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Abstract: N6,2’-O-dimethyladenosine (m6Am) is a crucial RNA modification that plays a pivotal role
in regulating gene expression and maintaining RNA stability. Given its dynamic involvement in
various biological processes and diseases, accurately identifying m6Am is essential for understanding
cellular mechanisms and pathogenesis. Furthermore, detecting m6Am modifications is key to
deciphering regulatory pathways and elucidating disease mechanisms. In this study, we propose Deep-
m6Am, a deep learning—based model for precisely identifying m6Am sites in RNA sequences. The
proposed framework employs a comprehensive feature extraction process, i.e., integrating pseudo
single nucleotide composition (PseSNC), pseudo dinucleotide composition (PseDNC), and pseudo
trinucleotide composition (PseTNC) to capture complex sequence patterns. To enhance computational
efficiency and eliminate noisy or redundant features, a supervised SHAP (SHapley Additive
exPlanations) algorithm is utilized, ensuring the selection of the most informative features. Finally, a
multilayer deep neural network (DNN) is used as a classification algorithm for identifying m6Am sites.
The performance of the proposed model was evaluated in comparison with traditional machine
learning (ML) algorithms and existing models. Experimental results demonstrate that Deep-m6Am
outperforms previous approaches by 6.67% and traditional ML algorithms by 7.39%.
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These findings highlight Deep-m6Am as a promising tool for advancing drug discovery and improving
the diagnosis of diseases associated with m6Am modifications.

Keywords: machine learning; deep neural network; hybrid sequential model; deep-m6Am model;
N6, 2’0O-dimethyl adenosine; RNA modification

1. Introduction

N6,2°-O-dimethyladenosine (m6Am) is a significant RNA modification that plays a vital role in
regulating various cellular processes, including gene expression, RNA stability, and the general
integrity of RNA metabolism. This modification occurs at the five untranslated regions (UTRs) of
messenger RNA (mRNA), influencing key RNA functions such as capping, translation initiation, and
RNA decay [1]. m6Am has been shown to affect the interaction of RNA molecules with RNA-binding
proteins, modulating critical processes like RNA splicing, transport, and stability. These modifications
help regulate gene expression in response to cellular conditions and environmental cues, making them
essential for maintaining cellular homeostasis. The dynamic and reversible nature of m6Am
modifications in RNA is crucial for regulating mRNA’s fate and ensuring the translation machinery’s
proper functioning [2]. The m6 Am modification has gained attention due to its potential implications
in disease pathogenesis and cellular dysfunction. The m6Am is linked to various biological processes,
such as cell growth, differentiation, stress responses, and RNA surveillance mechanisms. The m6Am
role in regulating mRNA stability suggests that it could regulate gene expression in response to stress
or environmental changes, making it an essential factor in cellular adaptation and survival [3.,4].
Similarly, alterations in m6Am modification patterns have been associated with several diseases,
including cancer, neurological disorders, and metabolic conditions, highlighting its significance in both
health and disease. Its importance and accurate identification of m6Am sites within RNA sequences is
essential for advancing the understanding of gene regulation and the molecular mechanisms that
govern disease progression [5]. The ability to detect m6 Am modifications opens new avenues for
therapeutic interventions, enabling the development of targeted strategies for diseases that involve
aberrant RNA modifications. As a result, computational methods that allow efficient and precise
detection of m6Am sites are critical for advancing research in RNA biology and molecular medicine.

Advancements in computational biology have led to several learning tools for predicting RNA
modifications, particularly m6Am. For example, Song et al. [6] introduced MultiRM, an attention-
based multi-label neural network capable of predicting 12 RNA modifications simultaneously. Using
an attention mechanism, MultiRM identifies modification sites and interprets key sequence contexts,
revealing strong associations between different RNA modifications. The model achieves 71.13%
accuracy with an MCC of 0.427 and an AUC of 0.805 on sequence-based RNA modification
mechanisms. Jiang et al. [7] proposed m6AmPred using the eXtreme gradient boosting with
dart (XGBDart) algorithm and EIIP-PseEIIP encoding for feature representation. m6AmPred
achieved 73.10% accuracy with an MCC of 0.462 and an AUC of 0.820 on cross-validation. Similarly,
Luo et al. [8] developed another model named DLm6Am, i.e., an ensemble deep-learning framework
combining one-hot encoding, nucleotide chemical property (NCP), and nucleotide density (ND) for
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feature extraction. DLm6Am integrates CNN, BiLSTM, and multi-head attention modules,
outperforming tools like m6 AmPred and MultiRM with 79.55% accuracy, 81.71% sensitivity, 77.40%
specificity, MCC of 0.591, and AUC of 0.863 on independent testing data. Recently, Jia et al. [9]
proposed EMDL m6Am, a stacking ensemble model employing one-hot encoding and integrating
DenseNet, inflated convolutional network (DCNN), and deep multiscale residual network (MSRN) for
feature extraction. EMDL m6Am achieved 80.98% accuracy, 82.25% sensitivity, 79.72% specificity,
MCC of 0.619, and AUC of 0.823 on training data, with independent testing (80.98% accuracy, AUC
of 0.8211). Despite advancements, existing methods struggle with limited encoding schemes,
inefficient feature selection, and reliance on single deep learning frameworks, leading to suboptimal
performance and high computational costs. The lack of explainability in current models significantly
hinders the interpretation and improvement of accuracy, robustness, and interpretability in m6Am site
prediction techniques.

Based on the aforementioned considerations, in this study, we propose Deep-m6Am, a novel deep
learning (DL) model designed to accurately identify m6Am sites in RNA sequences. The model
integrates multiple feature extraction techniques, including pseudo single nucleotide
composition (PseSNC), pseudo dinucleotide composition (PseDNC), and pseudo trinucleotide
composition (PseTNC), to capture complex sequence patterns essential for precise prediction. A SHAP
(SHapley Additive exPlanations)-based feature selection mechanism is incorporated to enhance
computational efficiency and eliminate irrelevant or redundant features, ensuring that only the most
informative features contribute to the model’s predictions. The Deep-m6Am framework addresses the
limitations of single-model approaches by leveraging a multilayer deep neural network (DNN)
classifier, improving robustness and generalizability. The model’s performance was rigorously
evaluated using 5-fold cross-validation and independent testing. The Deep-m6Am demonstrates state-
of-the-art results across multiple evaluation metrics, including accuracy, sensitivity, specificity, AUC,
and MCC, outperforming existing models and traditional ML algorithms. Integrating cutting-edge
feature extraction, selection, and deep learning methodologies, Deep-m6Am provides a powerful and
interpretable tool for predicting RNA modifications. This advancement significantly contributes to
RNA biology by offering more profound insights into RNA modifications and their roles in disease
mechanisms, opening promising avenues for further research into RNA modification patterns.
Therefore, Deep-m6Am is a robust computational framework for addressing key challenges in RNA
modification analysis, as illustrated in Figure 1.
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Figure 1. Architecture of the proposed model.

The rest of the paper is organized as follows: Section 2 presents material and methods, Section 3
illustrates performance metrics and evaluation, Section 4 provides experimental results and analysis,
and the work is concluded in Section 5.

2. Materials and methods
2.1. Benchmark dataset

A valid and reliable benchmark dataset is essential for designing a powerful and robust
computational model. In this study, we utilized the same benchmark datasets employed by Jia et
al. [9]. These sites were regarded as highly confident, providing a solid foundation for accurate and
reliable model development. Initially, sample sequences were extracted for the training dataset, as
depicted in Eq. 1.

T=( o) 1)

Where T; represents the total RNA sequences, T;” represents the positive m6Am sequences,
and T; represents the non-m6Am sequences. U is a mathematical operator representing the union of
the two subsamples. Moreover, a CD-HIT tool was employed to eliminate pairwise sequences with a
similarity greater than 20%. Finally, we achieved a benchmark dataset comprising 3548 sequences
with 1774 m6Am samples and 1774 non-m6Am samples. In addition, we randomly separated 15% of
the samples with label stratification from the original dataset and generated an independent set. The
remaining 85% of the samples were used as training sets. The independent benchmark dataset was
mathematically formulated using the following Eq. 2.

T, = (Tz+ UTzi) (2)
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Where T, represents the total RNA sequences, T, represents the positive m6Am sequences,
and T, represents the non-m6Am sequences. After separation, the training sets contained 2838
(i.e., 1419 Pos+ and 1419 Neg-) training instances and 710 (i.e., 355 Pos+ and 355 Neg-) independent
instances. It is important to note that the independent test set was carefully saved separately as invisible
data and was not used in learning and parameter tuning processes. The statistical distribution of the
benchmark dataset, detailed in Table 1, ensures an equitable representation of positive and negative
samples across training and independent testing, thereby enabling a robust and reliable model

evaluation.
Table 1. Statistical distribution of the benchmark dataset.
Dataset Number of samples Positive samples Negative samples
Cross validation 3548 1774 1774
Training dataset 2838 1419 1419
Independent dataset 710 355 355

2.2. Feature extraction techniques

Several techniques have been developed to convert DNA, protein, and RNA sequences into
discrete mathematical models, maintaining the nucleotides’ outstanding features and structural
integrity. These methods ensure that the biological sequences are accurately described in numerical
formats, enabling computational analysis without losing critical sequence-specific information.
Accordingly, several bioinformatics approaches have been developed that can transform RNA
sequences into various statistical equations with the preservation of the uniqueness and inherent
patterns of the measures [10—-13]. Following the second rule of Chou’s 5-step guidelines, several
feature extraction techniques have been implemented in this paper to improve the representation of
RNA sequences. These techniques include pseudo K-tuple nucleotide composition (PseKNC),
comprising methods like PseSNC (K = 1), PseDNC (K = 2), and PseTNC (K = 3). Feature extraction
methods are explained in detail in the next section. The PseKNC approach represents RNA sequences
as functional vectors by encoding their composition and sequence patterns. This method suppresses
detailed order data, focusing on capturing essential features that suggest similarities between RNA
samples. By transforming the sequences into structured mathematical representations, PseKNC
facilitates efficient computational analysis while preserving key biological characteristics of the
RNA [14]. Let us consider an RNA sequence R with N number of nucleotides, represented in Eq. 3.

Where N represents the number of nucleotides in a RNA sequence (i.e. the length of a RNA
sequence) andR; € {A, C, G,U} (i=123,....,L). Where R; represents a nucleotides at the i’ sequence

location and A,C,G, U represents Adenine, Cytosine, Guanine and Urine respectively [16,17].
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The Eq. 3, can be expressed in the general form of the PseKNC as

R:|:¢1 P Py . ¢y (/)zj| 4)

In RNA sequence representation, T is the transposed vector representing a mathematical
transformation, z represents a numeric value typically corresponding to an output or dependent
variable in the analysis, and ¢, represents the actual value of the RNA sequence’s feature vector and
can be computed using Eq. 5.

f K —tuple
T - ; (l<u<4*u=123..)
qu—tupIe +W 0.
i ; " )
u wo o ) )
> (4" +1u <4t + )
Z .I:UK—tupIe +WZ 9]
i=1 =1
1 L-K—(2-1) _
ej: L—K—(,1_1) .gi Ci,i+j j—>12,.... A4, A<L-K (6)
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Where 6; represent the j” tier correlation factor or j* rank correlation factor that reflects the
sequence order correlation in most contiguous K-tuple nucleotides. 1 represents the total number
correlation rank and w represents the weight. This paper uses the PseKNC technique to convert the
provided sequences into discrete feature vectors while maintaining the sequence order data. By
designating different values to K (i.e., K = 1, 2, 3) in Eq. 4, three distinct modes of PseKNC were
obtained, i.e., PseSNC (K = 1), PseDNC (K = 2), and PseTNC (K = 3), defined as follows:

1-Tupl
Rpsesne = ‘ fj:l,.L.J.eleD —5(AC,G,U) (8)
2-Tupl
RPseDNC :‘szl’”u.?GeD — 5(AACC,GG,UU) 9)
Regemic =| 11 55 —L>(AAACCC,GGG,ULU) (10)

2.3. Hybrid feature
This study used three distinct feature extraction methods to encode RNA sequences into discrete

feature vectors, as summarized in Table 2. These features include PseSNC, PseDNC, and PseTNC,
which integrate pseudo, composition, and transitional probability features to improve the
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differentiation and interpretation of nucleotide sequences [17-19]. All individual features were
incorporated to construct a comprehensive hybrid feature vector by capturing diverse sequence-derived
attributes. Machine learning models leveraging hybrid features benefit from combining multiple
extraction techniques, enhancing predictive performance by effectively capturing complex data
patterns. This approach remains a widely adopted strategy in bioinformatics and genomics for
improving model interpretability and accuracy.

Table 2. Dimension of feature vector with different values of K.

Feature extraction methods Features
Pseudo single nucleotide composition (PseSNC) 4
pseudo dinucleotide composition (PseDNC) 16
Pseudo trinucleotide composition (PseTNC) 64
Hybrid features 84

2.4. Feature selection

Feature selection is critical in developing models to improve overall performance and
computational efficiency. Feature selection involves identifying and retaining the most informative
features while eliminating irrelevant or redundant ones, which can introduce noise and reduce
prediction accuracy. This study employs SHAP (SHapley Additive exPlanations) as a robust feature
selection technique. SHAP leverages cooperative game theory to quantify the contribution of each
feature to the model’s predictions, ensuring that only the most significant features are retained [20].
This approach reduces the dataset’s dimensionality and enhances the model’s interpretability by
providing insights into the importance of individual features. By integrating SHAP into the Deep-
m6Am framework, the model achieves optimized computational efficiency and improved
generalization, enabling more accurate and reliable identification of m6Am sites in RNA sequences.
This feature selection strategy is pivotal in addressing the challenges of high-dimensional data and
ensuring the model’s robustness and scalability. This approach enhances model interpretability and
supports robust data analysis; it can be expressed as in Eq. 11.

ISI(N]-]S]-1)
IN|

SHAP;(x) = @; = Yseng [f(SU{i}) —f(S)] (11)

Where ¢ represents the SHAP value for the feature i, N is the set of all features, and S is a
subset of features excluding i. Then, f(S)is the model’s prediction given features in S, and
f(S u{i}) is the model’s prediction given features in S plus feature i. This equation captures the

incremental effect of adding the feature i to different subsets of features.
2.5. Deep neural network architecture

The network topology of a deep neural network, an algorithm based on machine learning or
artificial intelligence inspired by the human brain, includes input and output layers and multiple hidden
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layers. The mechanism of neuron transmission and activation function in DNN is shown in Figure 2.
Unlike traditional processing techniques, DNNs can self-learn and automatically acquire pertinent
features from unstructured or raw data. Domains in which DNN has been successfully implemented
include speech recognition, NLP (Natural Language Processing) and bioengineering, and imaging [21].

Rel.U Activation Function

u Backward
9 Propagation
G-
o= v Sigmoid
Activation Function
& )
o N ‘ Z = o MmHAM
- o Non-
A ‘ . mO6Am
- D Ak Output Layer
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Figure 2. The architecture of the proposed deep neural network.

The proposed architecture utilizes fully connected layers to locate m6 Am sites in RNA sequences.
The input layer comprises 42 nodes linked to a first hidden layer of 32 nodes through weighted
connections. A second hidden layer with 16 nodes processes outputs from the first layer, followed by
a third and last layer with 8 nodes. Each layer employs the rectified linear unit (ReLU) activation
function, enabling the model to detect nonlinear relationships and complex patterns [22]. The output
layer uses the sigmoid activation function for normalized binary classification, distinguishing m6Am
and non-m6Am sites in RNA sequences.

3. Performance evaluation criteria

The Deep-m6Am performance 1is rigorously evaluated using key metrics, including
accuracy (ACC), sensitivity (SN), specificity (SP), Matthews correlation coefficient (MCC), and area
under the curve (AUC) [23]. SN measures the model’s ability to accurately identify true m6Am sites,
while SP evaluates its capacity to predict negative cases correctly. ACC reflects the overall correctness
of predictions, MCC provides a balanced classification performance assessment, and AUC highlights
the model’s ability to distinguish between positive and negative instances. These metrics
comprehensively evaluate the model’s predictive power, ensuring its reliability and effectiveness in
identifying m6Am sites.

ACC = TH4T~

T TH+Ft4T4+F-

(12)
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Tt

-
sp =1 (14)
MCC = (r-17)- (F«F7) (15)

 JFFATHT + FO)FEHT )T +F)

Where T' symbolizes true positives, F* symbolizes false positives, T~ Symbolizes true negatives,
and F~ false negatives, respectively.

4. Experimental results and analysis
4.1. Hyperparameters optimization

In this section, we analyze the hyperparameters of the Deep-m6Am model to optimize its
performance. The key hyperparameters considered include learning rate (LR), batch size, number of
layers, neurons per layer, and dropout rate. A dropout rate of 0.5 and L2 regularization (0.001) is
applied to prevent overfitting, while Xavier initialization ensures stable weight distribution. The model
is trained using the Adam optimizer with a learning rate of 0.01 and a momentum of 0.9 to accelerate
convergence. Training is conducted for 100 epochs, utilizing ReLU activation functions in the hidden
layers and Softmax activation in the output layer for effective learning and classification. A grid search
technique was employed to assess the proposed model performance under various hyperparameters,
exploring different combinations of parameters. Specifically, the analysis focused on the
hyperparameters that significantly influence the performance of the DNN model, including the
activation function, learning rate, and number of iterations. Table 3 presents the optimal
hyperparameters for the Deep-m6Am.

Table 3. Optimal hyperparameters for the DNN model.

Parameter Optimal value
Dropout rate 0.5

Weight initialization function Xavier

Seed 12345L
Dropout 0.001
Number of hidden layers 3

Optimizer Adam, SGD
L2 regularization 0.001

Epochs 100

Learning rate 0.01

Batch size 16

Activation functions ReLU, Softmax
Momentum 0.9
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4.2. Performance analysis of DNN

In this section, we conduct the performance analysis of the proposed Deep-m6Am model. We
conducted experiments to examine the effects of LR. Table 4 presents a detailed comparison of
performance metrics across different learning rates and shows how the chosen learning rate
significantly impacts the model’s effectiveness and reliability.

Table 4. Performance metrics across various learning rates (LR).

LR ACC (%) SN (%) SP (%) MCC
0.01 83.43 82.64 84.22 0.669
0.02 80.05 79.71 80.38 0.601
0.03 79.43 80.27 78.58 0.589
0.04 78.86 78.58 79.14 0.577
0.05 78.70 75.00 82.40 0.672

As shown in Table 4, the Deep-m6Am model achieves optimal performance with a learning rate
of 0.01, attaining the highest accuracy (ACC) of 83.43%, sensitivity (SN) of 82.64%, specificity (SP)
of 84.22%, and MCC of 0.669. However, as the learning rate increases, the model’s performance
declines, highlighting that excessively higher learning rates negatively influence overall metrics.

m Accuracy m Sensitivity
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Figure 3. Performance comparison across various dropout rates.
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Furthermore, in Figure 3, we analyze the model’s fluctuation in performance with different
dropout rates, offering valuable guidance for optimizing this hyperparameter. Proper optimization is
crucial for balancing generalization and overfitting prevention, ensuring a robust and reliable model.
Figure 3 shows that the model achieves optimal performance at a dropout rate of 0.5, with the highest
ACC (83.43%) and MCC (66.90%). Performance improves as the dropout rate increases from 0.1
to 0.5, highlighting 0.5 as the most effective rate for balancing generalization and accuracy.
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Figure 4. Performance comparison across various batch sizes.

Moreover, we analyze the effect of varying batch sizes on model performance, comparing
outcomes across different sizes to identify optimal configurations. Figure 4 illustrates the impact of
batch size on model performance, showing a decline as the batch size increases from 16 to 256. The
model achieves optimal performance at a batch size of 16, with the highest ACC (83.43%) and
MCC (69.90%). As batch size increases, performance gradually decreases, emphasizing the
importance of tuning this hyperparameter for optimal results.

4.3. Performance evaluation using cross-validation

Evaluating the robustness of statistical learning models is essential, and this is typically achieved
through validation techniques such as jackknife, k-fold cross-validation, and subsampling. Among
these methods, k-fold cross-validation is particularly effective for objectively assessing model
performance by dividing the dataset into multiple test sets. This approach ensures a thorough
evaluation of the model’s generalizability and reliability. Table 5 presents a performance comparison
of the proposed Deep-m6Am model using various feature extraction techniques, including individual,
hybrid, and SHAP-based feature selection methods.
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Table 5. 5-fold cross-validation performance evaluation.

Method ACC (%) SN (%) SP (%) MCC
PseSNC 71.70 66.55 76.40 0.570
PseDNC 77.73 76.89 78.58 0.555
PseTNC 79.43 80.27 78.58 0.589
Hybrid features 80.83 80.27 81.40 0.617
Hybrid features after SHAP 83.43 82.64 84.22 0.669

Table 5 highlights the varying predictive performance of individual features, with PseSNC,
PseDNC, and PseTNC achieving ACCs of 71.70%, 77.73%, and 79.43%, respectively. The hybrid
feature approach significantly improves classification, reaching an ACC of 80.83%. Further
enhancement through SHAP-based feature selection optimizes feature importance, achieving the
highest ACC (83.43%) and MCC (0.669). These results underscore the effectiveness of hybrid features
in capturing complex patterns and the role of SHAP in refining feature selection for improved model
performance.

4.4. Performance comparison with different ML algorithms

In this section, we provide an analysis of the DNN model in comparison to well-known machine
learning algorithms such as K-nearest neighbor (KNN), random forest (RF), decision tree (DT), naive
Bayes (NB), and support vector machine (SVM) [16,24-26]. Table 6 illustrates the importance of
evaluating model performance across different classifiers. We employed a 5-fold cross-validation
scheme to ensure a reliable and unbiased performance assessment.

Table 6. Performance comparison with ML algorithms on 5-fold cross-validation.

Classifiers ACC (%) SN (%) SP (%) MCC
RF 68.72 66.91 70.53 0.667
DT 71.80 70.22 73.38 0.706
KNN 77.15 75.62 78.68 0.741
NB 79.99 78.35 81.63 0.712
SVM 82.53 81.96 83.09 0.651
Deep-m6Am 83.43 82.64 84.22 0.669

AIMS Bioengineering Volume 12, Issue 1, 145-161.
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Table 6 shows that Deep-m6Am outperforms other ML algorithms, achieving the highest ACC
(83.43%) and MCC (0.669). SVM follows with an ACC of 82.53%, while NB and KNN achieve 79.99%
and 77.15%, respectively. DT (71.80%) and RF (68.72%) perform lower. These results highlight Deep-
m6Am as the most effective model for m6Am site identification. To analyze further, we evaluate the
proposed model performance using the Area Under the ROC Curve (AUC), as shown in Figure 5.
Figure 5 show that the proposed model achieved an AUC value of 0.853, indicating excellent
performance compared with widely used ML algorithms.
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Figure 5. AUC performance comparison with commonly used classifiers using 5-fold
cross-validation.

Furthermore, Table 7 evaluates various ML algorithms on an independent dataset to assess
generalizability and robustness. From Table 7, the proposed Deep-m6 Am model demonstrated superior
performance among the ML classifiers, achieving an ACC of 82.86% with an MCC of 0.657%. The
SVM classifier had an ACC of 81.64% with an MCC of 0.632. In contrast, KNN achieved an ACC
of 75.45%, while NB, DT, and RF performed at 77.29%, 68.88%, and 66.22%, respectively. This
analysis identifies Deep-m6Am as the top-performing model, showcasing its superiority in handling
dataset complexities and ensuring reliable and accurate m6Am site prediction.
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Table 7. Performance comparison with ML algorithms on the independent dataset.

Classifiers ACC (%) SN (%) SP (%) MCC
RF 66.22 64.50 68.00 0.325
DT 68.88 67.10 70.66 0.378
KNN 75.45 73.20 77.70 0.509
NB 77.29 75.20 79.38 0.545
SVM 81.64 79.50 83.78 0.632
Deep-m6Am 82.86 83.65 82.07 0.657

4.5. Performance comparison on the independent dataset

In this section, we conduct a detailed comparative analysis of the proposed Deep-m6Am predictor
against several state-of-the-art predictors, including MultiRM [6], m6AmPred [7], DLm6Am [8], and
EMDL_m6Am [9]. This comparison is shown in Table 8.

Table 8. Performance comparison with existing models on the independent dataset.

Predictor ACC (%) SN (%) SP (%) MCC
MultiRM [6] 71.13 78.59 63.66 0.427
m6AmPred [7] 73.10 72.11 74.08 0.462
DLm6Am [8] 79.55 81.71 77.40 0.591
EMDL_m6Am [9] 80.98 82.25 79.72 0.619
Deep-m6Am 82.86 83.65 82.07 0.657

From Table 8, the MultiRM achieved an ACC of 71.13% and MCC of 0.427, while m6 AmPred
had an ACC of 73.10% and MCC of 0.462. DLm6Am demonstrated an ACC of 79.55% and MCC
of 0.591, and EMDL _m6Am obtained an ACC of 80.98% and MCC of 0.619. In comparison, the
proposed Deep-m6Am outperformed all these models, achieving the highest ACC of 82.86% and MCC
of 0.657. These results highlight the superior predictive accuracy and robustness of Deep-m6Am for
mo6Am site identification, making it the most effective model among the evaluated predictors.

5.  Conclusions

The biological function of N6,2’-O-dimethyladenosine (m6Am) in RNA sequences underscores
its critical role in regulating post-transcriptional processes, RNA stability, and translation. This study
introduces the Deep-m6Am model, which employs a hybrid feature extraction approach, incorporating
SHAP (SHapley Additive exPlanations) feature selection and DNN classifier to precisely identify
m6Am sites within RNA sequences. Through 5-fold cross-validation, compared with popular ML
methods, Deep-m6Am demonstrated unique advantages that resulted in more precise m6Am site
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predictions. Furthermore, the proposed Deep-m6Am model showed superior performance metrics,
achieving an average accuracy of 82.86% compared to the existing models. These results underscore
the potential of Deep-m6Am as a reliable and efficient tool for advancing RNA modification analysis.

Future research could expand Deep-m6Am to analyze other RNA modifications and integrate
multi-omics data for enhanced predictive accuracy. Exploring its role in disease-specific studies could
advance precision medicine. Optimizing computational efficiency through transfer learning,
hyperparameter optimization, and parallel programming will improve the model’s scalability and
applicability in RNA biology and medical research [27].
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