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Abstract: N6,2’-O-dimethyladenosine (m6Am) is a crucial RNA modification that plays a pivotal role 

in regulating gene expression and maintaining RNA stability. Given its dynamic involvement in 

various biological processes and diseases, accurately identifying m6Am is essential for understanding 

cellular mechanisms and pathogenesis. Furthermore, detecting m6Am modifications is key to 

deciphering regulatory pathways and elucidating disease mechanisms. In this study, we propose Deep-

m6Am, a deep learning–based model for precisely identifying m6Am sites in RNA sequences. The 

proposed framework employs a comprehensive feature extraction process, i.e., integrating pseudo 

single nucleotide composition (PseSNC), pseudo dinucleotide composition (PseDNC), and pseudo 

trinucleotide composition (PseTNC) to capture complex sequence patterns. To enhance computational 

efficiency and eliminate noisy or redundant features, a supervised SHAP (SHapley Additive 

exPlanations) algorithm is utilized, ensuring the selection of the most informative features. Finally, a 

multilayer deep neural network (DNN) is used as a classification algorithm for identifying m6Am sites. 

The performance of the proposed model was evaluated in comparison with traditional machine 

learning (ML) algorithms and existing models. Experimental results demonstrate that Deep-m6Am 

outperforms previous approaches by 6.67% and traditional ML algorithms by 7.39%. 
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These findings highlight Deep-m6Am as a promising tool for advancing drug discovery and improving 

the diagnosis of diseases associated with m6Am modifications. 

Keywords: machine learning; deep neural network; hybrid sequential model; deep-m6Am model; 

N6, 2’O-dimethyl adenosine; RNA modification 

 

1. Introduction 

N6,2’-O-dimethyladenosine (m6Am) is a significant RNA modification that plays a vital role in 

regulating various cellular processes, including gene expression, RNA stability, and the general 

integrity of RNA metabolism. This modification occurs at the five untranslated regions (UTRs) of 

messenger RNA (mRNA), influencing key RNA functions such as capping, translation initiation, and 

RNA decay [1]. m6Am has been shown to affect the interaction of RNA molecules with RNA-binding 

proteins, modulating critical processes like RNA splicing, transport, and stability. These modifications 

help regulate gene expression in response to cellular conditions and environmental cues, making them 

essential for maintaining cellular homeostasis. The dynamic and reversible nature of m6Am 

modifications in RNA is crucial for regulating mRNA’s fate and ensuring the translation machinery’s 

proper functioning [2]. The m6Am modification has gained attention due to its potential implications 

in disease pathogenesis and cellular dysfunction. The m6Am is linked to various biological processes, 

such as cell growth, differentiation, stress responses, and RNA surveillance mechanisms. The m6Am 

role in regulating mRNA stability suggests that it could regulate gene expression in response to stress 

or environmental changes, making it an essential factor in cellular adaptation and survival [3,4]. 

Similarly, alterations in m6Am modification patterns have been associated with several diseases, 

including cancer, neurological disorders, and metabolic conditions, highlighting its significance in both 

health and disease. Its importance and accurate identification of m6Am sites within RNA sequences is 

essential for advancing the understanding of gene regulation and the molecular mechanisms that 

govern disease progression [5]. The ability to detect m6Am modifications opens new avenues for 

therapeutic interventions, enabling the development of targeted strategies for diseases that involve 

aberrant RNA modifications. As a result, computational methods that allow efficient and precise 

detection of m6Am sites are critical for advancing research in RNA biology and molecular medicine. 

Advancements in computational biology have led to several learning tools for predicting RNA 

modifications, particularly m6Am. For example, Song et al. [6] introduced MultiRM, an attention-

based multi-label neural network capable of predicting 12 RNA modifications simultaneously. Using 

an attention mechanism, MultiRM identifies modification sites and interprets key sequence contexts, 

revealing strong associations between different RNA modifications. The model achieves 71.13% 

accuracy with an MCC of 0.427 and an AUC of 0.805 on sequence-based RNA modification 

mechanisms. Jiang et al. [7] proposed m6AmPred using the eXtreme gradient boosting with       

dart (XGBDart) algorithm and EIIP-PseEIIP encoding for feature representation. m6AmPred  

achieved 73.10% accuracy with an MCC of 0.462 and an AUC of 0.820 on cross-validation. Similarly, 

Luo et al. [8] developed another model named DLm6Am, i.e., an ensemble deep-learning framework 

combining one-hot encoding, nucleotide chemical property (NCP), and nucleotide density (ND) for 



147 

AIMS Bioengineering  Volume 12, Issue 1, 145–161. 

feature extraction. DLm6Am integrates CNN, BiLSTM, and multi-head attention modules, 

outperforming tools like m6AmPred and MultiRM with 79.55% accuracy, 81.71% sensitivity, 77.40% 

specificity, MCC of 0.591, and AUC of 0.863 on independent testing data. Recently, Jia et al. [9] 

proposed EMDL_m6Am, a stacking ensemble model employing one-hot encoding and integrating 

DenseNet, inflated convolutional network (DCNN), and deep multiscale residual network (MSRN) for 

feature extraction. EMDL_m6Am achieved 80.98% accuracy, 82.25% sensitivity, 79.72% specificity, 

MCC of 0.619, and AUC of 0.823 on training data, with independent testing (80.98% accuracy, AUC 

of 0.8211). Despite advancements, existing methods struggle with limited encoding schemes, 

inefficient feature selection, and reliance on single deep learning frameworks, leading to suboptimal 

performance and high computational costs. The lack of explainability in current models significantly 

hinders the interpretation and improvement of accuracy, robustness, and interpretability in m6Am site 

prediction techniques. 

Based on the aforementioned considerations, in this study, we propose Deep-m6Am, a novel deep 

learning (DL) model designed to accurately identify m6Am sites in RNA sequences. The model 

integrates multiple feature extraction techniques, including pseudo single nucleotide         

composition (PseSNC), pseudo dinucleotide composition (PseDNC), and pseudo trinucleotide 

composition (PseTNC), to capture complex sequence patterns essential for precise prediction. A SHAP 

(SHapley Additive exPlanations)-based feature selection mechanism is incorporated to enhance 

computational efficiency and eliminate irrelevant or redundant features, ensuring that only the most 

informative features contribute to the model’s predictions. The Deep-m6Am framework addresses the 

limitations of single-model approaches by leveraging a multilayer deep neural network (DNN) 

classifier, improving robustness and generalizability. The model’s performance was rigorously 

evaluated using 5-fold cross-validation and independent testing. The Deep-m6Am demonstrates state-

of-the-art results across multiple evaluation metrics, including accuracy, sensitivity, specificity, AUC, 

and MCC, outperforming existing models and traditional ML algorithms. Integrating cutting-edge 

feature extraction, selection, and deep learning methodologies, Deep-m6Am provides a powerful and 

interpretable tool for predicting RNA modifications. This advancement significantly contributes to 

RNA biology by offering more profound insights into RNA modifications and their roles in disease 

mechanisms, opening promising avenues for further research into RNA modification patterns. 

Therefore, Deep-m6Am is a robust computational framework for addressing key challenges in RNA 

modification analysis, as illustrated in Figure 1. 
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Figure 1. Architecture of the proposed model. 

The rest of the paper is organized as follows: Section 2 presents material and methods, Section 3 

illustrates performance metrics and evaluation, Section 4 provides experimental results and analysis, 

and the work is concluded in Section 5. 

2. Materials and methods 

2.1. Benchmark dataset 

A valid and reliable benchmark dataset is essential for designing a powerful and robust 

computational model. In this study, we utilized the same benchmark datasets employed by Jia et     

al. [9]. These sites were regarded as highly confident, providing a solid foundation for accurate and 

reliable model development. Initially, sample sequences were extracted for the training dataset, as 

depicted in Eq. 1. 

1 1 1( )T T T+ −=           (1) 

Where T1 represents the total RNA sequences, T1
+ represents the positive m6Am sequences, 

and T1
− represents the non-m6Am sequences. U is a mathematical operator representing the union of 

the two subsamples. Moreover, a CD-HIT tool was employed to eliminate pairwise sequences with a 

similarity greater than 20%. Finally, we achieved a benchmark dataset comprising 3548 sequences 

with 1774 m6Am samples and 1774 non-m6Am samples. In addition, we randomly separated 15% of 

the samples with label stratification from the original dataset and generated an independent set. The 

remaining 85% of the samples were used as training sets. The independent benchmark dataset was 

mathematically formulated using the following Eq. 2. 

2 2 2( )T T T+ −= 
        (2) 
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Where T2 represents the total RNA sequences, T2
+ represents the positive m6Am sequences, 

and T2
−  represents the non-m6Am sequences. After separation, the training sets contained 2838   

(i.e., 1419 Pos+ and 1419 Neg-) training instances and 710 (i.e., 355 Pos+ and 355 Neg-) independent 

instances. It is important to note that the independent test set was carefully saved separately as invisible 

data and was not used in learning and parameter tuning processes. The statistical distribution of the 

benchmark dataset, detailed in Table 1, ensures an equitable representation of positive and negative 

samples across training and independent testing, thereby enabling a robust and reliable model 

evaluation. 

Table 1. Statistical distribution of the benchmark dataset. 

Dataset Number of samples Positive samples Negative samples 

Cross validation 3548 1774 1774 

Training dataset 2838 1419 1419 

Independent dataset 710 355 355 

2.2. Feature extraction techniques 

Several techniques have been developed to convert DNA, protein, and RNA sequences into 

discrete mathematical models, maintaining the nucleotides’ outstanding features and structural 

integrity. These methods ensure that the biological sequences are accurately described in numerical 

formats, enabling computational analysis without losing critical sequence-specific information. 

Accordingly, several bioinformatics approaches have been developed that can transform RNA 

sequences into various statistical equations with the preservation of the uniqueness and inherent 

patterns of the measures [10–13]. Following the second rule of Chou’s 5-step guidelines, several 

feature extraction techniques have been implemented in this paper to improve the representation of 

RNA sequences. These techniques include pseudo K-tuple nucleotide composition (PseKNC), 

comprising methods like PseSNC (Ƙ = 1), PseDNC (Ƙ = 2), and PseTNC (Ƙ = 3). Feature extraction 

methods are explained in detail in the next section. The PseKNC approach represents RNA sequences 

as functional vectors by encoding their composition and sequence patterns. This method suppresses 

detailed order data, focusing on capturing essential features that suggest similarities between RNA 

samples. By transforming the sequences into structured mathematical representations, PseKNC 

facilitates efficient computational analysis while preserving key biological characteristics of the  

RNA [14]. Let us consider an RNA sequence R with N number of nucleotides, represented in Eq. 3. 

𝑅 =  𝑅1 𝑅2 𝑅3 … 𝑅𝑖 … 𝑅𝑁       (3) 

Where N represents the number of nucleotides in a RNA sequence (i.e. the length of a RNA 

sequence) and  UGCARi ,,,  ),....,3,2,1( Li = . Where Ri represents a nucleotides at the ith sequence 

location and A,C,G, U represents Adenine, Cytosine, Guanine and Urine respectively [16,17]. 
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The Eq. 3, can be expressed in the general form of the PseKNC as 

T

zyR 







=  .......321       (4) 

In RNA sequence representation, 𝑇  is the transposed vector representing a mathematical 

transformation, 𝑧  represents a numeric value typically corresponding to an output or dependent 

variable in the analysis, and ϕy represents the actual value of the RNA sequence’s feature vector and 

can be computed using Eq. 5.  
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Where 𝜃j represent the jth tier correlation factor or jth rank correlation factor that reflects the 

sequence order correlation in most contiguous K-tuple nucleotides. 𝜆  represents the total number  

correlation rank and 𝑤 represents the weight. This paper uses the PseKNC technique to convert the 

provided sequences into discrete feature vectors while maintaining the sequence order data. By 

designating different values to K (i.e., K = 1, 2, 3) in Eq. 4, three distinct modes of PseKNC were 

obtained, i.e., PseSNC (K = 1), PseDNC (K = 2), and PseTNC (K = 3), defined as follows: 

Tuple

DjPseSNC fR −

== 1

4,...1    ),,,( UGCA
f
⎯→⎯     (8) 

Tuple

DjPseDNC fR −

== 2

16,...1 ),,,( UUGGCCAA
f
⎯→⎯      (9) 

Tuple

DjPseTNC fR −

== 3

64,...1 ),,,( UUUGGGCCCAAA
f
⎯→⎯    (10) 

2.3. Hybrid feature 

This study used three distinct feature extraction methods to encode RNA sequences into discrete 

feature vectors, as summarized in Table 2. These features include PseSNC, PseDNC, and PseTNC, 

which integrate pseudo, composition, and transitional probability features to improve the 
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differentiation and interpretation of nucleotide sequences [17–19]. All individual features were 

incorporated to construct a comprehensive hybrid feature vector by capturing diverse sequence-derived 

attributes. Machine learning models leveraging hybrid features benefit from combining multiple 

extraction techniques, enhancing predictive performance by effectively capturing complex data 

patterns. This approach remains a widely adopted strategy in bioinformatics and genomics for 

improving model interpretability and accuracy. 

Table 2. Dimension of feature vector with different values of K. 

Feature extraction methods Features 

Pseudo single nucleotide composition (PseSNC) 4 

pseudo dinucleotide composition (PseDNC) 16 

Pseudo trinucleotide composition (PseTNC) 64 

Hybrid features 84 

2.4. Feature selection 

Feature selection is critical in developing models to improve overall performance and 

computational efficiency. Feature selection involves identifying and retaining the most informative 

features while eliminating irrelevant or redundant ones, which can introduce noise and reduce 

prediction accuracy. This study employs SHAP (SHapley Additive exPlanations) as a robust feature 

selection technique. SHAP leverages cooperative game theory to quantify the contribution of each 

feature to the model’s predictions, ensuring that only the most significant features are retained [20]. 

This approach reduces the dataset’s dimensionality and enhances the model’s interpretability by 

providing insights into the importance of individual features. By integrating SHAP into the Deep-

m6Am framework, the model achieves optimized computational efficiency and improved 

generalization, enabling more accurate and reliable identification of m6Am sites in RNA sequences. 

This feature selection strategy is pivotal in addressing the challenges of high-dimensional data and 

ensuring the model’s robustness and scalability. This approach enhances model interpretability and 

supports robust data analysis; it can be expressed as in Eq. 11. 

𝑆𝐻𝐴𝑃𝑖(𝑥) = ∅𝑖 = ∑
|𝑆|(|𝑁|−|𝑆|−1)

|𝑁|
[𝑓(𝑆 ∪ {𝑖}) − 𝑓(𝑆)]𝑠⊆𝑁{𝑖}      (11) 

Where i  represents the SHAP value for the feature i , N  is the set of all features, and S is a 

subset of features excluding 𝑖 . Then, ( )f S  is the model’s prediction given features in S, and

 ( )f S i  is the model’s prediction given features in S plus feature 𝑖 . This equation captures the 

incremental effect of adding the feature 𝑖 to different subsets of features. 

2.5. Deep neural network architecture 

The network topology of a deep neural network, an algorithm based on machine learning or 

artificial intelligence inspired by the human brain, includes input and output layers and multiple hidden 
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layers. The mechanism of neuron transmission and activation function in DNN is shown in Figure 2. 

Unlike traditional processing techniques, DNNs can self-learn and automatically acquire pertinent 

features from unstructured or raw data. Domains in which DNN has been successfully implemented 

include speech recognition, NLP (Natural Language Processing) and bioengineering, and imaging [21]. 

 

Figure 2. The architecture of the proposed deep neural network. 

The proposed architecture utilizes fully connected layers to locate m6Am sites in RNA sequences. 

The input layer comprises 42 nodes linked to a first hidden layer of 32 nodes through weighted 

connections. A second hidden layer with 16 nodes processes outputs from the first layer, followed by 

a third and last layer with 8 nodes. Each layer employs the rectified linear unit (ReLU) activation 

function, enabling the model to detect nonlinear relationships and complex patterns [22]. The output 

layer uses the sigmoid activation function for normalized binary classification, distinguishing m6Am 

and non-m6Am sites in RNA sequences. 

3. Performance evaluation criteria 

The Deep-m6Am performance is rigorously evaluated using key metrics, including     

accuracy (ACC), sensitivity (SN), specificity (SP), Matthews correlation coefficient (MCC), and area 

under the curve (AUC) [23]. SN measures the model’s ability to accurately identify true m6Am sites, 

while SP evaluates its capacity to predict negative cases correctly. ACC reflects the overall correctness 

of predictions, MCC provides a balanced classification performance assessment, and AUC highlights 

the model’s ability to distinguish between positive and negative instances. These metrics 

comprehensively evaluate the model’s predictive power, ensuring its reliability and effectiveness in 

identifying m6Am sites. 

𝐴𝐶𝐶 =
𝑇++𝑇−

𝑇++𝐹++𝑇−+𝐹−       (12) 
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𝑆𝑁 =  
𝑇+

𝑇++𝐹−         (13) 

𝑆𝑃 =  
𝑇−

𝑇−+ 𝐹+         (14) 

𝑀𝐶𝐶 =  
(𝑇−∗ 𝑇+)−  ( 𝐹−∗ 𝐹+)

√(𝑓+ + 𝑇+)(𝑇++ 𝐹−)(𝐹++𝑇−)(𝑇−+𝐹−)
     (15) 

Where T+ symbolizes true positives, F+ symbolizes false positives, T- Symbolizes true negatives, 

and F- false negatives, respectively. 

4. Experimental results and analysis 

4.1. Hyperparameters optimization 

In this section, we analyze the hyperparameters of the Deep-m6Am model to optimize its 

performance. The key hyperparameters considered include learning rate (LR), batch size, number of 

layers, neurons per layer, and dropout rate. A dropout rate of 0.5 and L2 regularization (0.001) is 

applied to prevent overfitting, while Xavier initialization ensures stable weight distribution. The model 

is trained using the Adam optimizer with a learning rate of 0.01 and a momentum of 0.9 to accelerate 

convergence. Training is conducted for 100 epochs, utilizing ReLU activation functions in the hidden 

layers and Softmax activation in the output layer for effective learning and classification. A grid search 

technique was employed to assess the proposed model performance under various hyperparameters, 

exploring different combinations of parameters. Specifically, the analysis focused on the 

hyperparameters that significantly influence the performance of the DNN model, including the 

activation function, learning rate, and number of iterations. Table 3 presents the optimal 

hyperparameters for the Deep-m6Am. 

Table 3. Optimal hyperparameters for the DNN model. 

Parameter Optimal value 

Dropout rate 0.5 

Weight initialization function Xavier 

Seed 12345L 

Dropout 0.001 

Number of hidden layers 3 

Optimizer Adam, SGD 

L2 regularization 0.001 

Epochs 100 

Learning rate 0.01 

Batch size 16 

Activation functions ReLU, Softmax 

Momentum 0.9 
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4.2. Performance analysis of DNN 

In this section, we conduct the performance analysis of the proposed Deep-m6Am model. We 

conducted experiments to examine the effects of LR. Table 4 presents a detailed comparison of 

performance metrics across different learning rates and shows how the chosen learning rate 

significantly impacts the model’s effectiveness and reliability. 

Table 4. Performance metrics across various learning rates (LR). 

LR ACC (%) SN (%) SP (%) MCC 

0.01 83.43 82.64 84.22 0.669 

0.02 80.05 79.71 80.38 0.601 

0.03 79.43 80.27 78.58 0.589 

0.04 78.86 78.58 79.14 0.577 

0.05 78.70 75.00 82.40 0.672 

As shown in Table 4, the Deep-m6Am model achieves optimal performance with a learning rate 

of 0.01, attaining the highest accuracy (ACC) of 83.43%, sensitivity (SN) of 82.64%, specificity (SP) 

of 84.22%, and MCC of 0.669. However, as the learning rate increases, the model’s performance 

declines, highlighting that excessively higher learning rates negatively influence overall metrics. 

 

Figure 3. Performance comparison across various dropout rates. 
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Furthermore, in Figure 3, we analyze the model’s fluctuation in performance with different 

dropout rates, offering valuable guidance for optimizing this hyperparameter. Proper optimization is 

crucial for balancing generalization and overfitting prevention, ensuring a robust and reliable model. 

Figure 3 shows that the model achieves optimal performance at a dropout rate of 0.5, with the highest 

ACC (83.43%) and MCC (66.90%). Performance improves as the dropout rate increases from 0.1    

to 0.5, highlighting 0.5 as the most effective rate for balancing generalization and accuracy. 

 

Figure 4. Performance comparison across various batch sizes. 

Moreover, we analyze the effect of varying batch sizes on model performance, comparing 

outcomes across different sizes to identify optimal configurations. Figure 4 illustrates the impact of 

batch size on model performance, showing a decline as the batch size increases from 16 to 256. The 

model achieves optimal performance at a batch size of 16, with the highest ACC (83.43%) and   

MCC (69.90%). As batch size increases, performance gradually decreases, emphasizing the 

importance of tuning this hyperparameter for optimal results. 

4.3. Performance evaluation using cross-validation 

Evaluating the robustness of statistical learning models is essential, and this is typically achieved 

through validation techniques such as jackknife, k-fold cross-validation, and subsampling. Among 

these methods, k-fold cross-validation is particularly effective for objectively assessing model 

performance by dividing the dataset into multiple test sets. This approach ensures a thorough 

evaluation of the model’s generalizability and reliability. Table 5 presents a performance comparison 

of the proposed Deep-m6Am model using various feature extraction techniques, including individual, 

hybrid, and SHAP-based feature selection methods. 
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Table 5. 5-fold cross-validation performance evaluation. 

Method ACC (%) SN (%) SP (%) MCC 

PseSNC 71.70 66.55 76.40 0.570 

PseDNC 77.73 76.89 78.58 0.555 

PseTNC 79.43 80.27 78.58 0.589 

Hybrid features 80.83 80.27 81.40 0.617 

Hybrid features after SHAP 83.43 82.64 84.22 0.669 

Table 5 highlights the varying predictive performance of individual features, with PseSNC, 

PseDNC, and PseTNC achieving ACCs of 71.70%, 77.73%, and 79.43%, respectively. The hybrid 

feature approach significantly improves classification, reaching an ACC of 80.83%. Further 

enhancement through SHAP-based feature selection optimizes feature importance, achieving the 

highest ACC (83.43%) and MCC (0.669). These results underscore the effectiveness of hybrid features 

in capturing complex patterns and the role of SHAP in refining feature selection for improved model 

performance. 

4.4. Performance comparison with different ML algorithms 

In this section, we provide an analysis of the DNN model in comparison to well-known machine 

learning algorithms such as K-nearest neighbor (KNN), random forest (RF), decision tree (DT), naive 

Bayes (NB), and support vector machine (SVM) [16,24–26]. Table 6 illustrates the importance of 

evaluating model performance across different classifiers. We employed a 5-fold cross-validation 

scheme to ensure a reliable and unbiased performance assessment. 

Table 6. Performance comparison with ML algorithms on 5-fold cross-validation. 

Classifiers ACC (%) SN (%) SP (%) MCC 

RF 68.72 66.91 70.53 0.667 

DT 71.80 70.22 73.38 0.706 

KNN 77.15 75.62 78.68 0.741 

NB 79.99 78.35 81.63 0.712 

SVM 82.53 81.96 83.09 0.651 

Deep-m6Am 83.43 82.64 84.22 0.669 
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Table 6 shows that Deep-m6Am outperforms other ML algorithms, achieving the highest ACC 

(83.43%) and MCC (0.669). SVM follows with an ACC of 82.53%, while NB and KNN achieve 79.99% 

and 77.15%, respectively. DT (71.80%) and RF (68.72%) perform lower. These results highlight Deep-

m6Am as the most effective model for m6Am site identification. To analyze further, we evaluate the 

proposed model performance using the Area Under the ROC Curve (AUC), as shown in Figure 5. 

Figure 5 show that the proposed model achieved an AUC value of 0.853, indicating excellent 

performance compared with widely used ML algorithms. 

 

Figure 5. AUC performance comparison with commonly used classifiers using 5-fold 

cross-validation. 

Furthermore, Table 7 evaluates various ML algorithms on an independent dataset to assess 

generalizability and robustness. From Table 7, the proposed Deep-m6Am model demonstrated superior 

performance among the ML classifiers, achieving an ACC of 82.86% with an MCC of 0.657%. The 

SVM classifier had an ACC of 81.64% with an MCC of 0.632. In contrast, KNN achieved an ACC  

of 75.45%, while NB, DT, and RF performed at 77.29%, 68.88%, and 66.22%, respectively. This 

analysis identifies Deep-m6Am as the top-performing model, showcasing its superiority in handling 

dataset complexities and ensuring reliable and accurate m6Am site prediction. 
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Table 7. Performance comparison with ML algorithms on the independent dataset. 

Classifiers ACC (%) SN (%) SP (%) MCC 

RF 66.22 64.50 68.00 0.325 

DT 68.88 67.10 70.66 0.378 

KNN 75.45 73.20 77.70 0.509 

NB 77.29 75.20 79.38 0.545 

SVM 81.64 79.50 83.78 0.632 

Deep-m6Am 82.86 83.65 82.07 0.657 

4.5. Performance comparison on the independent dataset 

In this section, we conduct a detailed comparative analysis of the proposed Deep-m6Am predictor 

against several state-of-the-art predictors, including MultiRM [6], m6AmPred [7], DLm6Am [8], and 

EMDL_m6Am [9]. This comparison is shown in Table 8. 

Table 8. Performance comparison with existing models on the independent dataset. 

Predictor ACC (%) SN (%) SP (%) MCC 

MultiRM [6] 71.13 78.59 63.66 0.427 

m6AmPred [7] 73.10 72.11 74.08 0.462 

DLm6Am [8] 79.55 81.71 77.40 0.591 

EMDL_m6Am [9] 80.98 82.25 79.72 0.619 

Deep-m6Am 82.86 83.65 82.07 0.657 

From Table 8, the MultiRM achieved an ACC of 71.13% and MCC of 0.427, while m6AmPred 

had an ACC of 73.10% and MCC of 0.462. DLm6Am demonstrated an ACC of 79.55% and MCC   

of 0.591, and EMDL_m6Am obtained an ACC of 80.98% and MCC of 0.619. In comparison, the 

proposed Deep-m6Am outperformed all these models, achieving the highest ACC of 82.86% and MCC 

of 0.657. These results highlight the superior predictive accuracy and robustness of Deep-m6Am for 

m6Am site identification, making it the most effective model among the evaluated predictors. 

5. Conclusions 

The biological function of N6,2’-O-dimethyladenosine (m6Am) in RNA sequences underscores 

its critical role in regulating post-transcriptional processes, RNA stability, and translation. This study 

introduces the Deep-m6Am model, which employs a hybrid feature extraction approach, incorporating 

SHAP (SHapley Additive exPlanations) feature selection and DNN classifier to precisely identify 

m6Am sites within RNA sequences. Through 5-fold cross-validation, compared with popular ML 

methods, Deep-m6Am demonstrated unique advantages that resulted in more precise m6Am site 
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predictions. Furthermore, the proposed Deep-m6Am model showed superior performance metrics, 

achieving an average accuracy of 82.86% compared to the existing models. These results underscore 

the potential of Deep-m6Am as a reliable and efficient tool for advancing RNA modification analysis. 

Future research could expand Deep-m6Am to analyze other RNA modifications and integrate 

multi-omics data for enhanced predictive accuracy. Exploring its role in disease-specific studies could 

advance precision medicine. Optimizing computational efficiency through transfer learning, 

hyperparameter optimization, and parallel programming will improve the model’s scalability and 

applicability in RNA biology and medical research [27]. 
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