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Abstract: Accurate diagnostics of neurological disorders often rely on behavioral assessments, yet 
traditional methods rooted in manual observations and scoring are labor-intensive, subjective, and 
prone to human bias. Artificial Intelligence (AI), particularly Deep Neural Networks (DNNs), offers 
transformative potential to overcome these limitations by automating behavioral analyses and reducing 
biases in diagnostic practices. DNNs excel in processing complex, high-dimensional data, allowing 
for the detection of subtle behavioral patterns critical for diagnosing neurological disorders such as 
Parkinson’s disease, strokes, or spinal cord injuries. This review explores how AI-driven approaches 
can mitigate observer biases, thereby emphasizing the use of explainable DNNs to enhance objectivity 
in diagnostics. Explainable AI techniques enable the identification of which features in data are used 
by DNNs to make decisions. In a data-driven manner, this allows one to uncover novel insights that 
may elude human experts. For instance, explainable DNN techniques have revealed previously 
unnoticed diagnostic markers, such as posture changes, which can enhance the sensitivity of behavioral 
diagnostic assessments. Furthermore, by providing interpretable outputs, explainable DNNs build trust 
in AI-driven systems and support the development of unbiased, evidence-based diagnostic tools. In 
addition, this review discusses challenges such as data quality, model interpretability, and ethical 
considerations. By illustrating the role of AI in reshaping diagnostic methods, this paper highlights its 
potential to revolutionize clinical practices, thus paving the way for more objective and reliable 
assessments of neurological disorders. 
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1. Introduction 

The diagnosis of neurological disorders often hinges on the precise assessment of behavioral 
patterns, particularly in conditions where motor functions are affected. Traditional diagnostic methods 
heavily rely on manual observation and scoring, requiring trained professionals to interpret behaviors 
based on predefined criteria [1,2]. While these methods have been foundational in clinical practice, 
they are inherently labor-intensive and susceptible to human biases and variability, which can 
compromise the accuracy [3,4]. The subjective nature of manual assessments may lead to 
inconsistencies, thus potentially affecting the treatment decisions and patient outcomes [5]. 

Advancements in artificial intelligence (AI), and more specifically deep neural networks (DNNs), 
offer promising solutions to these challenges. AI algorithms are adept at the detection of subtle data 
patterns that may be overlooked by human observers [6]. In the context of neurological diagnostics, 
AI-driven tools can automate the analysis of motor behaviors, thus providing objective and consistent 
assessments that reduce the impact of observer bias [7,8]. The ability of DNNs to learn from large 
datasets allows for an improved predictive accuracy in diagnosing conditions such as Parkinson’s 
disease, strokes, and spinal cord injuries, and in monitoring rehabilitation progress [9]. 

This review makes the following contributions: (1) it provides an in-depth overview of the 
transformative role of AI in reducing human bias within neurological diagnostics, emphasizing its 
potential to automate and standardize behavioral assessments; (2) by examining how AI technologies, 
particularly explainable DNNs, enhance objectivity, the review highlights their ability to uncover 
novel, unbiased diagnostic markers, such as subtle postural changes, that are often overlooked by 
human experts; (3) we present key studies and advancements demonstrating AI’s superior diagnostic 
precision and reliability in conditions like Parkinson’s disease, stroke, and spinal cord injuries; (4) this 
paper also discusses critical challenges in implementing AI models, including concerns about the data 
quality, interpretability, and generalizability across diverse populations, while providing insights into 
overcoming these barriers; and (5) furthermore, ethical considerations surrounding AI adoption, such 
as transparency, accountability for errors, and patient data privacy, are addressed to ensure a 
responsible integration into clinical settings. Through this comprehensive analysis, we aim to 
demonstrate how AI is not only reshaping diagnostic practices, but is also contributing to better, more 
equitable patient outcomes. 

2. Advantages of DNNs contributing to reducing diagnostic biases 

With their multi-layer architecture, DNNs are particularly effective in analyzing complex, high-
dimensional data, which is crucial for accurate diagnostics in neurological research [10]. These 
networks are especially suited for behavioral tests used in diagnosing movement disorders, where 
human bias and error can significantly influence results. By automatically extracting features from raw 
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behavioral data, DNNs eliminate the need for manual intervention, thus reducing the subjective 
interpretation and enhancing the diagnostic objectivity [7,11]. 

The application of DNNs in behavioral analyses is driven by their ability to automatically extract 
and learn features from raw data without the need for manual intervention. This is particularly relevant 
in the context of neurological research, where behavioral data can be highly complex. For instance, in 
the study of Parkinson’s disease, DNNs have been used to analyze brain signals and motor functions, 
thus providing insights that were previously unattainable using traditional methods [12–15]. The 
ability of DNNs to handle such intricate data makes them a valuable tool to understand the behavioral 
manifestations of neurological disorders [7]. 

There is a consensus about the efficacy of DNNs in behavioral analyses [8]. For example, the 
unsupervised behavior analysis (uBAM) framework, which employs DNNs, has been shown to detect 
subtle behavioral differences in animal models of neurological diseases that are often missed by 
traditional methods [11]. This study highlights the potential of DNNs to uncover nuanced behavioral 
patterns, thereby providing a deeper understanding of the underlying neurological conditions. 

Traditional machine learning models typically require manual feature extraction, a process that 
can be both time-consuming and prone to human error. In contrast, DNNs are capable of automatically 
learning and extracting relevant features from raw data, which significantly enhances the accuracy and 
efficiency of the behavioral analysis [16,17]. This capability is particularly beneficial in the context of 
neurological disorders, where behavioral data can be intricate and multifaceted [18,19]. For instance, 
in the diagnosis and prognosis of Autism Spectrum Disorder (ASD), DNNs have been shown to 
outperform traditional methods by automating the feature extraction and improving the diagnostic 
accuracy [20]. 

Another significant advantage of DNNs is their scalability [21]. As the volume of behavioral data 
in neurological research continues to grow, the ability of DNNs to scale and process large datasets 
becomes increasingly important [22]. Traditional methods often struggle with the sheer volume of data, 
thus leading to potential bottlenecks in analysis. However, DNNs are designed to efficiently scale with 
the data, making them particularly well-suited for large-data studies [23–25]. This scalability is evident 
in studies such as the one that used LFP-Net, where DNNs were used to analyze extensive brain signals 
from Parkinson’s disease patients, thus providing valuable insights into motor function and disease 
progression [26]. 

Due to the above listed advantage, DNNs have been shown to reduce biases and improve the 
accuracy of behavioral scoring, which is a critical aspect for neurological research [26,27]. Traditional 
scoring methods are often subjective, which can lead to inconsistencies in data interpretation [6]. On 
the other hand, DNNs can provide more objective and consistent approaches to behavioral scoring, 
thus reducing the likelihood of human error [28]. Studies have demonstrated that DNNs can achieve a 
higher accuracy in behavioral analyses compared to traditional methods, as seen in the classification 
of major depressive disorder [29]. Moreover, the meta-analysis on the prevalence and diagnosis of 
neurological disorders using deep learning techniques has highlighted the effectiveness of DNNs 
compared to traditional methods, further supporting their use in this field [30,31]. Thus, the ability of 
DNNs to enhance both the accuracy and consistency of behavioral analyses makes them a valuable 
tool in neurological research [8,27]. 
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3. Applications of DNNs in neurological diagnostics to increase accuracy and objectivity 

The application of DNNs in the diagnosis of neurological disorders has revolutionized how we 
assess motor impairments and other functional deficits. By analyzing data from diagnostic tests and 
patient assessments, including those that simulate conditions such as Parkinson’s disease, strokes, and 
spinal cord injuries, DNNs offer critical insights into the progression of neurological disorders and the 
effectiveness of various interventions. DNNs have proven invaluable in automating and enhancing the 
assessment of motor functions, predicting neurological impairments, and monitoring recovery during 
rehabilitation. This section explores the specific applications of DNNs in these diagnostic areas, 
thereby highlighting key studies that have demonstrated their potential to replace traditional methods 
and improve the accuracy and objectivity of diagnostic assessments. 

One of the most significant applications of DNNs in neurological diagnostics is the assessment 
of motor function. Traditionally, motor function has been evaluated through manual scoring, a process 
that is both time-consuming and prone to human error, as mentioned earlier. However, DNNs have 
emerged as a powerful tool to automate and enhance this diagnostic process, thus providing more 
accurate and reliable assessments. For example, in the diagnosis of Parkinson’s disease, DNNs have 
been used to analyze gait patterns and tremors, thus offering a detailed, objective evaluation of motor 
impairments [32]. These models have been shown to outperform traditional scoring methods, 
particularly in detecting subtle motor deficits that may be missed by manual observation [33]. 
Additionally, in stroke and spinal cord injury cases, DNNs have been employed to assess motor 
recovery, thus providing a continuous and precise evaluation of motor function over time, which is 
essential for accurate diagnostics and tracking a patient’s progress [34]. 

The accuracy and reliability of DNNs in motor function assessment have been highlighted in 
several studies. For instance, a study on spinal cord injuries demonstrated that DNNs could accurately 
classify different stages of motor recovery, thus providing a more nuanced understanding of the 
rehabilitation process compared to traditional methods [35]. These findings underscore the potential 
of DNNs to not only replace manual scoring, but also enhance the precision of motor function 
assessments, ultimately leading to better insights into the progression of neurological disorders. 

Moreover, DNNs have been increasingly applied to predict the onset and progression of 
neurological impairments based on behavioral data. For example, DNNs have been used to analyze 
early behavioral changes in animal models of Parkinson’s disease, such as altered movement patterns, 
that precede the clinical manifestation of motor symptoms [36]. These models have demonstrated a 
superior accuracy in predicting disease onset compared to traditional machine learning methods, 
making them a promising tool for early diagnosis [37]. 

In addition to predicting the disease onset, DNNs have been employed to forecast the progression 
of neurological impairments over time. For instance, in models of Alzheimer’s disease, DNNs have 
been used to predict cognitive decline based on behavioral data, thus offering the potential for early 
intervention before significant impairments occur [27]. In this work, the authors used a DNN with two 
fully connected hidden layers (100 and 40 nodes) and two output nodes for genotype classification 
(two genotype classes). The predictive capabilities of such models are crucial, as they allow for timely 
therapeutic interventions that may slow or even halt the progression of neurological disorders. The 
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ability of DNNs to integrate and analyze large datasets, including behavioral, genetic, and imaging 
data, makes them particularly well-suited for this task [38]. 

Another critical application of DNNs in neurological diagnostics is their use in tracking recovery 
during rehabilitation. In clinical settings following strokes or spinal cord injury, DNNs have been used 
to monitor the patient’s recovery progress by continuously analyzing the motor behavior over            
time [35]. These models offer a more detailed and continuous assessment of recovery compared to 
traditional methods, which often rely on periodic manual evaluations. By providing real-time feedback 
on motor functions, DNNs can help optimize the rehabilitation protocols, thus ensuring that 
interventions are tailored to the individual needs of each patient [33]. 

One of the key advantages of using DNNs in rehabilitation tracking is their ability to personalize 
treatment plans [39]. For example, DNNs are frequently used analyze motor function data and adjust 
rehabilitation exercises based on the specific progress of each animal [40]. This personalized approach 
not only improves the efficacy of rehabilitation, but also reduces the required time for recovery. 
Furthermore, DNNs have been shown to detect subtle improvements in motor function that may not 
be apparent through manual observation, thus providing a more comprehensive understanding of the 
recovery process [41]. 

Additionally, DNNs have significantly advanced other fields, such as oncology, where DNN 
models have been developed to predict the status of epidermal growth factor receptor (EGFR) 
mutations in non-small cell lung cancer (NSCLC) patients. A systematic review and meta-analysis 
evaluated the performance of AI algorithms and found that DNNs achieved a higher predictive 
accuracy compared to conventional machine learning approaches, highlighting the potential of DNNs 
in non-invasive cancer diagnostics [42]. Similarly, in pharmacology, DNNs have been instrumental in 
predicting drug-drug interactions (DDIs), which are crucial for patient safety and effective treatment 
planning. Traditional methods often require extensive known DDI information, which is scarce for 
emerging drugs. To address this, Zhang et al. [43] developed graph neural network (GNN) approaches. 
This study introduced EmerGNN, a flow-based GNN that leverages biomedical networks to predict 
interactions for emerging drugs. By extracting paths between drug pairs and incorporating relevant 
biomedical concepts, EmerGNN demonstrated a higher accuracy in predicting DDIs compared to the 
existing methods [44]. These advancements underscore the transformative role of AI in enhancing 
diagnostic precision and drug safety across various medical disciplines. 

It is also important to notice that other machine learning (ML) algorithms have shown promising 
results in medical diagnostics, often matching or surpassing human performance. For instance, for 
diabetes prediction, a hybrid k-means-PCA model combined with Random Forest achieved a 95.2% 
accuracy [45]. In liver disease diagnosis, Random Forest outperformed other methods with a 98.14% 
accuracy [46]. Moreover, Random Forest and Naive Bayes models achieved high accuracy levels when 
applied to classify many disease datasets such as diabetes, heart disease, and cancer [47]. Various ML 
algorithms, including Support Vector Machines, Gradient Boosting Machines, Random Forest, Naïve 
Bayes, and K-Nearest Neighborhood, have been applied in mental health diagnostics [48]. The k-
Nearest Neighbors (kNN) algorithm has also proven successful in diagnostics such as cervical cancer 
prediction, achieving remarkable results with an accuracy of 0.9941, a precision of 0.98, a recall            
of 0.96, and an F1 score of 0.97 [49]. Adding to these developments, a recent study proposed an ML-
based framework for the early prediction of acute coronary syndrome (ACS), leveraging Gradient 
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Boosting Machines, Deep Forest, and Logistic Regression [50]. This approach achieved an accuracy 
of 94.5% and demonstrated a superior performance across metrics such as precision, recall, and F1-
score when compared to traditional methods. Furthermore, it employed a Shapley Additive 
Explanations (SHAP) analysis to ensure transparency, thus providing interpretative insights into the 
risk factor significance for personalized patient care. These studies highlight the potential of a wide 
range of ML algorithms in enhancing medical diagnoses and reducing human bias in healthcare 
settings [48]. 

The above examples show that AI have proven to be a transformative tool in the diagnosis of 
neurological disorders, particularly in the assessment of motor function, the prediction of neurological 
impairments, and the monitoring of recovery during rehabilitation. By automating and enhancing these 
diagnostic processes, AI offers the potential for more accurate, reliable, and personalized approaches 
to diagnosing and managing neurological disorders. AI may also help in the future by improving the 
analysis accuracy of other neuroscience datasets, such as electrophysiological recordings [51–53], 
histology [54], or cognitive processes [55]. As research in DNNs field continues to advance, it is likely 
that AI will play an increasingly central role in both the diagnosis and treatment of neurological 
conditions, ultimately improving patient outcomes and enhancing the precision of medical care. 

4. Explainable DNNs for improving diagnostics 

While DNNs offer an unprecedented accuracy in predicting and classifying behaviors, their 
“black-box” nature often limits the interpretability of the results [56]. However, by employing 
explainability techniques such as the Layer-wise Relevance Propagation (LRP) [57,58], it is possible 
to uncover the specific features or behaviors that contribute most to the diagnostic decisions made by 
DNNs [41,59]. This approach not only enhances our understanding of the neural mechanisms 
underlying specific behaviors, but also provides actionable insights that can guide further experimental 
research and potentially lead to earlier and more accurate diagnoses of neurological impairments. 
Explainable models can be pivotal in developing new diagnostic tests that are more sensitive and 
specific, as they provide a deeper understanding of how certain behaviors are linked to neurological 
impairments [38,60]. For example, by employing techniques such as the LRP mentioned above, the 
decision-making process of DNNs can be deconstructed, thus identifying the specific features that 
contribute to their predictions [61]. 

The ability to extract and interpret the features driving DNN predictions is particularly valuable 
in neuroscience, where understanding the biological basis of behavior is paramount [62]. In recent 
years, explainable DNNs have uncovered new behavioral components, such as posture and movement 
initiation patterns, that are strongly associated with specific neurological impairments [41,63]. These 
findings offer more than just a classification of behavioral data; they provide a deeper understanding 
of how certain behaviors are linked to neural processes, potentially guiding the development of more 
targeted interventions [64]. Moreover, the insights gained from explainable DNN models can inform 
future experimental designs, thus leading to more refined hypotheses and a better understanding of 
complex brain-behavior relationships [65]. As such, explainable AI stands at the forefront of a new 
era in neuroscience research, where machine learning models do not just predict outcomes, but also 
enhance our comprehension of the brain’s intricate workings [66]. 
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For example, Ryait et al., [41] used the LRP method to find to which parts of video frames the 
DNN was paying the most attention to classify healthy vs stroke animals. Videos were recorded from 
parallel-beam-walking task, where fine inaccuracies in the paw placement and paw slips were counted 
to provide a measure of movement impairment after stroke (Figure 1). Similarly to human experts, the 
DNN paid the most attention to food slips to identify stroke animals. However, for the control animals, 
the network mostly focused on the rat posture (Figure 1A), rather than details of the foot placements. 
This was interesting because the human experts did not notice this before the importance of posture in 
evaluating the recovery from strokes. Thus, the use of an explainable network allowed them to discover 
novel behavioral features to help evaluate stroke deficits in a more unbiased and data-driven way. 

 

Figure 1. Explainable DNN can help to identify behavioral deficits in an unbiased and data-
driven way. (A) Sample video frame showing a rat on the parallel-beam-walking task. Note 
the mirror below the rat is showing an additional view of paw placement. (B) Sample frame 
of animal with a brain stroke. Arrows point to “attention” maps superimposed on frames: 
parts of frames most informative for a network decision (marked in lighter colors). It shows 
that similarly to experts, the network uses foot slips to score stroke deficits, but it also 
discovered that body posture is important to identify healthy animals (modified from [41]). 

In another example, Ryait et al. [41] used the same explainable DNN to analyze motor behavior 
in rats while performing a skilled reaching task (Figure 2). One of the key findings was that the DNN 
scores were more strongly correlated with the stroke lesion volume than the human expert                
scores (RDNN = 0.78, p = 0.0003 vs RHuman Expert = 0.6, p = 0.015), thus showing the model’s ability to 
discover the most informative movement patterns autonomously. For instance, while experts 
traditionally scored individual movement components such as limb lift, pronation, and grasp, the DNN 
identified additional behavioral cues - such as reaching for food with the mouth instead of the hand. 
These network-discovered patterns were robustly associated with stroke severity and provided a finer-
grained understanding of impairment. The study also illustrated that the explainable DNN allowed for 
the visualization of movements that were most informative for decision-making. This highlights the 
potential for explainable DNNs to complement human scoring in clinical and research settings, thus 
providing a scalable, objective, and interpretable approach to diagnosing and tracking neurological 
impairments. 
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The DNN architecture used in this study combined a convolutional neural network (ConvNet) 
and a recurrent neural network (RNN) to effectively capture both spatial and temporal aspects of the 
animals’ behavior. First, a pre-trained ConvNet (Inception-V3) extracted 2048 high-level features from 
each video frame, capturing spatial information related to posture and movement. Then, these features 
were processed sequentially by a long short-term memory (LSTM) layer in the RNN, which analyzed 
temporal patterns across frames. This enabled them to identify the most informative movements for 
distinguishing between healthy and animals with neurological deficits. 

 

Figure 2. Reaching for a food pellet: an example of how explainable DNNs can reduce 
human bias in diagnostic of stroke-induced movement impairments. In humans, 80% of 
strokes affect hand use [67]; therefore, quantifying hand use in animal models of stroke 
provides an important information for evaluating the effectiveness of different         
therapies [68]. (A) A rat reaching through an opening to retrieve a sucrose pellet placed on 
a shelf attached to a Plexiglas cage (image courtesy of IQ Wishaw). (B) Video frames 
illustrating different movement components during reaching for food task (modified     
from [41]). 

Traditionally, human experts assess the quality of reaching by evaluating multiple movement 
sub-components, such as advancing the hand towards the aim and grasping [69,70]. However, using 
an explainable convolutional DNN trained on 1500 videos of reaching trials allowed them to discover 
that other movement components were more informative about stroke impairment. Specifically, the 
DNN found that the act of eating food with both hands after the end of each trial, and not the reaching 
movement itself, was the most predictive of healthy rat. This finding indicated that the stroke-affected 
rats had a significant difficulty with coordinating hand movements. Moreover, the trials typically 
discarded by human experts, where the rat attempted to “cheat” by reaching with its mouth instead of 
its hand, turned out to be the most predictive of stroke impairment. These examples demonstrate that 
DNNs using a data-driven approach can identify movement components that are more informative 
about impairments than traditional human-designed scoring systems, which may be biased by 
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preconceived notions about which movements are most significant. This is an important point because 
behavioral tests are widely used to diagnose various neurological disorders, and incorporating AI-
driven approaches could enhance the accuracy and reduce biases in human-designed metrics. (Figure 
modified from [41]). 

Using a similar approach, Torabi et al. [59] investigated the use of explainable DNNs to enhance 
the detection of neurodevelopmental effects in rat pups whose moms were exposed to nicotine. 
Traditional human-designed metrics rely on counting the number of squares crossed by a rat after being 
placed in the center of the cage (Figure 3). However, such measures of walked distance have a limited 
accuracy, achieving a classification rate of around 64% between the control and the nicotine-exposed 
animals. In contrast, the DNN achieved a much higher classification accuracy of 87% by analyzing 
video recordings without relying on predefined metrics. Remarkably, the DNN was able to make an 
accurate classification from just the first frame of each video. Using the LRP method to gain insight 
into the DNN’s decision-making process revealed that the healthy and nicotine-exposed pups had 
different postures when placed in the center of the cage. The control pups exhibited a more collected 
posture with limbs under the body, while the nicotine-exposed pups showed extended limbs that 
indicated problems with balance, a difference that was not previously described in the literature. These 
findings underscore the DNN’s capacity to autonomously discover subtle movement characteristics 
that correlate with the exposure history, thus presenting an objective, data-driven approach for 
assessing motor development and reducing the risk of human biases in diagnostics. 

 

Figure 3. Explainable DNN discovering behavioral deficits in the open field walking task. 
(A) A rat pup is placed in the center of the cage, and the distance it walks (number of 
crossed squares) is measured by a human observer to assess neurodevelopmental deficits. 
(B) Explainable DNN trained to discriminate videos of control vs nicotine-exposed pups 
discovers that the most informative is the first frame in each video. This is opposed to 
expert expectations where later frames should be more related to the distance covered by 
pups. However, a closer examination of initial frames revealed that the starting postures 
(in the 1st frame) of the control and the nicotine animals significantly differ. The healthy 
(control) animals had legs close to the body (C). In contrast, the nicotine group had widely 
extended legs indicating problems with balance (D). This postural difference was missed 
by human experts and was discovered in a data-driven way only by explainable DNN. This 
approach allows for identifying more accurate and unbiased measures for behavioral tests. 
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5. Challenges and limitations in the application of deep neural networks in diagnostics 

The application of DNNs in behavioral analyses represents a significant advancement in 
neuroscience research, thus offering new avenues for understanding and diagnosing neurological 
disorders [6,23]. However, this approach is not without its challenges and limitations. This section 
discusses the primary obstacles that researchers face when applying DNNs to behavioral data, including 
issues related to the data quality and availability, the model interpretability, the generalization across 
models and species, and the ethical considerations inherent in using AI for this purpose. 

5.1. Model interpretability 

The “black box” nature of DNNs is a well-known limitation, particularly in fields such as 
neuroscience, where understanding the underlying mechanisms is as important as the predictive 
accuracy of the models [71,72]. DNNs, especially deep architectures, often operate in ways that are 
not easily interpretable, making it difficult for researchers to understand how the model is making its 
decisions. This lack of transparency can be a significant barrier to the adoption of DNNs in behavioral 
analyses, as it undermines trust in the model’s outputs and limits the insights that can be drawn about 
the neural processes being studied [65,73]. In response to this challenge and as described in the section 
above, the field of explainable AI (XAI) has emerged, offering tools and techniques designed to make 
DNNs more interpretable [74,75]. Layer-wise Relevance Propagation (LRP) is one such method that 
has been successfully applied in neuroscience [76,77]. LRP helps to deconstruct the decision-making 
process of a DNN by highlighting the contributions of individual features to the model’s output, 
thereby providing insights into which aspects of the behavioral data are most influential in the model’s 
predictions [78]. Studies that utilized the LRP and similar methods have demonstrated that it is possible 
to gain meaningful interpretations from DNNs, thereby revealing new patterns and relationships in the 
data that were previously obscured [79,80]. These advancements in interpretability are critical for 
making DNNs more accessible and valuable in neuroscience research [81]. 

5.2. Generalization across models and species 

Another significant challenge in applying DNNs to behavioral analyses is the issue of 
generalization. DNNs trained on data from specific animal models or experimental conditions may not 
generalize well to other models, species, or even slightly different experimental setups [82,83]. This 
limitation is particularly concerning when attempting to translate the findings from animal models to 
human conditions, as differences in behavior and neural architecture can lead to discrepancies in the 
model performance. Research has shown mixed results in this area. Some studies have successfully 
developed DNNs that generalize well across different species, particularly when the behaviors being 
analyzed are highly conserved across species [84,85]. However, other studies have highlighted the 
limitations of this approach, showing that models often require fine-tuning or retraining on new 
datasets to adequately perform in different contexts [6]. These findings underscore the need for 
continued research into the factors that influence generalization and the development of strategies to 
improve the transferability of DNNs across different models and species. 
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5.3. Ethical considerations 

The integration of AI into healthcare introduces several ethical challenges that necessitate careful 
consideration to ensure patient safety, trust, and equitable care: 

Transparency in AI Decision-Making: AI systems, particularly those that utilize DNNs, often 
function as “black boxes”, making it difficult to understand how they arrive at specific decisions. This 
opacity can hinder a clinicians’ ability to trust and effectively utilize AI recommendations. Developing 
explainable AI models as described in the previous section can provide clear insights into their 
decision-making processes, thereby enhancing the transparency and trust in clinical settings [86]. 

Accountability for Errors: Determining responsibility when AI systems provide errors is complex. 
If an AI system provides incorrect advice leading to patient harm, it raises questions about whether the 
fault lies with the developers, the healthcare providers, or the institution deploying the technology. 
Thus, there should be introduced clear guidelines delineating the accountability in AI-assisted 
healthcare to address this issue [87]. 

Privacy of Patient Data: AI systems require vast amounts of data, often including sensitive patient 
information. Ensuring the privacy and security of this data is paramount. Concerns regarding data 
anonymization and the potential for re-identification, robust data protection measures, and compliance 
with regulations should be developed [88]. 

Addressing these ethical considerations is crucial for the responsible adoption of AI in healthcare, 
thus ensuring that technological advancements translate into improved patient outcomes without 
compromising ethical standards. 

5.4. Data quality and availability 

One of the most significant challenges in applying DNNs to develop new diagnostic methods is 
the need for large, high-quality datasets. DNNs require vast amounts of data to train effectively, and 
the quality of this data directly impacts the model’s performance. In neuroscience, collecting such 
datasets is particularly challenging due to the complexity and variability of the behavioral data, as well 
as the labor-intensive nature of manual data collection and the ethical constraints on using large 
number of experimental animals [89,90]. Low-quality data—whether due to noise, inconsistencies, or 
insufficient sample sizes—can lead to a poor model performance and unreliable results [91]. Several 
studies have highlighted these challenges and proposed strategies to address them. For example, 
researchers have developed data augmentation techniques that artificially expand the size of available 
datasets by generating modified versions of existing data, such as through transformations or 
simulations. This approach can help to improve the robustness of DNNs, as seen in studies where 
augmented data has led to a better generalization and a higher accuracy of predictions [92–94]. 
Additionally, efforts to standardize data collection protocols across laboratories and animal models 
have been crucial in ensuring that datasets are more consistent and reliable, as demonstrated by 
initiatives that create large, shared databases of annotated behavioral data [95]. 
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5.5. Insights from distributed and adaptive control systems 

Incorporating insights from distributed and adaptive control systems can also offer useful 
strategies for mitigating human biases in the diagnosis of neurological disorders. Just as distributed 
control architectures enable robots to operate flexibly and autonomously in complex            
environments [96], decentralized AI frameworks could help ensure that the diagnostic models are not 
overly reliant on one narrow data source or clinical perspective. By learning from diverse patient 
populations and adapting their parameters in response to new information, these AI-driven diagnostic 
tools could better capture the multifaceted nature of neurological conditions and reduce the reliance 
on potentially biased heuristics. Applying data-driven learning methods similar to those used in 
advanced control systems, such as adaptive parameter tuning and continuous data integration [97], can 
strengthen the AI’s ability to generalize across different clinical scenarios and populations. This, in 
turn, can promote a more robust decision-making process that is less susceptible to the subjective 
influences that often challenge human clinicians. 

Furthermore, adopting the principles behind distributed real-time control architectures could help 
seamlessly integrate explainable AI models into clinical workflows. Just as modular and decentralized 
controllers enable humanoid robots to balance real-time responsiveness with adaptive learning, 
compartmentalizing the diagnostic AI into interpretable sub-components could make the decision-
making process more transparent, traceable, and fair. These sub-components could be individually 
analyzed, validated, and updated to address the potential biases while still operating within an 
integrated system that ensures timely and accurate diagnoses. By drawing on the concepts of scalability, 
adaptability, and modularity from distributed control systems, the development of explainable and 
bias-mitigating AI tools could foster greater trust and adoption in clinical settings, ultimately 
improving the patient outcomes. 

5.6. AI implementation challenges 

Implementing AI models in clinical diagnostics presents several challenges, particularly 
concerning the integration into existing healthcare workflows and regulatory compliance. Integrating 
AI into clinical settings requires a seamless incorporation into established processes without disrupting 
the patient care. This necessitates comprehensive training for healthcare professionals to effectively 
utilize AI tools and adapt to new workflows [98]. Regulatory concerns also pose substantial hurdles. 
The lack of standardized guidelines for AI applications in medicine complicates the approval process 
and may delay the deployment [99]. Additionally, AI systems are susceptible to errors, including false 
positives and false negatives, potentially resulting in serious safety outcomes for patients [100]. 
Addressing these challenges requires a multifaceted approach, including developing robust validation 
protocols, establishing clear regulatory guidelines, and ensuring that AI tools are designed to 
complement, rather than replace, human clinical judgment. 
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5.7. AI-generated biases 

AI has the potential to revolutionize healthcare by enhancing diagnostics, personalizing 
treatments, and streamlining administrative tasks. However, AI systems are also susceptible to biases 
that can adversely affect medical applications. These biases often stem from the data used to train AI 
models. For instance, an AI system trained predominantly on data from a specific demographic may 
underperform when applied to other groups, thus leading to disparities in healthcare outcomes [101]. 
Therefore, variability in training datasets is crucial for mitigating biases in AI systems. When the 
training data lacks diversity or disproportionately represents certain categories, AI models can 
inadvertently learn and perpetuate such biases, thus leading to inaccurate outcomes [102]. Addressing 
AI bias in medical applications requires a multifaceted approach. First, it’s crucial to ensure that the 
training datasets are representative of the diverse populations the AI will serve. Second, implementing 
fairness-aware algorithms that actively detect and mitigate biases during the model development 
process is essential. Techniques such as reweighting, resampling, and adversarial debiasing can help 
achieve this. Third, the continuous monitoring and evaluation of AI systems in real-world settings are 
necessary to identify and correct biases that may emerge over time [103]. 

Thus, while DNNs offer powerful tools for advancing diagnostic methods in neurological 
disorders, their application is accompanied by significant challenges and limitations [71,73]. 
Addressing these issues—through an improved data quality, an enhanced interpretability, a better 
generalization, and careful ethical considerations—will be essential for fully realizing the potential of 
DNNs in this field [104,105]. As the technology continues to evolve, ongoing efforts to overcome 
these challenges will play a crucial role in shaping the future of AI-driven diagnostics. 

6. Conclusions 

A significant advancement in the use of DNNs for neurological diagnostics has been their ability 
to provide automated scoring with human-expert accuracy, while also offering insights into the 
underlying mechanisms of neurological impairments. Recent studies have demonstrated how 
explainable DNNs can be employed to design diagnostic tests in a data-driven and unbiased manner, 
significantly improving the sensitivity and specificity of these tests in detecting neurological disorders. 
These networks are capable of identifying subtle motor deficits and behavioral changes that human 
observers may overlook, thereby reducing the observer bias and enhancing the objectivity of diagnostic 
assessments. For instance, DNNs have been used to automatically detect motor deficits in clinical and 
experimental settings, while also revealing nuanced changes in behaviors that traditional methods often 
miss (Figure 1). This automated approach not only minimizes the workload for clinicians and 
researchers, but also eliminates the variability caused by human error, resulting in more reliable and 
reproducible diagnostic results. Furthermore, leveraging knowledge extraction techniques from DNNs 
allows researchers and clinicians to develop new diagnostic assays that are more sensitive and tailored 
to detect early signs of neurological and motoric impairments. This capability is particularly valuable 
for neurological disorders such as strokes, Parkinson’s disease, and autism spectrum disorders, where 
early detection and precise, unbiased monitoring are crucial to improve the patient prognosis and 
evaluating the efficacy of therapeutic interventions. 
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