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Abstract: The liver is a vital gland responsible for various essential functions such as digestion, 
metabolism, detoxification, and immunity. Liver diseases caused by infections, injuries, or genetic 
factors are dangerous and require prompt diagnosis and treatment to improve survival rates. Early 
detection of liver conditions is crucial, and recent advancements in machine learning (ML) have proven 
highly effective in predicting diseases like chronic obstructive pulmonary disease (COPD), 
hypertension, and diabetes. Additionally, the rise of deep learning has begun transforming liver 
research, offering powerful tools to aid doctors in diagnosis and treatment. This study presents a novel 
and efficient learning method to identify liver patients accurately. The approach integrates multiple 
ranking and projection techniques for features, utilizing deep learning to detect early signs of liver 
disease. Additionally, Shapley Additive exPlanations (SHAP) are applied to perform global 
interpretation analysis, helping to select optimal features by assessing their contributions to the overall 
model. Our experimental results demonstrate that this proposed model outperforms traditional machine 
learning algorithms, achieving superior accuracy. Cross-validation and various testing methods 
confirm that the deep neural network (DNN) we developed surpasses other classifiers, reaching an 
accuracy rate of 90.12%. This paper explores how machine learning can be integrated into healthcare, 
particularly for predicting liver disease. Our findings show that the proposed model can potentially 
improve diagnostic accuracy and support timely medical intervention, ultimately enhancing patient 
outcomes. 
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1. Introduction 

The liver is a vital organ in the human body that maintains basic physiological activities necessary 
for health. The liver is essential for digestion, metabolism, detoxification, and immunity, highlighting 
its critical role in maintaining bodily equilibrium. Despite being one of the most diverse and intricate 
organs, the liver is susceptible to infections, traumas, and genetic disorders, jeopardizing human life 
and longevity [1,2]. These disorders will adversely affect the liver and lead to severe consequences; 
thus, preventative actions and cures for general liver issues are essential. However, persistent injury to 
this organ may disrupt its activities and overall health despite its significant ability for renewal and 
adaptation. Consequently, understanding the factors that lead to liver function deterioration, 
inflammation, and jaundice, alongside pursuing timely diagnosis and prevention, are two essential 
steps toward enhancing the quality of life and mitigating mortality risks associated with liver      
diseases (LD). 

The healthcare industry has seen significant transformations in its delivery systems and 
organizations as a result of data processing, primarily via the use of machine learning (ML) and 
artificial intelligence (AI) [3]. These innovations have transformed data collection, storage, and 
analysis methods, allowing clinical practitioners to integrate cutting-edge decision-making models into 
traditional healthcare procedures. This integration has significantly enhanced inspection and informed 
decision-making in the healthcare industry. It is important to note that, because of the progressive 
advancement of AI and ML applications, early illness prediction is feasible for conditions such as 
diabetes, hypertension, COPD, and cardiovascular diseases [4]. These technologies use big data to 
provide significant insights into a specific diagnosis, aiding illness prognosis management and 
treatment. Although closely linked with technology, we must recognize that preventative efforts 
promoting healthy behavior have enhanced the positive transformation this innovation brings. 
Integrating AI and ML into healthcare procedures is already underway, with potential advancements 
in precision medicine, medication discovery, and diagnostic tools. The following sections illustrate 
that these technological advancements include enhancements in healthcare delivery, including 
improved diagnostics, more focused medication, and overall population health outcomes. 

Researchers have proposed many machine learning techniques in the literature for accurately and 
quickly classifying liver patients. In 2016, Babu et al. [5] introduced a K-means clustering 
methodology for identifying liver illness, using several classification models to assess its effectiveness. 
Their study evaluated the efficacy of the Naive Bayes (NB), C4.5 decision tree, and k-nearest 
neighbors (KNN) classifiers. The results indicated that NBC obtained an accuracy of 56%, KNN 
reached 64%, and C4.5 attained 69%. This approach illustrates the differential efficacy of several 
classifiers in conjunction with k-means clustering for identifying liver patients. Likewise, Gan                
et al. [6] investigated several categorization methods for predicting liver illness. They suggested that 
the AdaC-TANBN approach had an accuracy of 69.03%. The integrated strategy, which merges 
AdaBoost with a modified tree-augmented Naive Bayes (TANBN) model, outperformed other 
classification techniques evaluated in their research. The result highlights the efficacy of integrating 
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boosting methods with probabilistic models to improve prediction accuracy in liver disease 
categorization. Subsequently, Amare et al. [7] proposed an innovative predictor for identifying LD via 
sophisticated machine-learning techniques. They created a classification model that combines the 
complement Naive Bayes (CNB) technique with other classifiers to improve predictive accuracy, 
comparing it to traditional Naive Bayes classifiers and other models. Their results demonstrated that 
the CNB approach achieved an accuracy of 71.36%, exceeding the performance of many classifiers 
analyzed in the literature. This method underscores the efficacy of the CNB technique in improving 
the accuracy of liver disease categorization. Sreejith and colleagues [8] evaluated classification 
performance using the ILPD, Pima Indian Diabetes (PID), and Thoracic Surgery (TSD) datasets. They 
used chaotic multi-verse optimization (CMVO) for feature selection and the synthetic minority 
oversampling technique (SMOTE), achieving an accuracy of 82.62% on the ILPD dataset with 
enhanced methodologies. P. Kumar et al. improved liver disease classification accuracy with the ILPD 
dataset. They used 10-fold cross-validation and utilized variable neighbor-weighted fuzzy KNN, 
neighbor-weighted K-NN (NWKNN), and fuzzy-neighbor-weighted K-NN classifiers. To address 
dataset imbalance, they used Tomek connections and redundancy-based under-sampling (TR-RUS), 
attaining accuracies of 72.31% with NWKNN, 76.61% with fuzzy NWKNN, and 87.71% with their 
developed variable-NWFKNN approach, which surpassed existing classifiers. Kuzhippallil et al. [9] 
enhanced the categorization of chronic liver disease by several data preparation and feature selection 
techniques. Their methodologies improved classification efficacy, achieving a maximum accuracy      
of 88%. Ruhul et al. [10] recently presented a sophisticated feature extraction and classification 
technique for predicting LD with the ILPD dataset. Their study integrated projection-based statistical 
methods to enhance feature selection with relevant machine learning approaches, including support 
vector machine, logistic regression, and random forest. The suggested technique improves the accuracy 
of liver disease diagnosis to 88.10%, facilitating early identification and treatment alternatives. 

This research introduces a precise and robust learning approach to successfully differentiate liver 
disease. We first use the random oversampling strategy to address overfitting and class imbalance 
during model building. Subsequently, we employ two feature methodologies: ranking and statistical 
projection-based strategies. The Pearson correlation coefficient (PCC), gain ratio (GR), and ReliefF 
algorithm (RFA) are utilized to rank and evaluate each feature’s contribution to the target class (liver 
illness). We use principal component analysis (PCA) and linear discriminant analysis (LDA) for 
statistical projection-based techniques. A hybrid feature vector is generated by combining these five 
feature vectors. We use a feature selection method, Shapley additive explanations (SHAP) [11], to 
improve computational efficiency, identifying the most significant characteristics by analyzing their 
impact on model predictions. Diverse hypothesis learners, such as logistic regression (LR), k-nearest 
neighbor (KNN), random forest (RF), support vector machine (SVM), and Naive Bayes (NB), are used 
to assess prediction rates. A thorough performance evaluation using measures such as Matthew’s 
correlation coefficient, accuracy, sensitivity, specificity, and area under the curve (AUC) illustrates 
the enhanced efficacy of our proposed DNN model in predicting liver disease. This methodology offers 
significant insights into predicting early liver disease, improving diagnostic accuracy, and enabling 
prompt medical treatments. 
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Figure 1. Architecture of the DNN-Liver. 

2. Proposed model framework 

This section delivers a detailed, illustrated representation of data transfers via the prototype and 
architecture of a suggested predictor model. Figure 1 illustrates essential design components to be 
entirely explored in subsequent sections. 

2.1. Benchmark dataset 

The dataset under study, the ILPD dataset [10], comprises 583 observations and encompasses 10 
distinct features. A comprehensive summary of the dataset ILPD is presented in Table 1. The dataset 
under consideration comprises gender distribution revealing 439 male participants, constituting 
approximately 75.30%, and 144 female participants, accounting for 24.70% of the total cohort. The 
dataset’s primary target class revolves around diagnosing liver disease, distinguishing participants 
based on whether they have been diagnosed with this condition. 

Table 1. Description of features in the ILPD dataset. 

Feature Description 
Gender Participant’s gender
Albumin (ALB) Albumin level
Direct bilirubin (DB) Direct bilirubin level
Age (years) Age of participants (4–90 years) 
Total bilirubin (TB) Total bilirubin level
Aspartate aminotransferase (SGOT) Aspartate aminotransferase level 
Total protein (TP) Total protein level
Alkaline phosphatase (ALP) Alkaline phosphatase level 
Alanine aminotransferase (SGPT) Alanine aminotransferase level 
Albumin and globulin ratio (AGR) Albumin and globulin ratio 
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The long-term liver disease risk is addressed as a classification challenge with Liver-Disease (LD) 
or Non-Liver-Disease (non-LD) classes. The total dataset comprises 416 positive cases of liver disease 
and 167 controlled cases. Considering the significance of balanced datasets in machine learning 
analysis, we applied a data balancing technique, i.e., random oversampling, resulting in a                
dataset of 832 cases, evenly distributed between instances of liver disease and non-disease cases (i.e., 
LD = 416, non-LD = 416). Finally, Table 2 outlines the balanced dataset statistical properties of the 
features, highlighting essential measurements, i.e., standard deviation, mean, minimum, and maximum, 
for each variable. This analysis provides a complete analysis of the dataset’s numerical distributions. 
Table 2 summarizes the statistical properties of features, including min, max, mean, and standard 
deviation, providing numerical distribution analysis. 

Table 2. Numerical features for the statistical property features. 

Features  Min Mean  Max ± Stdv 

TB  0.4 2.65 75 ± 5.32 

SGOT  10 88.78 4929 ± 245.07 

Age  4 43.55 90 ± 16.28 

ALP  63 267.26 2110 ± 212.62 

SGPT  10 66.78 2000 ± 155.16 

AGR  0.3 0.98 2.8 ± 0.30 

DB  0.1 1.16 19.7 ± 2.42 

ALB  0.9 3.19 5.5 ± 0.76 

TP  2.7 6.5 9.6 ± 1.02 

2.2. Feature formulation technique 

ML algorithms often face the obscenity of dimensionality, which arises when there are many data 
points but relatively few meaningful features or when the feature space contains irrelevant information. 
To address this challenge, we first implement three ranking strategies [12,13], i.e., Pearson correlation 
coefficient (PCC), gain ratio (GR), and ReliefF algorithm (RFA), and statistical projection-based 
strategies such as principal component analysis (PCA) and linear discriminant analysis (LDA) to 
examine the involvement of each feature to the target class (i.e., liver disease). Subsequently, we use 
Shapley additive explanations (SHAP) to determine how much each feature matters. These techniques 
help simplify the dataset by focusing only on the most important parts, making it easier to analyze and 
reducing the computing power needed. These methods are crucial to finding the most valuable features 
when predicting liver disease, leading to more accurate and understandable diagnostic and prediction 
models [14,15]. 
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2.2.1. Feature importance evaluation 

In this section, three ranking methods, i.e., PCC, GR, and RFA, are nominated to calculate the 
involvement of a feature (i.e., LD class). Table 3 provides an evaluation of feature contributions to 
predicting the target class. 

Table 3. Feature importance analysis for liver disease prediction. 

Feature PCC GR RFA 

SGPT 0.2141 0.0701 0.2613 

TB 0.2874 0.1373 0.2848 

Gender 0.0857 0.0065 0.025 

SGOT 0.2017 0.1005 0.2393 

AGR 0.2046 0.0822 0.2599 

DB 0.3205 0.1421 0.2895 

ALB 0.1836 0.0408 0.2883 

Age 0.1596 0.0372 0.2625 

ALP 0.246 0.0867 0.1936 

TP 0.0443 0.00 0.2161 

First, using PCC analysis, some significant relationships were detected, including highly 
significant ones, for example, 0.88, indicating a relationship between TB and DB. The percentage for 
this association was comparatively low, at 0.32. DB remained the most frequent feature with 32 DDR, 
followed by task-interdependent, task-supportive, and task-contrast with 14 DDR, 13 DDR, 11 DDR, 
and 5 DDR, respectively. Second, the GR method used in the “screening variable selection” 
highlighted DB, TB, and SGOT as prominent ones. Third, using the Gini impurity ReliefF algorithm 
suggested that gender had the least priority, whereas DB, ALP, and TB were the least essential features. 
These methods all emphasize the importance of all features in screening for liver diseases. 

2.2.2. Principle components analysis (PCA) 

PCA reduces data dimensions using covariance matrices [16] with minimum loss of 
discriminative features. Let us consider a feature vector S with the dimension of i*j, where i represents 
the number of extracted features and j represents the number of samples. Let k represent the number 
of desired features. The value of k must be less than i. Let us consider the following input feature 
vector S using Eq. (1): 
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Through the PCA algorithm, we implemented the following steps to reduce the dimensionality of 
the feature vector:  
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Step 4: Calculate the eigenvalues in ascending order. The first eigenvalue should be greater than 
the second and fourth. 

 n ...321          (5) 

Step 5: Compute the corresponding eigenvectors: 

 nnc  ...,,: 321        (6) 

Last step: Select 𝑘 eigenvectors corresponding to the largest eigenvalues to reconstruct a new set 
of feature vectors in the space. This selection process helps avoid dimensionality problems, keeping 
the most essential data. It also improves the computational speed and interpretability of various other 
tasks being performed in the analytical methods of the dataset, which is the main aim of PCA in the 
case of data preprocessing and data analysis. 

𝑃𝐶௜ ൌ ∑ 𝐶௡ ∗ 𝑥௝
௦
௝ୀଵ                (7) 

2.2.3. Linear discriminant analysis (LDA) 

Linear discriminant analysis (LDA) is a supervised dimensionality reduction technique that 
projects data onto a lower-dimensional space while maximizing class separability. The main goal of 
LDA is to find a transformation matrix 𝑊 that maximizes the ratio of between-class variance to within-



 

AIMS Bioengineering  Volume 12, Issue 1, 50–68. 

57

class variance, ensuring that different classes are well-separated in the projected space. Mathematically, 
the objective function of LDA is to maximize the following criterion. 

𝑗ሺ𝑊ሻ ൌ ሾ𝑊்𝑆௕𝑊ሿ
ሾ𝑊்𝑆௪𝑊ሿ൘       (8) 

Here, 𝑆b is the between-class scatter matrix, 𝑆w is the within-class scatter matrix, and 𝑊 is the 
transformation matrix to be optimized. 

2.3. Hybrid feature 

The methodology proposed in this paper consists of five feature extraction mechanisms described 
in section 2.2. To develop a hybrid feature vector, we combine the five feature vectors as given in      
Eq. (9). Mathematically, the hybrid feature vector is also called the hybrid feature vector. Table 4 
shows the overview of features contributed by each technique and the total number of features created 
by the hybrid vector. 

𝑗ሺ𝑊ሻ ∪ 𝑃𝐶௜ ∪ 𝑅𝐹𝐴 ∪ 𝐺𝑅 ∪ 𝑃𝐶𝐶      (9) 

Table 4. Dimension of feature vectors. 

Method Number of features (dimensionality) 

Principal component analysis (PCA) 10 

Linear discriminant analysis (LDA) 10 

Gain ratio (GR) 10 

Pearson correlation coefficient (PCC) 10 

ReliefF algorithm (RFA) 10 

Hybrid features 50 

2.4. SHAP methods 

Feature selection is vital in the machine learning pipeline to identify the most relevant features to 
improve model performance, reduce overfitting, and lower computational costs [17]. This paper 
employs Shapley additive explanations (SHAP) for feature selection, which leverages cooperative 
game theory to assign importance to input features based on their contribution to predictions. SHAP 
quantifies each feature’s impact, providing insights into its influence on model outcomes, as detailed 
in Eq. (10). Understanding the structure and size of the dataset is equally essential, as it informs 
preprocessing steps like data splitting, regularization, and feature selection. Properly shaping data 
ensures efficient processing and supports informed decision-making throughout the data science 
process. 
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Where i , represents the SHAP value for the feature i , N  is the set of all features, S is a 

subset of features excluding i,  f S is the model’s prediction given features in S, and  ( )f S i is 

the model’s prediction given features in S plus feature i. 

 

Figure 2. Vital features selected from hybrid features using SHAP. 

In this paper, we selected the vital features shown in Figure 2. Each row represents a feature, with 
dots indicating their corresponding SHAP values. Blue dots signify low values, while red dots denote 
high values. Positive SHAP values indicate a higher likelihood of liver disease, whereas negative 
values suggest a lower risk. Testing different feature groups revealed that the top 25 features 
significantly improved the proposed method’s performance. 

2.5. Deep neural network 

Deep neural networks (DNNs) mimic the human brain’s functioning, consisting of an input layer 
for receiving data, an output layer for producing results, and multiple hidden layers that process 
information through interconnected tiers [18]. These layers transform input data, enabling the model 
to identify intricate patterns and representations. The deep structure of DNNs makes them highly 
effective in tasks such as image recognition and natural language processing, as each layer extracts 
increasingly complex features. However, while additional hidden layers improve the model’s ability 
to learn intricate patterns, they also raise computational costs, increase the risk of overfitting, and 
complicate the model. DNNs excel in feature extraction from unstructured or unlabeled data and have 
proven valuable in biotechnology, natural language processing, image analysis, audio processing, and 
engineering [19,20]. 
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Figure 3. DNN configuration topology. 

2.5.1. Model training 

This study focuses on the early prediction of liver illness using benchmark data and a deep neural 
network model with four hidden layers, as illustrated in Figure 3. The DNN architecture comprises 
multiple neurons that process the input feature vector to produce output, as detailed in Eqs (11)           
and (12). The neurons’ weights in each layer are initialized using the Xavier function to ensure equal 
variance across layers [14,15]. A backpropagation method adjusts the weight matrices to minimize the 
discrepancies between predicted and target classes. The ReLU activation function is applied in the 
input and hidden layers to capture nonlinearity and patterns in the data, while the logistic sigmoid 
activation function is used in the output layer. This mechanism determines whether a neuron is 
activated or remains inactive based on its output. Additionally, the Softmax activation function in the 
output layer converts the generated values into probabilities between 0 and 1, representing the 
likelihood of the data belonging to a specific class. 

yୟ ൌ fሺBୟ ൅ ∑ xୠ
୫
ୠୀଵ wୠ

ୟሻ       (11) 

fሺiሻ ൌ ୣ౟

ଵାୣ౟       (12) 

3. Performance evaluation 

To thoroughly evaluate the performance of the proposed models, five essential evaluation metrics 
were employed, i.e., sensitivity (SN), specificity (SP), overall accuracy (ACC), Matthew’s correlation 
coefficient (MCC), and the area under the curve (AUC) [21]. These critical indicators provide insights 
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into the predictor’s effectiveness from multiple perspectives. The ACC represents the proportion of 
correct predictions relative to the total number of samples. The SN measures the proportion of actual 
positives correctly identified, while SP reflects the proportion of actual negatives accurately detected. 
The AUC assesses the model’s classification ability across multiple classes, with the receiver operating 
characteristic (ROC) curve plotting the true positive rate against the false positive rate. The MCC 
evaluates the classifier’s performance by accounting for all four confusion matrix elements. The 
corresponding calculation formulas are provided below. 

ACC ൌ ்௉ାிே

்ேା்௉ାிேାி௉
       (13) 

SP ൌ ்ே

்ேାி௉
        (14) 

SN ൌ ்௉

்௉ାிே
        (15) 

MCC ൌ
ሺ்௉ ௑ ்ேሻିሺி௉ ௑ ிேሻ

ඥሾሺ்௉ାி௉ሻ ௑ ሺ்௉ା ிேሻ ௑ ሺ்ேାி௉ሻ ௑ ሺ்ேାிேሻ ሿ
    (16) 

Here, TP and FN represent the true positive and negative samples (i.e., liver and non-liver 
diseases). Similarly, TN and FP are errors as the model inaccurately predicted the samples to be true 
or false. 

4. Results and analysis 

This section provides a detailed evaluation and discussion of the proposed model’s effectiveness. 
The experiments were conducted using machine learning tests implemented with Python and 
TensorFlow, both open-source tools that facilitated efficient setup and testing of the prediction models. 
The tests were executed on a system equipped with an 11th Gen Intel Core i7-1165G7 processor (2.80 
GHz), 16 GB of RAM, running Windows 11 Home on a 64-bit architecture. 

4.1. Hyperparameters optimization 

This section aims to identify the optimal configuration for hyperparameters in DNN topology. To 
analyze the performance of the DNN on different hyperparameters, we used a grid search technique 
that applies different combinations of parameters. We considered only those hyperparameters that 
primarily affect the DNN model’s performance. These parameters include activation function, learning 
rate, and the number of iterations [15,18,20,22]. 
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Table 5. Optimum hyperparameters values. 

Parameters list Optimize values 

Hidden layers 4 

Updater ADAGRAD function 

Hidden layers neurons 23-17-14-6 

Seed 12345L 

Epoch 10 

Momentum 0.9 

LR 0.01 

Dropout 0.25 

Regularization l2 0.001 

Activation functions ReLU & Softmax 

Optimizer SGD Method 

Weight initialization function XAVIER function 

First, experiments were conducted to evaluate the impact of activation functions and learning 
rates on the model’s performance. As shown in Table 6, the DNN classifier achieved its highest 
accuracy of 90.12% while using the ReLU activation function and a learning rate of 0.01. Furthermore, 
a gradual reduction in the learning rate improved the model’s performance; however, further decreases 
beyond this point did not result in substantial accuracy gains. Thus, a learning rate of 0.01 and the 
ReLU activation function were identified as optimal parameters for achieving high accuracy in the 
DNN model. 

Table 6. Performance comparison using a grid search technique. 

LR ReLU Tanh Sigmoid 

0.01 90.12 88.10 89.44 

0.02 89.91 88.09 89.23 

0.03 89.45 87.71 89.01 

0.04 89.16 87.58 88.80 

0.05 88.49 87.38 88.17 

0.06 87.82 87.19 87.54 

0.07 87.55 86.99 86.91 

0.08 87.09 86.80 86.28 

0.09 87.05 86.60 85.65 

0.10 87.03 86.41 85.02 
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Next, we conducted numerous experiments to evaluate the performance of the DNN model by 
varying the number of training epochs. Figure 4 illustrates the error loss observed when using the 
ReLU activation function. The results indicate a consistent decrease in the error rate with increased 
training epochs. For example, the error loss began at 0.892 during the initial epoch and progressively 
declined to 0.002 by the 50th epoch. These findings suggest that 50 epochs are optimal, as the error 
rates stabilize beyond this point. The optimal configuration determined from this analysis is detailed 
in Table 5. 

 

Figure 4. Number of training epochs versus error loss. 

4.2. Performance analysis using sequence formulation techniques 

This section examines the prediction results of the deep neural network (DNN) model using 
individual and hybrid feature extraction methods. Machine learning techniques such as k-fold cross-
validation (CV) have been widely used in the literature to evaluate model performance. A 10-fold 
cross-validation approach was adopted in this study, offering an optimal balance between 
computational efficiency and comprehensive performance evaluation while minimizing the influence 
of data variability. Table 7 presents the DNN model’s predicted outcomes on the balanced dataset 
using various feature vectors. 
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Table 7. Different feature extraction methods on the balance dataset. 

Methods ACC (%) SP (%) SN (%) MCC 

PCA 72.37 70.61 74.13 0.481 

LDA 84.88 81.22 88.54 0.703 

GR 77.85 76.38 79.32 0.561 

PCC 82.38 79.12 85.64 0.662 

RFA 81.32 78.18 84.46 0.665 

Hybrid feature (before SHAP) 89.36 88.21 90.44 0.797 

Hybrid feature (after SHAP) 90.12 88.17 92.05 0.825 

Table 7 demonstrates that the DNN model attained superior performance with a hybrid feature 
vector compared to the individual feature extraction technique. The DNN model achieved an average 
accuracy of 89.36%, sensitivity of 90.44%, specificity of 88.21%, and an MCC of 0.797 utilizing a 
hybrid feature vector. In order to further enhance the performance of the proposed DNN model, we 
apply the feature selection method, i.e., SHAP. SHAP-selected features attained an accuracy of 90.12%, 
sensitivity of 92.05%, specificity of 88.17%, and a Matthew’s correlation coefficient of 0.825. The 
result demonstrates the effectiveness of feature selection in enhancing prediction accuracy and target 
result identification in deep neural networks (DNNs). 

4.3. Performance comparison with other classifiers 

In this section, we compare the performance of various classification methods based on     
accuracy (ACC), sensitivity (SN), specificity (SP), and Matthew’s correlation coefficient (MCC). The 
classifiers being assessed are random forest (RF) [23], support vector machine (SVM) [24], and k-
nearest neighbor (KNN) [25]. RF is a popular ensemble learning method for classification and 
prediction, building multiple decision trees from random samples. SVM is widely used in life sciences 
for linear and nonlinear classification, as it finds the best boundary to separate classes [26]. KNN, 
commonly used in image processing, is a distance-based method that classifies by comparing examples. 
Table 8 shows the overall performance comparison of the different classifiers on the benchmark dataset. 

Table 8. Comparison of the DNN model with other commonly used machine learning algorithms. 

Method ACC (%) SN (%) SP (%) MCC 

Proposed DNN 90.12 92.05 88.17 0.825 

SVM 89.66 87.75 91.67 0.794 

RF  87.86 84.98 90.91 0.759 

KNN 85.96 84.98 86.96 0.719 
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The proposed DNN model achieved the highest accuracy of 90.12%, with a sensitivity of 92.05% 
and specificity of 88.17%, resulting in an MCC of 0.825. Comparatively, among the traditional 
machine learning models, the SVM demonstrated an accuracy of 89.66%, a sensitivity of 87.75%, a 
specificity of 91.67%, and an MCC of 0.794. Similarly, the RF and KNN models achieved lower 
accuracy, at 87.86% and 85.96%, respectively. Overall, the proposed DNN demonstrates the most 
balanced and robust performance, improving average accuracy by 2.29%. The superior performance 
of the DNN model compared to traditional machine learning algorithms can be attributed to its use of 
multi-stack processing layers. These layers enable DNN to effectively handle complex datasets with 
high nonlinearity, a task that traditional ML algorithms struggle with due to their reliance on single-
stack processing layers, which are insufficient for such intricate data. These findings confirm that the 
DNN model outperforms conventional learning methods in predicting liver and non-liver diseases. 

 

Figure 5. Area under the curve (AUC) performance comparison of machine learning 
algorithms. 

Furthermore, we also compared the performance of the DNN model in terms of AUC (area under 
the ROC curve) [27] with traditional learning algorithms, as shown in Figure 5. The figure shows that 
the DNN model achieved the highest AUC value compared to the other algorithms. Specifically, the 
DNN model had an AUC of 0.921, while the SVM, RF, and KNN algorithms had AUC values                
of 0.901, 0.889, and 0.872, respectively. The main reason for the DNN model’s superior performance 
is its multi-layer structure (hidden layers) with backpropagation, which effectively optimizes weights. 
This allows the DNN to handle complex and highly nonlinear datasets better than other models, which 
use a single-layer processing approach and struggle with such data. Additionally, the confusion matrix 
analysis in Figure 6 shows that our proposed DNN model achieves balanced recognition of both 
positive and negative. This strongly confirms the model's accuracy and reliability in distinguishing 
between positive and negative samples, making it particularly suitable for predictive tasks in the 
specific problem domain 
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Figure 6. Evaluating DNN model performance through visualization with confusion 
matrix analysis. 

4.4. Performance comparison with the existing predictors 

In this section, we compare the performance of the proposed model with the existing state-of-the-
art models, as mentioned in [10,28–30]. Table 9 shows the comparative findings. Moreover, we 
provide the proposed models from published research works based on the same dataset. Table 9 shows 
that the proposed model provided the best prediction accuracy among four previously published 
predictors. For example, K. Gupta et al. [29] achieved an accuracy level of 63%, whereas the recently 
published predictor, R. Amin et al. [10], achieved an accuracy of 88.10%. Similarly, D. Elias et al. [30] 
achieved 80.10%. These results confirm that the proposed model performed better than the existing 
predictors, with an average accuracy improvement of 13.93%. 

Table 9. Comparison of the proposed model performance with the existing models. 

Method Classifiers ACC (%) 

K. Gupta et al. [29] Light GB 63.00 

Altaf et al. [28] Voting 73.56 

D. Elias et al. [30] Voting 80.10 

R. Amin et al. [10] Random Forest 88.10 

Proposed DNN  DNN 90.12 
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5. Conclusion 

Liver disease (LD) is a severe condition that poses significant risks to human health and requires 
timely medical intervention. Healthcare professionals rely on neurological techniques for evaluating 
and diagnosing affected individuals. In this paper, we explored the prediction of chronic LD using a 
deep neural network algorithm enhanced with integrated and optimized features. Our model used 
several techniques to assess feature importance, including PCA, LDA, gain ratio, Pearson correlation 
coefficient, and ReliefF algorithm. We also employed SHAP analysis to interpret complex features 
and select the most relevant ones for accurate LD prediction. Our novel approach demonstrated 
superior performance compared to existing models, which can be attributed to the implementation of 
efficient feature extraction methods, advanced compression techniques, and an optimized feature 
selection process. The results show that our model enhances discriminative ability, offering a more 
reliable tool for the early detection of chronic liver disease. Integrating AI and machine learning into 
clinical settings holds great potential for advancing disease detection and improving patient outcomes. 

In the future, we plan to create an accessible web platform for biologists to use this model. 
Additionally, we aim to expand the dataset, explore new features, and implement more advanced 
algorithms to refine further and validate our model’s predictive capabilities. 
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