N AIMS Bioengineering, 12(1): 69-89.
AIMS Bioengineering DOI: 10.3934/bioeng.2025004
2 Received: 10 October 2024
Revised: 07 December 2025
Accepted: 07 February 2025
Published: 12 February 2025
https://www.aimspress.com/journal/Bioengineering

Research article

How artificial intelligence reduces human bias in diagnostics?

Artur Luczak*
Canadian Centre for Behavioural Neuroscience, University of Lethbridge, AB, Canada
* Correspondence: Email: Luczak@uleth.ca.

Abstract: Accurate diagnostics of neurological disorders often rely on behavioral assessments, yet
traditional methods rooted in manual observations and scoring are labor-intensive, subjective, and
prone to human bias. Artificial Intelligence (Al), particularly Deep Neural Networks (DNNs), offers
transformative potential to overcome these limitations by automating behavioral analyses and reducing
biases in diagnostic practices. DNNs excel in processing complex, high-dimensional data, allowing
for the detection of subtle behavioral patterns critical for diagnosing neurological disorders such as
Parkinson’s disease, strokes, or spinal cord injuries. This review explores how Al-driven approaches
can mitigate observer biases, thereby emphasizing the use of explainable DNNs to enhance objectivity
in diagnostics. Explainable Al techniques enable the identification of which features in data are used
by DNNs to make decisions. In a data-driven manner, this allows one to uncover novel insights that
may elude human experts. For instance, explainable DNN techniques have revealed previously
unnoticed diagnostic markers, such as posture changes, which can enhance the sensitivity of behavioral
diagnostic assessments. Furthermore, by providing interpretable outputs, explainable DNNs build trust
in Al-driven systems and support the development of unbiased, evidence-based diagnostic tools. In
addition, this review discusses challenges such as data quality, model interpretability, and ethical
considerations. By illustrating the role of Al in reshaping diagnostic methods, this paper highlights its
potential to revolutionize clinical practices, thus paving the way for more objective and reliable
assessments of neurological disorders.
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1. Introduction

The diagnosis of neurological disorders often hinges on the precise assessment of behavioral
patterns, particularly in conditions where motor functions are affected. Traditional diagnostic methods
heavily rely on manual observation and scoring, requiring trained professionals to interpret behaviors
based on predefined criteria [1,2]. While these methods have been foundational in clinical practice,
they are inherently labor-intensive and susceptible to human biases and variability, which can
compromise the accuracy [3,4]. The subjective nature of manual assessments may lead to
inconsistencies, thus potentially affecting the treatment decisions and patient outcomes [5].

Advancements in artificial intelligence (Al), and more specifically deep neural networks (DNNs),
offer promising solutions to these challenges. Al algorithms are adept at the detection of subtle data
patterns that may be overlooked by human observers [6]. In the context of neurological diagnostics,
Al-driven tools can automate the analysis of motor behaviors, thus providing objective and consistent
assessments that reduce the impact of observer bias [7,8]. The ability of DNNs to learn from large
datasets allows for an improved predictive accuracy in diagnosing conditions such as Parkinson’s
disease, strokes, and spinal cord injuries, and in monitoring rehabilitation progress [9].

This review makes the following contributions: (1) it provides an in-depth overview of the
transformative role of Al in reducing human bias within neurological diagnostics, emphasizing its
potential to automate and standardize behavioral assessments; (2) by examining how Al technologies,
particularly explainable DNNs, enhance objectivity, the review highlights their ability to uncover
novel, unbiased diagnostic markers, such as subtle postural changes, that are often overlooked by
human experts; (3) we present key studies and advancements demonstrating Al’s superior diagnostic
precision and reliability in conditions like Parkinson’s disease, stroke, and spinal cord injuries; (4) this
paper also discusses critical challenges in implementing Al models, including concerns about the data
quality, interpretability, and generalizability across diverse populations, while providing insights into
overcoming these barriers; and (5) furthermore, ethical considerations surrounding Al adoption, such
as transparency, accountability for errors, and patient data privacy, are addressed to ensure a
responsible integration into clinical settings. Through this comprehensive analysis, we aim to
demonstrate how Al is not only reshaping diagnostic practices, but is also contributing to better, more
equitable patient outcomes.

2. Advantages of DNNs contributing to reducing diagnostic biases
With their multi-layer architecture, DNNs are particularly effective in analyzing complex, high-
dimensional data, which is crucial for accurate diagnostics in neurological research [10]. These

networks are especially suited for behavioral tests used in diagnosing movement disorders, where
human bias and error can significantly influence results. By automatically extracting features from raw
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behavioral data, DNNs eliminate the need for manual intervention, thus reducing the subjective
interpretation and enhancing the diagnostic objectivity [7,11].

The application of DNNs in behavioral analyses is driven by their ability to automatically extract
and learn features from raw data without the need for manual intervention. This is particularly relevant
in the context of neurological research, where behavioral data can be highly complex. For instance, in
the study of Parkinson’s disease, DNNs have been used to analyze brain signals and motor functions,
thus providing insights that were previously unattainable using traditional methods [12—15]. The
ability of DNNs to handle such intricate data makes them a valuable tool to understand the behavioral
manifestations of neurological disorders [7].

There is a consensus about the efficacy of DNNs in behavioral analyses [8]. For example, the
unsupervised behavior analysis (UBAM) framework, which employs DNNSs, has been shown to detect
subtle behavioral differences in animal models of neurological diseases that are often missed by
traditional methods [11]. This study highlights the potential of DNNs to uncover nuanced behavioral
patterns, thereby providing a deeper understanding of the underlying neurological conditions.

Traditional machine learning models typically require manual feature extraction, a process that
can be both time-consuming and prone to human error. In contrast, DNNs are capable of automatically
learning and extracting relevant features from raw data, which significantly enhances the accuracy and
efficiency of the behavioral analysis [16,17]. This capability is particularly beneficial in the context of
neurological disorders, where behavioral data can be intricate and multifaceted [18,19]. For instance,
in the diagnosis and prognosis of Autism Spectrum Disorder (ASD), DNNs have been shown to
outperform traditional methods by automating the feature extraction and improving the diagnostic
accuracy [20].

Another significant advantage of DNNss is their scalability [21]. As the volume of behavioral data
in neurological research continues to grow, the ability of DNNs to scale and process large datasets
becomes increasingly important [22]. Traditional methods often struggle with the sheer volume of data,
thus leading to potential bottlenecks in analysis. However, DNNs are designed to efficiently scale with
the data, making them particularly well-suited for large-data studies [23—25]. This scalability is evident
in studies such as the one that used LFP-Net, where DNNs were used to analyze extensive brain signals
from Parkinson’s disease patients, thus providing valuable insights into motor function and disease
progression [26].

Due to the above listed advantage, DNNs have been shown to reduce biases and improve the
accuracy of behavioral scoring, which is a critical aspect for neurological research [26,27]. Traditional
scoring methods are often subjective, which can lead to inconsistencies in data interpretation [6]. On
the other hand, DNNs can provide more objective and consistent approaches to behavioral scoring,
thus reducing the likelihood of human error [28]. Studies have demonstrated that DNNs can achieve a
higher accuracy in behavioral analyses compared to traditional methods, as seen in the classification
of major depressive disorder [29]. Moreover, the meta-analysis on the prevalence and diagnosis of
neurological disorders using deep learning techniques has highlighted the effectiveness of DNNs
compared to traditional methods, further supporting their use in this field [30,31]. Thus, the ability of
DNNSs to enhance both the accuracy and consistency of behavioral analyses makes them a valuable
tool in neurological research [8,27].
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3. Applications of DNNs in neurological diagnostics to increase accuracy and objectivity

The application of DNNs in the diagnosis of neurological disorders has revolutionized how we
assess motor impairments and other functional deficits. By analyzing data from diagnostic tests and
patient assessments, including those that simulate conditions such as Parkinson’s disease, strokes, and
spinal cord injuries, DNNs offer critical insights into the progression of neurological disorders and the
effectiveness of various interventions. DNNs have proven invaluable in automating and enhancing the
assessment of motor functions, predicting neurological impairments, and monitoring recovery during
rehabilitation. This section explores the specific applications of DNNs in these diagnostic areas,
thereby highlighting key studies that have demonstrated their potential to replace traditional methods
and improve the accuracy and objectivity of diagnostic assessments.

One of the most significant applications of DNNs in neurological diagnostics is the assessment
of motor function. Traditionally, motor function has been evaluated through manual scoring, a process
that is both time-consuming and prone to human error, as mentioned earlier. However, DNNs have
emerged as a powerful tool to automate and enhance this diagnostic process, thus providing more
accurate and reliable assessments. For example, in the diagnosis of Parkinson’s disease, DNNs have
been used to analyze gait patterns and tremors, thus offering a detailed, objective evaluation of motor
impairments [32]. These models have been shown to outperform traditional scoring methods,
particularly in detecting subtle motor deficits that may be missed by manual observation [33].
Additionally, in stroke and spinal cord injury cases, DNNs have been employed to assess motor
recovery, thus providing a continuous and precise evaluation of motor function over time, which is
essential for accurate diagnostics and tracking a patient’s progress [34].

The accuracy and reliability of DNNs in motor function assessment have been highlighted in
several studies. For instance, a study on spinal cord injuries demonstrated that DNNs could accurately
classify different stages of motor recovery, thus providing a more nuanced understanding of the
rehabilitation process compared to traditional methods [35]. These findings underscore the potential
of DNNs to not only replace manual scoring, but also enhance the precision of motor function
assessments, ultimately leading to better insights into the progression of neurological disorders.

Moreover, DNNs have been increasingly applied to predict the onset and progression of
neurological impairments based on behavioral data. For example, DNNs have been used to analyze
early behavioral changes in animal models of Parkinson’s disease, such as altered movement patterns,
that precede the clinical manifestation of motor symptoms [36]. These models have demonstrated a
superior accuracy in predicting disease onset compared to traditional machine learning methods,
making them a promising tool for early diagnosis [37].

In addition to predicting the disease onset, DNNs have been employed to forecast the progression
of neurological impairments over time. For instance, in models of Alzheimer’s disease, DNNs have
been used to predict cognitive decline based on behavioral data, thus offering the potential for early
intervention before significant impairments occur [27]. In this work, the authors used a DNN with two
fully connected hidden layers (100 and 40 nodes) and two output nodes for genotype classification
(two genotype classes). The predictive capabilities of such models are crucial, as they allow for timely
therapeutic interventions that may slow or even halt the progression of neurological disorders. The
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ability of DNNs to integrate and analyze large datasets, including behavioral, genetic, and imaging
data, makes them particularly well-suited for this task [38].

Another critical application of DNNs in neurological diagnostics is their use in tracking recovery
during rehabilitation. In clinical settings following strokes or spinal cord injury, DNNs have been used
to monitor the patient’s recovery progress by continuously analyzing the motor behavior over
time [35]. These models offer a more detailed and continuous assessment of recovery compared to
traditional methods, which often rely on periodic manual evaluations. By providing real-time feedback
on motor functions, DNNs can help optimize the rehabilitation protocols, thus ensuring that
interventions are tailored to the individual needs of each patient [33].

One of the key advantages of using DNNs in rehabilitation tracking is their ability to personalize
treatment plans [39]. For example, DNNs are frequently used analyze motor function data and adjust
rehabilitation exercises based on the specific progress of each animal [40]. This personalized approach
not only improves the efficacy of rehabilitation, but also reduces the required time for recovery.
Furthermore, DNNs have been shown to detect subtle improvements in motor function that may not
be apparent through manual observation, thus providing a more comprehensive understanding of the
recovery process [41].

Additionally, DNNs have significantly advanced other fields, such as oncology, where DNN
models have been developed to predict the status of epidermal growth factor receptor (EGFR)
mutations in non-small cell lung cancer (NSCLC) patients. A systematic review and meta-analysis
evaluated the performance of Al algorithms and found that DNNs achieved a higher predictive
accuracy compared to conventional machine learning approaches, highlighting the potential of DNNs
in non-invasive cancer diagnostics [42]. Similarly, in pharmacology, DNNs have been instrumental in
predicting drug-drug interactions (DDIs), which are crucial for patient safety and effective treatment
planning. Traditional methods often require extensive known DDI information, which is scarce for
emerging drugs. To address this, Zhang et al. [43] developed graph neural network (GNN) approaches.
This study introduced EmerGNN, a flow-based GNN that leverages biomedical networks to predict
interactions for emerging drugs. By extracting paths between drug pairs and incorporating relevant
biomedical concepts, EmerGNN demonstrated a higher accuracy in predicting DDIs compared to the
existing methods [44]. These advancements underscore the transformative role of Al in enhancing
diagnostic precision and drug safety across various medical disciplines.

It is also important to notice that other machine learning (ML) algorithms have shown promising
results in medical diagnostics, often matching or surpassing human performance. For instance, for
diabetes prediction, a hybrid k-means-PCA model combined with Random Forest achieved a 95.2%
accuracy [45]. In liver disease diagnosis, Random Forest outperformed other methods with a 98.14%
accuracy [46]. Moreover, Random Forest and Naive Bayes models achieved high accuracy levels when
applied to classify many disease datasets such as diabetes, heart disease, and cancer [47]. Various ML
algorithms, including Support Vector Machines, Gradient Boosting Machines, Random Forest, Naive
Bayes, and K-Nearest Neighborhood, have been applied in mental health diagnostics [48]. The k-
Nearest Neighbors (kNN) algorithm has also proven successful in diagnostics such as cervical cancer
prediction, achieving remarkable results with an accuracy of 0.9941, a precision of 0.98, a recall
0f 0.96, and an F1 score of 0.97 [49]. Adding to these developments, a recent study proposed an ML-
based framework for the early prediction of acute coronary syndrome (ACS), leveraging Gradient

AIMS Bioengineering Volume 12, Issue 1, 69—89.



74

Boosting Machines, Deep Forest, and Logistic Regression [50]. This approach achieved an accuracy
of 94.5% and demonstrated a superior performance across metrics such as precision, recall, and F1-
score when compared to traditional methods. Furthermore, it employed a Shapley Additive
Explanations (SHAP) analysis to ensure transparency, thus providing interpretative insights into the
risk factor significance for personalized patient care. These studies highlight the potential of a wide
range of ML algorithms in enhancing medical diagnoses and reducing human bias in healthcare
settings [48].

The above examples show that Al have proven to be a transformative tool in the diagnosis of
neurological disorders, particularly in the assessment of motor function, the prediction of neurological
impairments, and the monitoring of recovery during rehabilitation. By automating and enhancing these
diagnostic processes, Al offers the potential for more accurate, reliable, and personalized approaches
to diagnosing and managing neurological disorders. Al may also help in the future by improving the
analysis accuracy of other neuroscience datasets, such as electrophysiological recordings [51-53],
histology [54], or cognitive processes [55]. As research in DNNs field continues to advance, it is likely
that Al will play an increasingly central role in both the diagnosis and treatment of neurological
conditions, ultimately improving patient outcomes and enhancing the precision of medical care.

4. Explainable DNNs for improving diagnostics

While DNNs offer an unprecedented accuracy in predicting and classifying behaviors, their
“black-box” nature often limits the interpretability of the results [56]. However, by employing
explainability techniques such as the Layer-wise Relevance Propagation (LRP) [57,58], it is possible
to uncover the specific features or behaviors that contribute most to the diagnostic decisions made by
DNNs [41,59]. This approach not only enhances our understanding of the neural mechanisms
underlying specific behaviors, but also provides actionable insights that can guide further experimental
research and potentially lead to earlier and more accurate diagnoses of neurological impairments.
Explainable models can be pivotal in developing new diagnostic tests that are more sensitive and
specific, as they provide a deeper understanding of how certain behaviors are linked to neurological
impairments [38,60]. For example, by employing techniques such as the LRP mentioned above, the
decision-making process of DNNs can be deconstructed, thus identifying the specific features that
contribute to their predictions [61].

The ability to extract and interpret the features driving DNN predictions is particularly valuable
in neuroscience, where understanding the biological basis of behavior is paramount [62]. In recent
years, explainable DNNs have uncovered new behavioral components, such as posture and movement
initiation patterns, that are strongly associated with specific neurological impairments [41,63]. These
findings offer more than just a classification of behavioral data; they provide a deeper understanding
of how certain behaviors are linked to neural processes, potentially guiding the development of more
targeted interventions [64]. Moreover, the insights gained from explainable DNN models can inform
future experimental designs, thus leading to more refined hypotheses and a better understanding of
complex brain-behavior relationships [65]. As such, explainable Al stands at the forefront of a new
era in neuroscience research, where machine learning models do not just predict outcomes, but also
enhance our comprehension of the brain’s intricate workings [66].
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For example, Ryait et al., [41] used the LRP method to find to which parts of video frames the
DNN was paying the most attention to classify healthy vs stroke animals. Videos were recorded from
parallel-beam-walking task, where fine inaccuracies in the paw placement and paw slips were counted
to provide a measure of movement impairment after stroke (Figure 1). Similarly to human experts, the
DNN paid the most attention to food slips to identify stroke animals. However, for the control animals,
the network mostly focused on the rat posture (Figure 1A), rather than details of the foot placements.
This was interesting because the human experts did not notice this before the importance of posture in
evaluating the recovery from strokes. Thus, the use of an explainable network allowed them to discover
novel behavioral features to help evaluate stroke deficits in a more unbiased and data-driven way.

A Healthy rat walking on parallel beams

DNN
attention

DNN
attention

Figure 1. Explainable DNN can help to identify behavioral deficits in an unbiased and data-
driven way. (A) Sample video frame showing a rat on the parallel-beam-walking task. Note
the mirror below the rat is showing an additional view of paw placement. (B) Sample frame
of animal with a brain stroke. Arrows point to “attention” maps superimposed on frames:
parts of frames most informative for a network decision (marked in lighter colors). It shows
that similarly to experts, the network uses foot slips to score stroke deficits, but it also
discovered that body posture is important to identify healthy animals (modified from [41]).

In another example, Ryait et al. [41] used the same explainable DNN to analyze motor behavior
in rats while performing a skilled reaching task (Figure 2). One of the key findings was that the DNN
scores were more strongly correlated with the stroke lesion volume than the human expert
scores (Rponn = 0.78, p = 0.0003 vs Ruuman Expert = 0.6, p = 0.015), thus showing the model’s ability to
discover the most informative movement patterns autonomously. For instance, while experts
traditionally scored individual movement components such as limb lift, pronation, and grasp, the DNN
identified additional behavioral cues - such as reaching for food with the mouth instead of the hand.
These network-discovered patterns were robustly associated with stroke severity and provided a finer-
grained understanding of impairment. The study also illustrated that the explainable DNN allowed for
the visualization of movements that were most informative for decision-making. This highlights the
potential for explainable DNNs to complement human scoring in clinical and research settings, thus
providing a scalable, objective, and interpretable approach to diagnosing and tracking neurological
impairments.

AIMS Bioengineering Volume 12, Issue 1, 69—89.



76

The DNN architecture used in this study combined a convolutional neural network (ConvNet)
and a recurrent neural network (RNN) to effectively capture both spatial and temporal aspects of the
animals’ behavior. First, a pre-trained ConvNet (Inception-V3) extracted 2048 high-level features from
each video frame, capturing spatial information related to posture and movement. Then, these features
were processed sequentially by a long short-term memory (LSTM) layer in the RNN, which analyzed
temporal patterns across frames. This enabled them to identify the most informative movements for
distinguishing between healthy and animals with neurological deficits.

Food pellet reaching task Movement component  Sample movement components Movement component
devised to eveluate animal discovered by DNN as devised by human experts discovered by DNN as
recovery from brain stroke most characteristic for to evaluate stroke most characteristic for

animal with stroke

healthy animal

reaching
with mouth

eating with ]
both hands grasp aim/advance

healthy L \ / ! / / stroke
0 1

ﬁv - =

Index measuring how characteristic is this movement for healthy/stroke animal

-1

Figure 2. Reaching for a food pellet: an example of how explainable DNNs can reduce
human bias in diagnostic of stroke-induced movement impairments. In humans, 80% of
strokes affect hand use [67]; therefore, quantifying hand use in animal models of stroke
provides an important information for evaluating the effectiveness of different
therapies [68]. (A) A rat reaching through an opening to retrieve a sucrose pellet placed on
a shelf attached to a Plexiglas cage (image courtesy of IQ Wishaw). (B) Video frames
illustrating different movement components during reaching for food task (modified
from [41]).

Traditionally, human experts assess the quality of reaching by evaluating multiple movement
sub-components, such as advancing the hand towards the aim and grasping [69,70]. However, using
an explainable convolutional DNN trained on 1500 videos of reaching trials allowed them to discover
that other movement components were more informative about stroke impairment. Specifically, the
DNN found that the act of eating food with both hands after the end of each trial, and not the reaching
movement itself, was the most predictive of healthy rat. This finding indicated that the stroke-affected
rats had a significant difficulty with coordinating hand movements. Moreover, the trials typically
discarded by human experts, where the rat attempted to “cheat” by reaching with its mouth instead of
its hand, turned out to be the most predictive of stroke impairment. These examples demonstrate that
DNNSs using a data-driven approach can identify movement components that are more informative
about impairments than traditional human-designed scoring systems, which may be biased by
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preconceived notions about which movements are most significant. This is an important point because
behavioral tests are widely used to diagnose various neurological disorders, and incorporating Al-
driven approaches could enhance the accuracy and reduce biases in human-designed metrics. (Figure
modified from [41]).

Using a similar approach, Torabi et al. [59] investigated the use of explainable DNNs to enhance
the detection of neurodevelopmental effects in rat pups whose moms were exposed to nicotine.
Traditional human-designed metrics rely on counting the number of squares crossed by a rat after being
placed in the center of the cage (Figure 3). However, such measures of walked distance have a limited
accuracy, achieving a classification rate of around 64% between the control and the nicotine-exposed
animals. In contrast, the DNN achieved a much higher classification accuracy of 87% by analyzing
video recordings without relying on predefined metrics. Remarkably, the DNN was able to make an
accurate classification from just the first frame of each video. Using the LRP method to gain insight
into the DNN’s decision-making process revealed that the healthy and nicotine-exposed pups had
different postures when placed in the center of the cage. The control pups exhibited a more collected
posture with limbs under the body, while the nicotine-exposed pups showed extended limbs that
indicated problems with balance, a difference that was not previously described in the literature. These
findings underscore the DNN’s capacity to autonomously discover subtle movement characteristics
that correlate with the exposure history, thus presenting an objective, data-driven approach for
assessing motor development and reducing the risk of human biases in diagnostics.
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Figure 3. Explainable DNN discovering behavioral deficits in the open field walking task.
(A) A rat pup is placed in the center of the cage, and the distance it walks (number of
crossed squares) is measured by a human observer to assess neurodevelopmental deficits.
(B) Explainable DNN trained to discriminate videos of control vs nicotine-exposed pups
discovers that the most informative is the first frame in each video. This is opposed to
expert expectations where later frames should be more related to the distance covered by
pups. However, a closer examination of initial frames revealed that the starting postures
(in the 1st frame) of the control and the nicotine animals significantly differ. The healthy
(control) animals had legs close to the body (C). In contrast, the nicotine group had widely
extended legs indicating problems with balance (D). This postural difference was missed
by human experts and was discovered in a data-driven way only by explainable DNN. This
approach allows for identifying more accurate and unbiased measures for behavioral tests.
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5. Challenges and limitations in the application of deep neural networks in diagnostics

The application of DNNs in behavioral analyses represents a significant advancement in
neuroscience research, thus offering new avenues for understanding and diagnosing neurological
disorders [6,23]. However, this approach is not without its challenges and limitations. This section
discusses the primary obstacles that researchers face when applying DNNs to behavioral data, including
issues related to the data quality and availability, the model interpretability, the generalization across
models and species, and the ethical considerations inherent in using Al for this purpose.

5.1. Model interpretability

The “black box” nature of DNNs is a well-known limitation, particularly in fields such as
neuroscience, where understanding the underlying mechanisms is as important as the predictive
accuracy of the models [71,72]. DNNs, especially deep architectures, often operate in ways that are
not easily interpretable, making it difficult for researchers to understand how the model is making its
decisions. This lack of transparency can be a significant barrier to the adoption of DNNs in behavioral
analyses, as it undermines trust in the model’s outputs and limits the insights that can be drawn about
the neural processes being studied [65,73]. In response to this challenge and as described in the section
above, the field of explainable Al (XAI) has emerged, offering tools and techniques designed to make
DNNs more interpretable [74,75]. Layer-wise Relevance Propagation (LRP) is one such method that
has been successfully applied in neuroscience [76,77]. LRP helps to deconstruct the decision-making
process of a DNN by highlighting the contributions of individual features to the model’s output,
thereby providing insights into which aspects of the behavioral data are most influential in the model’s
predictions [78]. Studies that utilized the LRP and similar methods have demonstrated that it is possible
to gain meaningful interpretations from DNNSs, thereby revealing new patterns and relationships in the
data that were previously obscured [79,80]. These advancements in interpretability are critical for
making DNNs more accessible and valuable in neuroscience research [81].

5.2. Generalization across models and species

Another significant challenge in applying DNNs to behavioral analyses is the issue of
generalization. DNNSs trained on data from specific animal models or experimental conditions may not
generalize well to other models, species, or even slightly different experimental setups [82,83]. This
limitation is particularly concerning when attempting to translate the findings from animal models to
human conditions, as differences in behavior and neural architecture can lead to discrepancies in the
model performance. Research has shown mixed results in this area. Some studies have successfully
developed DNNs that generalize well across different species, particularly when the behaviors being
analyzed are highly conserved across species [84,85]. However, other studies have highlighted the
limitations of this approach, showing that models often require fine-tuning or retraining on new
datasets to adequately perform in different contexts [6]. These findings underscore the need for
continued research into the factors that influence generalization and the development of strategies to
improve the transferability of DNNs across different models and species.
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5.3. Ethical considerations

The integration of Al into healthcare introduces several ethical challenges that necessitate careful
consideration to ensure patient safety, trust, and equitable care:

Transparency in Al Decision-Making: Al systems, particularly those that utilize DNNs, often
function as “black boxes”, making it difficult to understand how they arrive at specific decisions. This
opacity can hinder a clinicians’ ability to trust and effectively utilize Al recommendations. Developing
explainable Al models as described in the previous section can provide clear insights into their
decision-making processes, thereby enhancing the transparency and trust in clinical settings [86].

Accountability for Errors: Determining responsibility when Al systems provide errors is complex.
If an Al system provides incorrect advice leading to patient harm, it raises questions about whether the
fault lies with the developers, the healthcare providers, or the institution deploying the technology.
Thus, there should be introduced clear guidelines delineating the accountability in Al-assisted
healthcare to address this issue [87].

Privacy of Patient Data: Al systems require vast amounts of data, often including sensitive patient
information. Ensuring the privacy and security of this data is paramount. Concerns regarding data
anonymization and the potential for re-identification, robust data protection measures, and compliance
with regulations should be developed [88].

Addressing these ethical considerations is crucial for the responsible adoption of Al in healthcare,
thus ensuring that technological advancements translate into improved patient outcomes without
compromising ethical standards.

5.4. Data quality and availability

One of the most significant challenges in applying DNNs to develop new diagnostic methods is
the need for large, high-quality datasets. DNNs require vast amounts of data to train effectively, and
the quality of this data directly impacts the model’s performance. In neuroscience, collecting such
datasets is particularly challenging due to the complexity and variability of the behavioral data, as well
as the labor-intensive nature of manual data collection and the ethical constraints on using large
number of experimental animals [89,90]. Low-quality data—whether due to noise, inconsistencies, or
insufficient sample sizes—can lead to a poor model performance and unreliable results [91]. Several
studies have highlighted these challenges and proposed strategies to address them. For example,
researchers have developed data augmentation techniques that artificially expand the size of available
datasets by generating modified versions of existing data, such as through transformations or
simulations. This approach can help to improve the robustness of DNNs, as seen in studies where
augmented data has led to a better generalization and a higher accuracy of predictions [92-94].
Additionally, efforts to standardize data collection protocols across laboratories and animal models
have been crucial in ensuring that datasets are more consistent and reliable, as demonstrated by
initiatives that create large, shared databases of annotated behavioral data [95].
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5.5. Insights from distributed and adaptive control systems

Incorporating insights from distributed and adaptive control systems can also offer useful
strategies for mitigating human biases in the diagnosis of neurological disorders. Just as distributed
control architectures enable robots to operate flexibly and autonomously in complex
environments [96], decentralized Al frameworks could help ensure that the diagnostic models are not
overly reliant on one narrow data source or clinical perspective. By learning from diverse patient
populations and adapting their parameters in response to new information, these Al-driven diagnostic
tools could better capture the multifaceted nature of neurological conditions and reduce the reliance
on potentially biased heuristics. Applying data-driven learning methods similar to those used in
advanced control systems, such as adaptive parameter tuning and continuous data integration [97], can
strengthen the AI’s ability to generalize across different clinical scenarios and populations. This, in
turn, can promote a more robust decision-making process that is less susceptible to the subjective
influences that often challenge human clinicians.

Furthermore, adopting the principles behind distributed real-time control architectures could help
seamlessly integrate explainable Al models into clinical workflows. Just as modular and decentralized
controllers enable humanoid robots to balance real-time responsiveness with adaptive learning,
compartmentalizing the diagnostic Al into interpretable sub-components could make the decision-
making process more transparent, traceable, and fair. These sub-components could be individually
analyzed, validated, and updated to address the potential biases while still operating within an
integrated system that ensures timely and accurate diagnoses. By drawing on the concepts of scalability,
adaptability, and modularity from distributed control systems, the development of explainable and
bias-mitigating Al tools could foster greater trust and adoption in clinical settings, ultimately
improving the patient outcomes.

5.6. Al implementation challenges

Implementing AI models in clinical diagnostics presents several challenges, particularly
concerning the integration into existing healthcare workflows and regulatory compliance. Integrating
Al into clinical settings requires a seamless incorporation into established processes without disrupting
the patient care. This necessitates comprehensive training for healthcare professionals to effectively
utilize Al tools and adapt to new workflows [98]. Regulatory concerns also pose substantial hurdles.
The lack of standardized guidelines for Al applications in medicine complicates the approval process
and may delay the deployment [99]. Additionally, Al systems are susceptible to errors, including false
positives and false negatives, potentially resulting in serious safety outcomes for patients [100].
Addressing these challenges requires a multifaceted approach, including developing robust validation
protocols, establishing clear regulatory guidelines, and ensuring that Al tools are designed to
complement, rather than replace, human clinical judgment.
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5.7. Al-generated biases

Al has the potential to revolutionize healthcare by enhancing diagnostics, personalizing
treatments, and streamlining administrative tasks. However, Al systems are also susceptible to biases
that can adversely affect medical applications. These biases often stem from the data used to train Al
models. For instance, an Al system trained predominantly on data from a specific demographic may
underperform when applied to other groups, thus leading to disparities in healthcare outcomes [101].
Therefore, variability in training datasets is crucial for mitigating biases in Al systems. When the
training data lacks diversity or disproportionately represents certain categories, Al models can
inadvertently learn and perpetuate such biases, thus leading to inaccurate outcomes [102]. Addressing
Al bias in medical applications requires a multifaceted approach. First, it’s crucial to ensure that the
training datasets are representative of the diverse populations the Al will serve. Second, implementing
fairness-aware algorithms that actively detect and mitigate biases during the model development
process is essential. Techniques such as reweighting, resampling, and adversarial debiasing can help
achieve this. Third, the continuous monitoring and evaluation of Al systems in real-world settings are
necessary to identify and correct biases that may emerge over time [103].

Thus, while DNNs offer powerful tools for advancing diagnostic methods in neurological
disorders, their application is accompanied by significant challenges and limitations [71,73].
Addressing these issues—through an improved data quality, an enhanced interpretability, a better
generalization, and careful ethical considerations—will be essential for fully realizing the potential of
DNNs in this field [104,105]. As the technology continues to evolve, ongoing efforts to overcome
these challenges will play a crucial role in shaping the future of Al-driven diagnostics.

6. Conclusions

A significant advancement in the use of DNNs for neurological diagnostics has been their ability
to provide automated scoring with human-expert accuracy, while also offering insights into the
underlying mechanisms of neurological impairments. Recent studies have demonstrated how
explainable DNNs can be employed to design diagnostic tests in a data-driven and unbiased manner,
significantly improving the sensitivity and specificity of these tests in detecting neurological disorders.
These networks are capable of identifying subtle motor deficits and behavioral changes that human
observers may overlook, thereby reducing the observer bias and enhancing the objectivity of diagnostic
assessments. For instance, DNNs have been used to automatically detect motor deficits in clinical and
experimental settings, while also revealing nuanced changes in behaviors that traditional methods often
miss (Figure 1). This automated approach not only minimizes the workload for clinicians and
researchers, but also eliminates the variability caused by human error, resulting in more reliable and
reproducible diagnostic results. Furthermore, leveraging knowledge extraction techniques from DNNs
allows researchers and clinicians to develop new diagnostic assays that are more sensitive and tailored
to detect early signs of neurological and motoric impairments. This capability is particularly valuable
for neurological disorders such as strokes, Parkinson’s disease, and autism spectrum disorders, where
early detection and precise, unbiased monitoring are crucial to improve the patient prognosis and
evaluating the efficacy of therapeutic interventions.
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