the myocardium are shown in Figure 3. These were 256-level color
images composed of 4096×3086×3 pixels each. Because the similarity between surrounding pixels is
high, the computational cost increases unnecessarily. Therefore, to facilitate efficient image analysis,
the images were resized to 204×154×3 pixels using bilinear interpolation. In general, texture features
are typically extracted from grayscale images rather than color images. In this study, the color images
were converted to grayscale using the Python package opencv-python (version: 4.7.0.68), following
the equation

Y = 0.299R + 0.587G + 0.114B, (3.1)

defined in Recommendation ITU-R BT.601. Here, Y denotes the grayscale image matrix, and R, G,
and B represent the red, green, and blue channel matrices of the original color image, respectively.

The dataset D used in this experiment is a set of vectors where the elements are pairs of converted
grayscale images and their corresponding myocardial states (class labels).
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(a) Disease case: Subject A (b) Disease case: Subject B

(c) Borderline case: Subject C (d) Borderline case: Subject D

(e) Normal case: Subject E (f) Normal case: Subject F

Figure 3. Histopathological images of the myocardium from disease cases, borderline cases,
and normal cases in six subjects.
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3.3. Explanation of the variables and functions used in the algorithms

First, the model vector m that represents the design of each model is defined. In this study, the
model vector is defined as

m =
[
m1 m2 m3

]>
∈ M. (3.2)

However,

m1 ∈ M1 := {FS,AF}, (3.3)
m2 ∈ M2 := {DC,None}, (3.4)
m3 ∈ M3 := {SVM with LK,SVM with RBF,DT}, (3.5)
M = M1 × M2 × M3. (3.6)

For example, m =
[
FS None SVM with RBF

]>
means that FS was performed, no DC was applied,

and SVM using RBF was used. In addition, m =
[
AF DC DT

]>
means that a DT was used for

features to which DC was applied across all features. The number of patterns that m can be used is
|M| = |M1| × |M2| × |M3| = 2× 2× 3 = 12. Therefore, there are 12 model vectors m1, m2, · · · , m12 ∈ M.

Next, we provide additional details on the CrossVal function, which is a dataset partitioning function
based on stratified K-fold cross-validation. Let D be a dataset comprising pairs of input images and
class labels. This dataset D is divided into K subsets of equal size using the function

D1,D2, · · · ,DK = CrossVal(D,K). (3.7)

Here,

|D1| = |D2| = · · · = |DK |, D =

K⋃
k=1

Dk, (3.8)

is assumed. That is, all subsets Dk have the same number of data samples, and there is no data
overlap among the different subsets. In this case, the class-label distribution remained uniform across
all subsets (Sections 2.5). The number of splits, denoted as K, used for the stratified K-fold cross-
validation represents the number of data blocks used to divide the dataset D into training, validation,
and test sets (Figure 2). In this experiment, the value of K was set to five times for both the training–test
and the split training–validation splits, as shown in Figure 2. Therefore, the training set Dtrain and test
set Dtest were divided at a ratio of 8:2 (Algorithm 1: Lines 5–6). In addition, the split training set Dst

and validation set Dvalid were divided at a ratio of 8:2 (Algorithm 2: Lines 6–7). In other words, the
training and test sets were evaluated five times, and the validation set was evaluated 25 times.

Finally, the hyperparameter vector p, which corresponds to the texture features, FS, and the
classification model in Table 2, is defined. It is represented by

p =
[
p1 p2 p3 · · ·

]>
. (3.9)

In Table 2, the hyperparameters of the texture features, bin width for FOS, GLDS, GLCM, and GLRLM
(p1, p2, p4, p6), were set to four gradation values (4, 16, 64, and 256), which were powers of four in
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each case. In addition, for the pixel distances of GLDS and GLCM (p3, p5), four values from one
to four pixels were adopted for each. Furthermore, for the infinitesimal angle of ADF (p7) and the
infinitesimal radius of RDF (p8), four values from one to four were used, with angles in degrees and
radii in pixels. For the number of FS-selected features (pc1), a hyperparameter for FS, 37 values from
2 to 38 were used. In this study, 39 features are extracted regardless of the image or sample size of
the histopathological images of the myocardium (Table 1). Therefore, the number of dimensions to be
selected ranged from 2 to 38, which is the minimum number of dimensions in which the interaction
of the features can be considered. However, when DC is applied, the number of dimensions is two, as
described in Section 2.3. Thus, in the number of FS-selected features with DC (pc2), the number of
dimensions for FS is set to three or more. The cost parameter (pc3 , pc4) and γ parameter (pc5), which
are hyperparameters of the classification model, were adopted in the range of 1 × 10−4 to 1 × 104. For
criterion (pc6), three values of gini, entropy, and log loss were used, and for max depth (pc7), five values
from one to five were used.

The variables p1 to p8, which serve as hyperparameters for texture feature extraction, are fixed
and independent of the model design. In contrast, the hyperparameters pc1 , pc2 , . . . , pc7 for FS and
classification models are determined by the model vector m and vary depending on its elements. For
example, if m =

[
AF None SVM with LK

]>
, then pc3 is adopted as the hyperparameter of the

classification model, resulting in c3 = 9. That is, the hyperparameter p is nine-dimensional. For
m =

[
FS DC DT

]>
, pc2 is used as the hyperparameter for FS, and pc6 and pc7 are used as the

hyperparameters of the classification model, resulting in c2 = 9, c6 = 10, and c7 = 11. In other words,
the hyperparameter p is 11-dimensional.

The hyperparameter vector thus defined is then optimized using Bayesian optimization. In this
experiment, the number of iterations in the Bayesian optimization B was set as 300.

3.4. Experimental procedure using the Algorithms

In this experiment, the mean and standard deviation smean
j , sstd

j , j ∈ {train, valid, test}, of the macro-
average F1-score for each dataset were calculated using dataset D, model vector m, number of cross-
validation splits K, and iterations in Bayesian optimization B as the inputs. First, set J is defined to
represent each dataset, and an empty set S j, j ∈ J, is defined to store the output evaluation values.
Dataset D is partitioned into subsets D1, D2, · · · , DK based on the stratified K-fold cross-validation
(Equation 3.7). One block of K partitions is then assigned to the test set Dtest and the remaining K − 1
blocks are assigned to the training set Dtrain. Then, the SearchBestParameters function is executed to
search for hyperparameters suitable for the dataset and model design (Algorithm 1: Lines 1–7).

In the SearchBestParameters function in Algorithm 2, given input Dtrain, K, B, and m, it returns the
score S max

valid and the hyperparameter p∗ when the average generalization performance on the validation
set was the highest, using a combined cross-validation and hyperparameter optimization method. Here,
the training set Dtrain is first partitioned into the subsets D1, D2, · · · , DK based on stratified K-fold
cross-validation (Equation 3.7). Subsequently, an empty set S valid is declared to store the validation
score obtained in one optimization run. Furthermore, a hyperparameter vector p is constructed from
the search range listed in Table 2 using Bayesian optimization according to Equation 3.9 (Algorithm 2:
Lines 1–4). Next, in the K subsets, one block is assigned to the validation set Dvalid and the remaining
K − 1 blocks were assigned to the split training set Dst. Texture feature extraction is then performed
on Dst and Dvalid based on hyperparameter vector p. In the texture feature extraction, 39 features were
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first extracted, and then robust standardization was applied. The median and interquartile range were
calculated using Fst and robust standardization was applied to Fst and Fvalid based on these values
(Algorithm 2: Lines 6–8).

For dimensionality reduction, FS, DC, and both are applied or not, depending on the model design
(Algorithm 2: Line 9). Therefore, in the DimensionalityReduction function in Algorithm 3, the
dimensionality reduction method was selected based on whether the model vector m contains FS and/or
DC parameters. If DC is applied, the transformation parameters are determined according to the sample
distribution of the input data. Thus, Fst is compressed first, followed by Fvalid using the transformation
parameters calculated from Fst. If the model vector m does not contain FS and DC, dimensionality
reduction is not applied and the feature inputs to the DimensionalityReduction function are returned as
they are (Algorithm 3: Lines 1–7).

Based on the feature vectors Fst and Fvalid returned by the DimensionalityReduction function, m
indicating the classification model to be applied, and its hyperparameter p, the evaluation value svalid

for the validation set is calculated. Subsequently, K instances of svalid are merged into S valid. The
mean values smean

valid, b and their hyperparameter pb are stored as the numerical value at the bth Bayesian
optimization iteration (Algorithm 2: Lines 10–14). When the procedure up to this point is performed B
times, hyperparameter b∗ is extracted when smean

valid, b is the largest. A validation score smean
valid, b∗ is adopted

as the maximum score S max
valid. Furthermore, the hyperparameter pb∗ at the b∗-th iteration is adopted as

the optimized hyperparameter p∗ (Algorithm 2: Lines 16–19).

Extraction of texture features and dimensionality reduction and calculation of the classification
scores for the training set Dtrain and test set Dtest in Algorithm 1 were performed using the optimized
hyperparameters p∗. This procedure follows lines 8–11 of Algorithm 2. Consequently, sets of
evaluation metrics, S train, S valid, and S test were obtained for the training, validation, and test sets,
respectively. Subsequently, the mean and standard deviation of these metrics were returned as the
prediction performance for a given model design m (Algorithm 1: Lines 8–15).

4. Results and discussion

4.1. Effectiveness of texture features for myocardial pathology diagnosis

First, the effectiveness of texture features in diagnosing myocardial pathology was evaluated for
the disease, borderline, and normal case categories. Thus, the set of optimal hyperparameters p∗

(|M| × K = 60), employed in each cross-validation for all model designs, M, was collected. The
most frequently adopted values for each element were aggregated, and texture features were extracted
using the reconstructed hyperparameter vector. Statistical hypothesis testing was conducted to examine
whether texture features exhibited distinct class distributions in one or more diseased, borderline, or
normal cases. The statistical hypothesis testing methods employed were the Kruskal-Wallis test, a
nonparametric test designed for three or more groups, and the Benjamini-Hochberg method, a multiple-
testing correction. α = 0.05 was set as the significance level. Box plots of these texture features and
their adjusted p-values are shown in Figure 4.

AIMS Bioengineering Volume 12, Issue 2, 283–313.



303

34

36

38

40

Disease Borderline Normal

1200

1400

1600

Disease Borderline Normal

30

40

50

Disease Borderline Normal
−0.5

0

0.5

Disease Borderline Normal
2

3

4

5

Disease Borderline Normal

0.05

0.06

0.07

0.08

Disease Borderline Normal

4.2

4.4

4.6

Disease Borderline Normal
0.004

0.006

0.008

0.01

Disease Borderline Normal
20
30
40
50
60

Disease Borderline Normal
0.3

0.4

0.5

0.6

Disease Borderline Normal

0.25

0.3

Disease Borderline Normal

0.25

0.3

0.35

Disease Borderline Normal

8

8.5

9

Disease Borderline Normal
0.65

0.7

0.75

Disease Borderline Normal

4

6

8

Disease Borderline Normal

3500

4000

Disease Borderline Normal

8k

10k

12k

Disease Borderline Normal
0.5

0.55

0.6

0.65

Disease Borderline Normal

0.8

1

1.2

1.4

Disease Borderline Normal

2

3

4

Disease Borderline Normal

1

1.5

2

Disease Borderline Normal

1.5

2

2.5

Disease Borderline Normal

5

10

Disease Borderline Normal

0.25

0.3

0.35

0.4

Disease Borderline Normal
1.6

1.8

2

2.2

Disease Borderline Normal

60

80

100

120

Disease Borderline Normal
5k

10k

15k

Disease Borderline Normal

2000

3000

4000

5000

Disease Borderline Normal

−1

0

1

Disease Borderline Normal

2

3

4

Disease Borderline Normal

0.01

0.015

0.02

0.025

Disease Borderline Normal

6.5

7

Disease Borderline Normal
5

10

15

Disease Borderline Normal

200

400

Disease Borderline Normal
50

100

150

200

Disease Borderline Normal

1

2

3

4

Disease Borderline Normal

5
10
15
20
25

Disease Borderline Normal

0.1

0.2

0.3

0.4

Disease Borderline Normal

2
2.5

3
3.5

4

Disease Borderline Normal

Fe
at

ur
e 

va
lu

e

Fe
at

ur
e 

va
lu

e

Fe
at

ur
e 

va
lu

e

Fe
at

ur
e 

va
lu

e

Fe
at

ur
e 

va
lu

e

Fe
at

ur
e 

va
lu

e

Fe
at

ur
e 

va
lu

e

Fe
at

ur
e 

va
lu

e

Fe
at

ur
e 

va
lu

e

Fe
at

ur
e 

va
lu

e

Fe
at

ur
e 

va
lu

e

Fe
at

ur
e 

va
lu

e

Fe
at

ur
e 

va
lu

e

Fe
at

ur
e 

va
lu

e

Fe
at

ur
e 

va
lu

e

Fe
at

ur
e 

va
lu

e

Fe
at

ur
e 

va
lu

e

Fe
at

ur
e 

va
lu

e

Fe
at

ur
e 

va
lu

e

Fe
at

ur
e 

va
lu

e

Fe
at

ur
e 

va
lu

e

Fe
at

ur
e 

va
lu

e

Fe
at

ur
e 

va
lu

e

Fe
at

ur
e 

va
lu

e

Fe
at

ur
e 

va
lu

e

Fe
at

ur
e 

va
lu

e

Fe
at

ur
e 

va
lu

e

Fe
at

ur
e 

va
lu

e

Fe
at

ur
e 

va
lu

e

Fe
at

ur
e 

va
lu

e

Fe
at

ur
e 

va
lu

e

Fe
at

ur
e 

va
lu

e

Fe
at

ur
e 

va
lu

e

Fe
at

ur
e 

va
lu

e

Fe
at

ur
e 

va
lu

e

Fe
at

ur
e 

va
lu

e

Fe
at

ur
e 

va
lu

e

Fe
at

ur
e 

va
lu

e

Fe
at

ur
e 

va
lu

e

*FOS - mean
(p-value = 2.80×10​-7​)

*FOS - contrast
(p-value = 2.80×10​-7​)

FOS - variance
(p-value = 9.73×10​-1​)

*FOS - skewness
(p-value = 2.80×10​-7​)

*FOS - kurtosis
(p-value = 1.19×10​-3​)

*FOS - energy
(p-value = 1.15×10​-4​)

FOS - entropy
(p-value = 1.03×10​-1​)

*GLCM - JointEnergy
(p-value = 2.41×10​-3​)

*GLCM - Contrast
(p-value = 4.82×10​-4​)

*GLCM - Correlation
(p-value = 9.86×10​-8​)

*GLCM - InverseVariance
(p-value = 1.05×10​-4​)

*GLCM - IDM
(p-value = 1.50×10​-5​)

*GLCM - JointEntropy
(p-value = 2.93×10​-2​)

*GLRLM - SRE
(p-value = 1.88×10​-5​)

*GLRLM - LRE
(p-value = 6.26×10​-3​)

*GLRLM - GLN
(p-value = 1.51×10​-6​)

*GLRLM - RLN
(p-value = 6.56×10​-6​)

*GLRLM - RP
(p-value = 5.35×10​-5​)

*GLDS - mean
(p-value = 9.94×10​-5​)

*GLDS - contrast
(p-value = 4.72×10​-4​)

*GLDS - variance
(p-value = 6.57×10​-3​)

*GLDS - skewness
(p-value = 3.64×10​-6​)

*GLDS - kurtosis
(p-value = 1.23×10​-5​)

*GLDS - energy
(p-value = 2.84×10​-4​)

*GLDS - entropy
(p-value = 5.22×10​-4​)

ADF - mean
(p-value = 1.15×10​-1​)

ADF - contrast
(p-value = 3.16×10​-1​)

ADF - variance
(p-value = 1.26×10​-1​)

ADF - skewness
(p-value = 1.03×10​-1​)

ADF - kurtosis
(p-value = 7.00×10​-2​)

*ADF - energy
(p-value = 1.52×10​-3​)

*ADF - entropy
(p-value = 1.52×10​-3​)

*RDF - mean
(p-value = 3.64×10​-6​)

*RDF - contrast
(p-value = 5.00×10​-7​)

*RDF - variance
(p-value = 9.86×10​-8​)

*RDF - skewness
(p-value = 3.10×10​-6​)

*RDF - kurtosis
(p-value = 8.62×10​-7​)

*RDF - energy
(p-value = 2.05×10​-5​)

*RDF - entropy
(p-value = 5.84×10​-6​)

Figure 4. Box plots for disease, borderline, and normal cases across all texture features,
and adjusted p-values for the three groups from statistical hypothesis testing (features with
significant differences are marked with an asterisk beside the variable name).

Here, it was qualitatively confirmed that there exist many features in which one class is clearly
distinguishable from the others. For example, this includes the mean of the RDF, which quantifies
the periodicity of an image, and the IDM of the GLCM, which quantifies image uniformity and
smoothness. The mean of the RDF was higher in the normal cases compared to the disease and
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borderline cases, indicating that normal cases exhibit stronger high-frequency components and more
fine-scale repetition than the others. In contrast, the IDM of the GLCM was lower in the normal
cases than in the disease and borderline cases, suggesting that normal cases tend to exhibit sharper
intensity transitions between adjacent pixels, indicating more abrupt tonal changes rather than gradual
variations. Among the extracted features, the mean of FOS showed relatively clear separation among
the three classes. This metric represents the centroid of the gray level distribution in an image, and
distinct trends were observed across the classes. Specifically, in disease cases where the median of
the box plot was the highest, the image shows a stronger prevalence of whites compared to the other
classes. The borderline case showed a slightly lower median, whereas the normal case, with the lowest
median, demonstrated a stronger presence of black across the entire image. These trends are also
illustrated in Figure 3. In normal cases, cardiomyocytes are arranged in parallel and orderly fashion,
with minimal collagen or fibrous tissue present in the myocardium [42]. In contrast, hypertrophic
cardiomyopathy exhibits cardiomyocyte disarray and diffuse fibrosis throughout the myocardium [43].
In this study, disease cases were defined by the presence of cardiomyocyte disarray, and borderline
cases by its absence. Accordingly, the observed trends—the highest mean of the RDF and lowest IDM
of the GLCM in normal cases, and a decreasing mean of FOS from disease to borderline to normal—
were consistent with established histopathological findings, suggesting the potential clinical relevance
of the extracted texture features.

More than half of the features exhibited statistically significant differences, with significance
confirmed for 32 of the 39 (≈ 82.1%) features, excluding the variance and entropy of FOS and the
mean, contrast, variance, skewness, and kurtosis of the ADF. This suggests that texture features have
the potential to extract distinct trends in the three myocardial conditions. However, for many statistical
metrics of the ADF, no significant differences were observed in the class distributions. Therefore, it
is suggested that considering periodicity with respect to angular directionality may not be effective for
the diagnosis of myocardial pathology. This may be due to a lack of uniformity in the fiber direction of
the myocardial cells during image acquisition (Figure 3). Thus, although the cost of data preparation is
high, setting rules for the fiber orientation during image acquisition could potentially yield significant
differences in the statistical metrics related to the ADF.

4.2. Performance comparison of different model designs

Next, the prediction performance of each model design M is compared to identify the model design
that is most suitable for the pathological diagnosis of cardiomyopathy using a small sample size. The
number of spatial dimensions after dimensionality reduction and the macro-average F1-score for each
dataset for each model design are summarized in Table 3.

Initially, we focused on overall evaluation values: the minimum was 0.983 and the maximum was
1.000 for the training set, the minimum was 0.722 and the maximum was 0.906 for the validation
set, and the minimum was 0.742 and the maximum was 0.949 for the test set. From these results, it
was confirmed that in all model designs, good overall prediction performance was achieved. However,
when focusing on the DC method, it was observed that in all the models, the fitting performance of the
training set was 1.000, while the generalization performance on the validation set ranged from 0.722
to 0.789, and the generalization performance on the test set ranged from 0.742 to 0.796, indicating a
tendency toward overfitting. This suggests that the LDA, being a supervised dimensionality-reduction
method, may have resulted in overfitting during DC. This was not attributed to features that could be

AIMS Bioengineering Volume 12, Issue 2, 283–313.



305

noise and did not contribute to the classification, as indicated by the results of the statistical hypothesis
tests, but a rather high spatial dimensionality relative to the sample size. A known limitation of classical
LDA is that, as the number of features increases relative to the sample size, it becomes difficult to
reliably estimate the within-class covariance, which has been reported as a cause of overfitting [44]. In
this experiment, cross-validation was applied to the dataset; therefore, the split training set comprised
38 samples. In contrast, the number of features was 39, resulting in high-dimensional, low-sample
size data (sample size � features) (38/39 ≈ 0.97). Therefore, it is possible that the distance
calculation between samples did not function properly. To address this issue, combining unsupervised
dimensionality reduction methods, such as principal component analysis [45] or applying a regularized
LDA, which has been extended to high-dimensional low-sample size data [46], is considered necessary.

Table 3. Macro-average F1-score (mean ± 1 standard deviation) for each dataset and classification
model obtained using the dimensionality reduction algorithm, and the average feature dimension after
dimensionality reduction.

Classification Dimensionality Feature Macro-average F1-score4

models1 reduction2 dimension3 Training set Validation set Test set

SVM with LK

AF 39.0 .992 ± .017 .887 ± .117 .916 ± .053

FS 39.0
FS
→ 32.4 .992 ± .017 .880 ± .113 .867 ± .040

DC 39.0
DC
→ 2.0 1.00 ± .000 .789 ± .135 .796 ± .036

FS + DC 39.0
FS
→ 18.4

DC
→ 2.0 .996 ± .008 .895 ± .104 .949 ± .067

SVM with RBF

AF 39.0 .992 ± .017 .906 ± .076 .898 ± .084

FS 39.0
FS
→ 34.0 .996 ± .008 .900 ± .131 .882 ± .041

DC 39.0
DC
→ 2.0 1.00 ± .000 .750 ± .186 .768 ± .108

FS + DC 39.0
FS
→ 18.2

DC
→ 2.0 .992 ± .010 .882 ± .089 .932 ± .034

Decision tree

AF 39.0 .996 ± .008 .806 ± .123 .774 ± .088

FS 39.0
FS
→ 36.2 .983 ± .024 .811 ± .141 .754 ± .090

DC 39.0
DC
→ 2.0 1.00 ± .000 .722 ± .183 .742 ± .106

FS + DC 39.0
FS
→ 18.2

DC
→ 2.0 .996 ± .008 .782 ± .119 .811 ± .108

1 SVM stands for support vector machine. LK stands for linear kernel. RBF stands for radius basis function kernel.
2 AF stands for all features. FS stands for feature selection. DC stands for dimensional compression.
3 This presents the average number of dimensions after dimensionality reduction across five-fold cross-validation. The leftmost column

lists the number of dimensions at input, while the columns to the right display the dimensions after dimensionality reduction (FS
or/and DC).

4 The underlined values indicate the highest classification performance within each classification model for each data set. The bold
values indicate that the classification performance is the highest among all classification models for each data set.

Next, focusing on evaluation values other than the DC, SVM consistently exhibited better
generalization performance than DT across all dimensionality reduction methods. Within each model,
a comparison of the generalization performance on the validation set revealed the following: AF, FS,
and FS + DC exhibited similar performances based on their standard deviations. However, on the test
set, FS + DC achieved the highest generalization performance among all models, followed by AF in
second place and FS in third place.
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Generally, when the number of features is large relative to the sample size, overfitting is more likely
to occur, which often results in a lower generalization performance [33]. Therefore, in this experiment,
AF was expected to exhibit a relatively lower generalization performance. However, as illustrated
in Figure 4 and described in Section 4.1, 32 of the 39 (≈ 82.1%) features were considered useful
for classification, indicating that the classes were likely separated in a high-dimensional space. In
addition, this study employed a nested structure for cross-validation and hyperparameter optimization,
where the training and test sets as well as the split training and validation sets were hierarchically
separated. Nested cross-validation has been reported to be more robust against overfitting in small
sample size datasets compared with conventional cross-validation [20]. These findings indicate that
the extraction of highly predictive features, along with the use of cross-validation and hyperparameter
optimization methods, which are robust under small sample size conditions, enabled AF to achieve high
generalization performance while avoiding overfitting, despite the large number of features relative to
the sample size.

Focusing on the feature dimensions in FS, the number of dimensions after FS was 32.4 for SVM
with LK, 34.0 for SVM with RBF, and 36.2 for the DT, indicating that only features that could act
as noise without contributing to the classification were eliminated. However, cases in which FS
outperformed AF in terms of generalization performance were rarely observed. Thus, it can be inferred
that when most features are useful, the spatial dimensionality was not notably reduced through FS. The
removal of features that can act as noise without contributing to the classification has minimal impact
on improving the generalization performance.

However, focusing on the feature dimensions of FS+DC, it was confirmed that after FS, the number
of dimensions was approximately 18 for all models. As described in Section 4.1 and shown in Figure 4,
it was recognized that 32 of the 39 features were useful for classification. This indicates that not
only features that may become noise and contribute little to classification, but also features that were
important for classification, have been excluded. In contrast, when focusing on the evaluation values
of the test set, it was confirmed that FS+DC had the highest generalization performance across all the
models. The number of dimensions was approximately 18, which can be interpreted as the dimension
where LDA can avoid overfitting and demonstrate its true discriminative power when the number
of features was slightly larger than the sample size (38/18 ≈ 2.11). Furthermore, the fact that the
number of dimensions after applying FS is similar across all models indicates that this is not model-
dependent but rather specific to the dataset. Thus, we demonstrated that the multi-step dimensionality-
reduction process is effective when the number of features exceeded the sample size. Moreover, this
dimensionality-reduction method may be effective regardless of the decision boundary, particularly
when the complexity of the model is low.

Table 4 lists the features selected through FS and their proportions based on five-fold cross-
validation of the training and test sets for

[
FS DC SVM with LK

]>
, which exhibited the highest

generalization performance for the test set. By reviewing Table 4, it was confirmed that many features,
which showed significant differences as presented in Figure 4, were selected in more than three out
of the five cross-validation runs. Although the GLCM exhibited significant differences across all
statistics, it was confirmed that this was not selected for any of the five cross-validation runs. In
contrast, although the entropy of FOS and the mean, variance, skewness, and kurtosis of the ADF
did not show significant differences in Figure 4, they were selected at least once during the cross-
validation. This can be attributed to the stability of the FS algorithm. Kalousis et al. [47] defined
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the stability of an FS method as “the robustness of the feature preferences it produces to differences
in training sets drawn from the same generating distribution.” Dernoncourt et al. [48] reported that
in the case of small sample size data, the stability of the FS method decreases, resulting in a higher
likelihood of selecting irrelevant features. In addition, they demonstrated that even with appropriate FS
methods, the probability of selecting optimal features remains significantly low. Therefore, to achieve
higher generalization performance and more reliable factor analysis, it is essential to address the
stability of the FS methods. One possible approach would be to utilize domain knowledge [49]. This
approach involves preserving potentially interesting relationships while excluding FS configurations
that contradict domain knowledge. Thus, irrelevant features may be excluded, potentially improving
the stability of FS.

Table 4. Percentage of features selected through feature selection and dimensional compression
using an SVM with a linear kernel, based on five-fold stratified cross-validation (training–test split)
performed for feature selection.

Statistical measures1 Texture analysis methods2, 3

FOS GLDS GLCM GLRLM ADF RDF
Mean *1.0 *0.0 — — 0.2 *0.8
Contrast *1.0 *0.0 *0.0 — 0.0 *1.0
Variance 0.0 *0.0 — — 0.2 *1.0
Skewness *1.0 *0.8 — — 0.2 *0.8
Kurtosis *1.0 *0.8 — — 0.8 *1.0
Energy *0.8 *0.2 — — *1.0 *0.2
Entropy 0.2 *0.0 — — *0.8 *0.6
Correlation — — *0.0 — — —
Joint energy — — *0.0 — — —
Joint entropy — — *0.0 — — —
IDM — — *0.0 — — —
Inverse variance — — *0.0 — — —
SRE — — — *0.6 — —
LRE — — — *0.2 — —
GLN — — — *0.8 — —
RLN — — — *0.8 — —
RP — — — *0.6 — —

1 IDM stands for inverse difference moment. SRE stands for short run emphasis. LRE stands for long run emphasis. GLN stands for
gray level non-uniformity. RLN stands for run length non-uniformity. RP stands for run percentage.

2 FOS stands for first-order statistics. GLDS stands for gray level difference statistics. GLCM stands for gray level co-occurrence
matrix. GLRLM stands for gray level run length matrix. ADF stands for angular distribution function based on the Fourier power
spectrum. RDF stands for radial distribution function based on the Fourier power spectrum.

3 Bold text indicates that a feature was selected in more than three of the iterations during the five-fold stratified cross-validation. The
asterisk (*) indicates that the feature is a characteristic for which a significant difference was confirmed through statistical hypothesis
testing in Section 4.1.
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5. Conclusions

The goal of this study was to develop a pathological diagnostic model for cardiomyopathy with high
generalization performance, even in environments where collecting diverse and large sample sizes of
endomyocardial biopsy specimens is difficult. To achieve this, the effectiveness of texture features in
the pathological diagnosis of cardiomyopathy was examined, and a model design suitable for small
sample size data was assessed.

Regarding texture features, although several features clearly distinguished all three classes, many
features were observed to distinctly separate one class from the others, as demonstrated qualitatively.
Additionally, the Kruskal-Wallis test and Benjamini-Hochberg method indicated that 32 out of the
39 texture features were useful for classification. Regarding the model design, whether using
classification models or dimensionality reduction methods, good predictive performance was achieved
for the pathological diagnosis of the three myocardial states. However, when applying DC alone, a
discrepancy of more than 0.2 points between the training and test set evaluation values was observed,
indicating an overfitting tendency. In addition, when applying FS alone, only a single case of
improvement in the generalization performance was observed on the validation or test sets compared
to models without dimensionality reduction. Conversely, the combination of FS and DC demonstrated
the best generalization performance for the test set, outperforming both models without dimensionality
reduction and those with single-dimensionality reduction methods. These trends were consistent across
all the classification models used in this study.

These experimental results suggest that even when the ratio of features to sample size is high,
most features remain useful for classification, and the application of nested cross-validation and
hyperparameter optimization, which are robust to small sample size data, may mitigate overfitting
and enable high predictive performance. Moreover, if most features are useful and FS does not
substantially reduce the feature space, applying FS does not contribute significantly to improving
generalization performance. Furthermore, when the ratio of features to sample size is high, a multistage
dimensionality reduction process may prove effective. This process is likely to be effective, regardless
of whether the decision boundary is linear, curvilinear, or vertical/horizontal to the axes, provided that
the complexity of the model is controlled. When these conditions were satisfied, the generalization
performance of the SVM with LK was the highest, achieving a macro-average F1-score of 0.949 in the
test set.

These findings are expected to help solve various issues related to the shortage of pathology
experts in cardiology by developing a pathology diagnostic model for cardiomyopathy with a high
generalization performance. Furthermore, the model design may be applicable to other diseases with
insufficient data sizes, potentially contributing to the rapid adoption of ML models in medical practice.

This study has three main limitations. First, generalizability is constrained by the small sample size
and the fact that data were collected from a limited number of institutions. In this study, a model design
capable of achieving high predictive performance on small-sample data was evaluated, and texture
features were comprehensively assessed. However, these results and interpretations rely on a total of
60 image samples collected from six subjects (ten images per subject). In light of this, the observed
predictive performance and insights into texture features may be specific to the limited dataset used and
do not guarantee comparable performance on unseen data. Moreover, as all images were acquired using
the same equipment, magnification, and staining conditions, and color variation due to acquisition
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settings was considered minimal, no stain normalization was applied. Nonetheless, in histopathological
image analysis, stain normalization methods such as Reinhard, Macenko, or Vahadane are typically
employed to suppress color variation [50]. Accordingly, to improve generalizability, it is essential to
include data from subjects with varied attributes (e.g., age and sex) and to apply stain-normalization
methods in order to ensure both sufficient diversity and consistency within the dataset. Second, it does
not consider individual differences inherent in medical data. In general, medical data contain several
unobservable individual differences, such as lifestyle factors, genetic predisposition, environmental
influences, psychological aspects, and socioeconomic conditions, which are known to degrade the
generalization performance [51]. Therefore, it is essential to consider the effects of these individual
differences when applying dimensionality reduction or hyperparameter optimization. However, in
this study, only two subjects were included per case, making it impossible to account for individual
differences. Thus, it is necessary to investigate the extent to which texture features and model designs
evaluated in this study are effective for unseen individual differences. Third, the need to explore
methods more specifically tailored to small sample size data should be considered. Although this
study achieved a high generalization performance with a macro-average F1-score of 0.949 on the
test set, certain aspects remain unaddressed. Specifically, the stability of the FS methods has not
yet been examined [47, 48], and the application of dimensionality reduction methods tailored to high-
dimensional low-sample size data have not yet been explored [45, 46]. Addressing these aspects is
indispensable for achieving further improvements in generalization performance and effectiveness.
Therefore, these issues remain important subjects for future research.
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40. Heikonen S, Yli-Heikkilä M, Heino M (2023) Modeling the drivers of eutrophication in finland
with a machine learning approach. Ecosphere 14: e4522. https://doi.org/10.1002/ecs2.4522

41. Akiba T, Sano S, Yanase T, Ohta T, Koyama M (2019) Optuna: A next-generation hyperparameter
optimization framework, in: Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. https://doi.org/10.1145/3292500.3330701

42. Kong P, Christia P, Frangogiannis NG (2014) The pathogenesis of cardiac fibrosis. Cell Mol Life
Sci 71: 549–574. https://doi.org/10.1007/s00018-013-1349-6

43. Kraft T, Montag J, Radocaj A, Brenner B (2016) Hypertrophic cardiomyopathy: cell-to-cell
imbalance in gene expression and contraction force as trigger for disease phenotype development.
Circ Res 119: 992–995. https://doi.org/10.1161/CIRCRESAHA.116.309804

44. Qiao Z, Zhou L, Huang JZ (2008) Effective linear discriminant analysis for high dimensional, low
sample size data, in: Proceeding of the world congress on engineering, Citeseer, 2008: 2–4.

45. Yang S, Xiong H, Xu K, Wang L, Bian J, Sun Z (2021) Improving covariance-regularized
discriminant analysis for ehr-based predictive analytics of diseases. Appl Intell 51: 377–395.
https://doi.org/10.1007/s10489-020-01810-4

46. Friedman JH (1989) Regularized discriminant analysis. J Am Stat Assoc 84: 165–175.
https://doi.org/10.1080/01621459.1989.10478752

47. Kalousis A, Prados J, Hilario M (2007) Stability of feature selection algorithms: a study on high-
dimensional spaces. Knowl Inf Syst 12: 95–116. https://doi.org/10.1007/s10115-006-0040-8

48. Dernoncourt D, Hanczar B, ZuckerJD (2014) Analysis of feature selection stability
on high dimension and small sample data. Comput Stat Data An 71: 681–693.
https://doi.org/10.1016/j.csda.2013.07.012

49. Grove W (2013) Using domain knowledge to systematically guide feature selection, in: Twenty-
Third International Joint Conference on Artificial Intelligence, Citeseer, 2013.

50. Vaishnani K, Gohel B, Hati A (2021) Impact of stain normalisation technique on deep learning
based nuclei segmentation in histopathological image, in: 2023 International Conference
on Advances in Intelligent Computing and Applications (AICAPS), IEEE, 2023: 1–4.
https://doi.org/10.1109/AICAPS57044.2023.10074363

51. Ding C, Yao T, Wu C, Ni J (2024) Deep learning for personalized electrocardiogram diagnosis: A
review. arxiv preprint arxiv:2409.07975. https://doi.org/10.48550/arXiv.2409.07975

© 2025 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Bioengineering Volume 12, Issue 2, 283–313.

http://dx.doi.org/https://doi.org/10.1002/ecs2.4522
http://dx.doi.org/https://doi.org/10.1145/3292500.3330701
http://dx.doi.org/https://doi.org/10.1007/s00018-013-1349-6
http://dx.doi.org/https://doi.org/10.1161/CIRCRESAHA.116.309804
http://dx.doi.org/https://doi.org/10.1007/s10489-020-01810-4
http://dx.doi.org/https://doi.org/10.1080/01621459.1989.10478752
http://dx.doi.org/https://doi.org/10.1007/s10115-006-0040-8
http://dx.doi.org/https://doi.org/10.1016/j.csda.2013.07.012
http://dx.doi.org/https://doi.org/10.1109/AICAPS57044.2023.10074363
http://dx.doi.org/https://doi.org/10.48550/arXiv.2409.07975
http://creativecommons.org/licenses/by/4.0

	Introduction
	Background
	Comparison of deep and non-deep learning methods
	Research problems
	Objective of this study

	Machine learning (non-deep learning) methods
	Texture feature extraction
	Feature selection
	Dimensional compression
	Classification models and evaluation metrics
	Cross-validation and hyperparameter optimization

	Experiment
	Objectives and overview
	Subjects and data description
	Explanation of the variables and functions used in the algorithms
	Experimental procedure using the Algorithms

	Results and discussion
	Effectiveness of texture features for myocardial pathology diagnosis
	Performance comparison of different model designs

	Conclusions

