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Abstract: The liver is a vital gland responsible for various essential functions such as digestion,
metabolism, detoxification, and immunity. Liver diseases caused by infections, injuries, or genetic
factors are dangerous and require prompt diagnosis and treatment to improve survival rates. Early
detection of liver conditions is crucial, and recent advancements in machine learning (ML) have proven
highly effective in predicting diseases like chronic obstructive pulmonary disease (COPD),
hypertension, and diabetes. Additionally, the rise of deep learning has begun transforming liver
research, offering powerful tools to aid doctors in diagnosis and treatment. This study presents a novel
and efficient learning method to identify liver patients accurately. The approach integrates multiple
ranking and projection techniques for features, utilizing deep learning to detect early signs of liver
disease. Additionally, Shapley Additive exPlanations (SHAP) are applied to perform global
interpretation analysis, helping to select optimal features by assessing their contributions to the overall
model. Our experimental results demonstrate that this proposed model outperforms traditional machine
learning algorithms, achieving superior accuracy. Cross-validation and various testing methods
confirm that the deep neural network (DNN) we developed surpasses other classifiers, reaching an
accuracy rate of 90.12%. This paper explores how machine learning can be integrated into healthcare,
particularly for predicting liver disease. Our findings show that the proposed model can potentially
improve diagnostic accuracy and support timely medical intervention, ultimately enhancing patient
outcomes.
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1. Introduction

The liver is a vital organ in the human body that maintains basic physiological activities necessary
for health. The liver is essential for digestion, metabolism, detoxification, and immunity, highlighting
its critical role in maintaining bodily equilibrium. Despite being one of the most diverse and intricate
organs, the liver is susceptible to infections, traumas, and genetic disorders, jeopardizing human life
and longevity [1,2]. These disorders will adversely affect the liver and lead to severe consequences;
thus, preventative actions and cures for general liver issues are essential. However, persistent injury to
this organ may disrupt its activities and overall health despite its significant ability for renewal and
adaptation. Consequently, understanding the factors that lead to liver function deterioration,
inflammation, and jaundice, alongside pursuing timely diagnosis and prevention, are two essential
steps toward enhancing the quality of life and mitigating mortality risks associated with liver
diseases (LD).

The healthcare industry has seen significant transformations in its delivery systems and
organizations as a result of data processing, primarily via the use of machine learning (ML) and
artificial intelligence (AI) [3]. These innovations have transformed data collection, storage, and
analysis methods, allowing clinical practitioners to integrate cutting-edge decision-making models into
traditional healthcare procedures. This integration has significantly enhanced inspection and informed
decision-making in the healthcare industry. It is important to note that, because of the progressive
advancement of Al and ML applications, early illness prediction is feasible for conditions such as
diabetes, hypertension, COPD, and cardiovascular diseases [4]. These technologies use big data to
provide significant insights into a specific diagnosis, aiding illness prognosis management and
treatment. Although closely linked with technology, we must recognize that preventative efforts
promoting healthy behavior have enhanced the positive transformation this innovation brings.
Integrating Al and ML into healthcare procedures is already underway, with potential advancements
in precision medicine, medication discovery, and diagnostic tools. The following sections illustrate
that these technological advancements include enhancements in healthcare delivery, including
improved diagnostics, more focused medication, and overall population health outcomes.

Researchers have proposed many machine learning techniques in the literature for accurately and
quickly classifying liver patients. In 2016, Babu et al. [5] introduced a K-means clustering
methodology for identifying liver illness, using several classification models to assess its effectiveness.
Their study evaluated the efficacy of the Naive Bayes (NB), C4.5 decision tree, and k-nearest
neighbors (KNN) classifiers. The results indicated that NBC obtained an accuracy of 56%, KNN
reached 64%, and C4.5 attained 69%. This approach illustrates the differential efficacy of several
classifiers in conjunction with k-means clustering for identifying liver patients. Likewise, Gan
et al. [6] investigated several categorization methods for predicting liver illness. They suggested that
the AdaC-TANBN approach had an accuracy of 69.03%. The integrated strategy, which merges
AdaBoost with a modified tree-augmented Naive Bayes (TANBN) model, outperformed other
classification techniques evaluated in their research. The result highlights the efficacy of integrating
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boosting methods with probabilistic models to improve prediction accuracy in liver disease
categorization. Subsequently, Amare et al. [7] proposed an innovative predictor for identifying LD via
sophisticated machine-learning techniques. They created a classification model that combines the
complement Naive Bayes (CNB) technique with other classifiers to improve predictive accuracy,
comparing it to traditional Naive Bayes classifiers and other models. Their results demonstrated that
the CNB approach achieved an accuracy of 71.36%, exceeding the performance of many classifiers
analyzed in the literature. This method underscores the efficacy of the CNB technique in improving
the accuracy of liver disease categorization. Sreejith and colleagues [8] evaluated classification
performance using the ILPD, Pima Indian Diabetes (PID), and Thoracic Surgery (TSD) datasets. They
used chaotic multi-verse optimization (CMVO) for feature selection and the synthetic minority
oversampling technique (SMOTE), achieving an accuracy of 82.62% on the ILPD dataset with
enhanced methodologies. P. Kumar et al. improved liver disease classification accuracy with the ILPD
dataset. They used 10-fold cross-validation and utilized variable neighbor-weighted fuzzy KNN,
neighbor-weighted K-NN (NWKNN), and fuzzy-neighbor-weighted K-NN classifiers. To address
dataset imbalance, they used Tomek connections and redundancy-based under-sampling (TR-RUS),
attaining accuracies of 72.31% with NWKNN, 76.61% with fuzzy NWKNN, and 87.71% with their
developed variable-NWFKNN approach, which surpassed existing classifiers. Kuzhippallil et al. [9]
enhanced the categorization of chronic liver disease by several data preparation and feature selection
techniques. Their methodologies improved classification efficacy, achieving a maximum accuracy
of 88%. Ruhul et al. [10] recently presented a sophisticated feature extraction and classification
technique for predicting LD with the ILPD dataset. Their study integrated projection-based statistical
methods to enhance feature selection with relevant machine learning approaches, including support
vector machine, logistic regression, and random forest. The suggested technique improves the accuracy
of liver disease diagnosis to 88.10%, facilitating early identification and treatment alternatives.

This research introduces a precise and robust learning approach to successfully differentiate liver
disease. We first use the random oversampling strategy to address overfitting and class imbalance
during model building. Subsequently, we employ two feature methodologies: ranking and statistical
projection-based strategies. The Pearson correlation coefficient (PCC), gain ratio (GR), and ReliefF
algorithm (RFA) are utilized to rank and evaluate each feature’s contribution to the target class (liver
illness). We use principal component analysis (PCA) and linear discriminant analysis (LDA) for
statistical projection-based techniques. A hybrid feature vector is generated by combining these five
feature vectors. We use a feature selection method, Shapley additive explanations (SHAP) [11], to
improve computational efficiency, identifying the most significant characteristics by analyzing their
impact on model predictions. Diverse hypothesis learners, such as logistic regression (LR), k-nearest
neighbor (KNN), random forest (RF), support vector machine (SVM), and Naive Bayes (NB), are used
to assess prediction rates. A thorough performance evaluation using measures such as Matthew’s
correlation coefficient, accuracy, sensitivity, specificity, and area under the curve (AUC) illustrates
the enhanced efficacy of our proposed DNN model in predicting liver disease. This methodology offers
significant insights into predicting early liver disease, improving diagnostic accuracy, and enabling
prompt medical treatments.
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Figure 1. Architecture of the DNN-Liver.
2. Proposed model framework

This section delivers a detailed, illustrated representation of data transfers via the prototype and
architecture of a suggested predictor model. Figure 1 illustrates essential design components to be
entirely explored in subsequent sections.

2.1. Benchmark dataset

The dataset under study, the ILPD dataset [10], comprises 583 observations and encompasses 10
distinct features. A comprehensive summary of the dataset ILPD is presented in Table 1. The dataset
under consideration comprises gender distribution revealing 439 male participants, constituting
approximately 75.30%, and 144 female participants, accounting for 24.70% of the total cohort. The
dataset’s primary target class revolves around diagnosing liver disease, distinguishing participants
based on whether they have been diagnosed with this condition.

Table 1. Description of features in the ILPD dataset.

Feature Description

Gender Participant’s gender

Albumin (ALB) Albumin level

Direct bilirubin (DB) Direct bilirubin level

Age (years) Age of participants (4-90 years)
Total bilirubin (TB) Total bilirubin level

Aspartate aminotransferase (SGOT) Aspartate aminotransferase level
Total protein (TP) Total protein level

Alkaline phosphatase (ALP) Alkaline phosphatase level
Alanine aminotransferase (SGPT) Alanine aminotransferase level
Albumin and globulin ratio (AGR) Albumin and globulin ratio

AIMS Bioengineering Volume 12, Issue 1, 50-68.



54

The long-term liver disease risk is addressed as a classification challenge with Liver-Disease (LD)
or Non-Liver-Disease (non-LD) classes. The total dataset comprises 416 positive cases of liver disease
and 167 controlled cases. Considering the significance of balanced datasets in machine learning
analysis, we applied a data balancing technique, i.e., random oversampling, resulting in a
dataset of 832 cases, evenly distributed between instances of liver disease and non-disease cases (i.e.,
LD =416, non-LD = 416). Finally, Table 2 outlines the balanced dataset statistical properties of the
features, highlighting essential measurements, i.e., standard deviation, mean, minimum, and maximum,
for each variable. This analysis provides a complete analysis of the dataset’s numerical distributions.
Table 2 summarizes the statistical properties of features, including min, max, mean, and standard
deviation, providing numerical distribution analysis.

Table 2. Numerical features for the statistical property features.

Features Min Mean Max + Stdv
TB 0.4 2.65 75 +5.32
SGOT 10 88.78 4929 + 245.07
Age 4 43.55 90 +16.28
ALP 63 267.26 2110 +212.62
SGPT 10 66.78 2000 + 155.16
AGR 0.3 0.98 2.8 + 0.30
DB 0.1 1.16 19.7 +2.42
ALB 0.9 3.19 5.5 +0.76
TP 2.7 6.5 9.6 +1.02

2.2. Feature formulation technique

ML algorithms often face the obscenity of dimensionality, which arises when there are many data
points but relatively few meaningful features or when the feature space contains irrelevant information.
To address this challenge, we first implement three ranking strategies [12,13], i.e., Pearson correlation
coefficient (PCC), gain ratio (GR), and ReliefF algorithm (RFA), and statistical projection-based
strategies such as principal component analysis (PCA) and linear discriminant analysis (LDA) to
examine the involvement of each feature to the target class (i.e., liver disease). Subsequently, we use
Shapley additive explanations (SHAP) to determine how much each feature matters. These techniques
help simplify the dataset by focusing only on the most important parts, making it easier to analyze and
reducing the computing power needed. These methods are crucial to finding the most valuable features
when predicting liver disease, leading to more accurate and understandable diagnostic and prediction
models [14,15].
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2.2.1. Feature importance evaluation
In this section, three ranking methods, i.e., PCC, GR, and RFA, are nominated to calculate the
involvement of a feature (i.e., LD class). Table 3 provides an evaluation of feature contributions to

predicting the target class.

Table 3. Feature importance analysis for liver disease prediction.

Feature PCC GR RFA

SGPT 0.2141 0.0701 0.2613
TB 0.2874 0.1373 0.2848
Gender 0.0857 0.0065 0.025

SGOT 0.2017 0.1005 0.2393
AGR 0.2046 0.0822 0.2599
DB 0.3205 0.1421 0.2895
ALB 0.1836 0.0408 0.2883
Age 0.1596 0.0372 0.2625
ALP 0.246 0.0867 0.1936
TP 0.0443 0.00 0.2161

First, using PCC analysis, some significant relationships were detected, including highly
significant ones, for example, 0.88, indicating a relationship between TB and DB. The percentage for
this association was comparatively low, at 0.32. DB remained the most frequent feature with 32 DDR,
followed by task-interdependent, task-supportive, and task-contrast with 14 DDR, 13 DDR, 11 DDR,
and 5 DDR, respectively. Second, the GR method used in the ‘“screening variable selection”
highlighted DB, TB, and SGOT as prominent ones. Third, using the Gini impurity ReliefF algorithm
suggested that gender had the least priority, whereas DB, ALP, and TB were the least essential features.
These methods all emphasize the importance of all features in screening for liver diseases.

2.2.2. Principle components analysis (PCA)

PCA reduces data dimensions using covariance matrices [16] with minimum loss of
discriminative features. Let us consider a feature vector S with the dimension of i*j, where i represents
the number of extracted features and j represents the number of samples. Let k represent the number
of desired features. The value of k must be less than i. Let us consider the following input feature
vector S using Eq. (1):
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Through the PCA algorithm, we implemented the following steps to reduce the dimensionality of
the feature vector:
Step 1: Compute the mean

I
S=225, @)
| s
Step 2: Subtract the mean
S, =s,-s n=(1,2,3.) (3)
Step 3: Compute the covariance
C,=8,(S,)" BB’ 4)

Where B ={S{, S,y Sp} (i * j) and T= transpose of a matrix.

Step 4: Calculate the eigenvalues in ascending order. The first eigenvalue should be greater than
the second and fourth.

v> 72> 757} (5)
Step 5: Compute the corresponding eigenvectors:

C, 1{0'1,02,03...0n} 6)

Last step: Select k eigenvectors corresponding to the largest eigenvalues to reconstruct a new set
of feature vectors in the space. This selection process helps avoid dimensionality problems, keeping
the most essential data. It also improves the computational speed and interpretability of various other
tasks being performed in the analytical methods of the dataset, which is the main aim of PCA in the
case of data preprocessing and data analysis.

PC; = X521 Cp * x; (7)

2.2.3. Linear discriminant analysis (LDA)
Linear discriminant analysis (LDA) is a supervised dimensionality reduction technique that

projects data onto a lower-dimensional space while maximizing class separability. The main goal of
LDA is to find a transformation matrix W that maximizes the ratio of between-class variance to within-
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class variance, ensuring that different classes are well-separated in the projected space. Mathematically,
the objective function of LDA is to maximize the following criterion.
. wTs,w]
W) = [ b / 8
J(W) [WTSs,,W] (8)
Here, Sb is the between-class scatter matrix, Sw is the within-class scatter matrix, and W is the
transformation matrix to be optimized.

2.3. Hybrid feature

The methodology proposed in this paper consists of five feature extraction mechanisms described
in section 2.2. To develop a hybrid feature vector, we combine the five feature vectors as given in
Eq. (9). Mathematically, the hybrid feature vector is also called the hybrid feature vector. Table 4
shows the overview of features contributed by each technique and the total number of features created
by the hybrid vector.

j(W) U PC; URFA UGR U PCC (9)

Table 4. Dimension of feature vectors.

Method Number of features (dimensionality)
Principal component analysis (PCA) 10
Linear discriminant analysis (LDA) 10
Gain ratio (GR) 10
Pearson correlation coefficient (PCC) 10
ReliefF algorithm (RFA) 10
Hybrid features 50

2.4. SHAP methods

Feature selection is vital in the machine learning pipeline to identify the most relevant features to
improve model performance, reduce overfitting, and lower computational costs [17]. This paper
employs Shapley additive explanations (SHAP) for feature selection, which leverages cooperative
game theory to assign importance to input features based on their contribution to predictions. SHAP
quantifies each feature’s impact, providing insights into its influence on model outcomes, as detailed
in Eq. (10). Understanding the structure and size of the dataset is equally essential, as it informs
preprocessing steps like data splitting, regularization, and feature selection. Properly shaping data
ensures efficient processing and supports informed decision-making throughout the data science
process.
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(10)
Where @, , represents the SHAP value for the feature i, N is the set of all features, Sis a
subset of features excluding i, f (S)is the model’s prediction given features in S, and f(SU{i})is

the model’s prediction given features in S plus feature i.
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Figure 2. Vital features selected from hybrid features using SHAP.

In this paper, we selected the vital features shown in Figure 2. Each row represents a feature, with
dots indicating their corresponding SHAP values. Blue dots signify low values, while red dots denote
high values. Positive SHAP values indicate a higher likelihood of liver disease, whereas negative
values suggest a lower risk. Testing different feature groups revealed that the top 25 features
significantly improved the proposed method’s performance.

2.5. Deep neural network

Deep neural networks (DNNs) mimic the human brain’s functioning, consisting of an input layer
for receiving data, an output layer for producing results, and multiple hidden layers that process
information through interconnected tiers [18]. These layers transform input data, enabling the model
to identify intricate patterns and representations. The deep structure of DNNs makes them highly
effective in tasks such as image recognition and natural language processing, as each layer extracts
increasingly complex features. However, while additional hidden layers improve the model’s ability
to learn intricate patterns, they also raise computational costs, increase the risk of overfitting, and
complicate the model. DNNs excel in feature extraction from unstructured or unlabeled data and have
proven valuable in biotechnology, natural language processing, image analysis, audio processing, and
engineering [19,20].
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Figure 3. DNN configuration topology.
2.5.1. Model training

This study focuses on the early prediction of liver illness using benchmark data and a deep neural
network model with four hidden layers, as illustrated in Figure 3. The DNN architecture comprises
multiple neurons that process the input feature vector to produce output, as detailed in Eqs (11)
and (12). The neurons’ weights in each layer are initialized using the Xavier function to ensure equal
variance across layers [14,15]. A backpropagation method adjusts the weight matrices to minimize the
discrepancies between predicted and target classes. The ReLU activation function is applied in the
input and hidden layers to capture nonlinearity and patterns in the data, while the logistic sigmoid
activation function is used in the output layer. This mechanism determines whether a neuron is
activated or remains inactive based on its output. Additionally, the Softmax activation function in the
output layer converts the generated values into probabilities between 0 and 1, representing the
likelihood of the data belonging to a specific class.

Ya = f(Ba + Xp=1Xp Wp) (11)
) = 15 (12

3. Performance evaluation
To thoroughly evaluate the performance of the proposed models, five essential evaluation metrics

were employed, i.e., sensitivity (SN), specificity (SP), overall accuracy (ACC), Matthew’s correlation
coefficient (MCC), and the area under the curve (AUC) [21]. These critical indicators provide insights
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into the predictor’s effectiveness from multiple perspectives. The ACC represents the proportion of
correct predictions relative to the total number of samples. The SN measures the proportion of actual
positives correctly identified, while SP reflects the proportion of actual negatives accurately detected.
The AUC assesses the model’s classification ability across multiple classes, with the receiver operating
characteristic (ROC) curve plotting the true positive rate against the false positive rate. The MCC
evaluates the classifier’s performance by accounting for all four confusion matrix elements. The
corresponding calculation formulas are provided below.

ACC = _ TPHFN (13)
TN+TP+FN+FP
TN
Sp = TN+FP (14)
TP
SN = TP+FN (15)

(TP X TN)—(FP X FN)

MCC =
JI(TP+FP) X (TP+ FN) X (TN+FP) X (TN+FN) |

(16)

Here, TP and FN represent the true positive and negative samples (i.e., liver and non-liver
diseases). Similarly, TN and FP are errors as the model inaccurately predicted the samples to be true
or false.

4. Results and analysis

This section provides a detailed evaluation and discussion of the proposed model’s effectiveness.
The experiments were conducted using machine learning tests implemented with Python and
TensorFlow, both open-source tools that facilitated efficient setup and testing of the prediction models.
The tests were executed on a system equipped with an 11th Gen Intel Core 17-1165G7 processor (2.80
GHz), 16 GB of RAM, running Windows 11 Home on a 64-bit architecture.

4.1. Hyperparameters optimization

This section aims to identify the optimal configuration for hyperparameters in DNN topology. To
analyze the performance of the DNN on different hyperparameters, we used a grid search technique
that applies different combinations of parameters. We considered only those hyperparameters that
primarily affect the DNN model’s performance. These parameters include activation function, learning
rate, and the number of iterations [15,18,20,22].
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Table 5. Optimum hyperparameters values.

Parameters list

Optimize values

Hidden layers
Updater

Hidden layers neurons
Seed

Epoch

Momentum

LR

Dropout
Regularization 12
Activation functions

Optimizer

Weight initialization function

4

ADAGRAD function
23-17-14-6
12345L

10

0.9

0.01

0.25

0.001

ReLU & Softmax
SGD Method
XAVIER function

First, experiments were conducted to evaluate the impact of activation functions and learning
rates on the model’s performance. As shown in Table 6, the DNN classifier achieved its highest
accuracy of 90.12% while using the ReLU activation function and a learning rate of 0.01. Furthermore,
a gradual reduction in the learning rate improved the model’s performance; however, further decreases

beyond this point did not result in substantial accuracy gains. Thus, a learning rate of 0.01 and the

ReLU activation function were identified as optimal parameters for achieving high accuracy in the

DNN model.
Table 6. Performance comparison using a grid search technique.
LR ReLU Tanh Sigmoid
0.01 90.12 88.10 89.44
0.02 89.91 88.09 89.23
0.03 89.45 87.71 89.01
0.04 89.16 87.58 88.80
0.05 88.49 87.38 88.17
0.06 87.82 87.19 87.54
0.07 87.55 86.99 86.91
0.08 87.09 86.80 86.28
0.09 87.05 86.60 85.65
0.10 87.03 86.41 85.02

AIMS Bioengineering
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Next, we conducted numerous experiments to evaluate the performance of the DNN model by
varying the number of training epochs. Figure 4 illustrates the error loss observed when using the
ReLU activation function. The results indicate a consistent decrease in the error rate with increased
training epochs. For example, the error loss began at 0.892 during the initial epoch and progressively
declined to 0.002 by the 50th epoch. These findings suggest that 50 epochs are optimal, as the error
rates stabilize beyond this point. The optimal configuration determined from this analysis is detailed
in Table 5.

Loss / Mean Squared Error

— train
0.8 - - test
0.6 1
a
S 0.4
0.2 1
0.0 S S
0 10 20 30 40 50

Epoch
Figure 4. Number of training epochs versus error loss.
4.2. Performance analysis using sequence formulation techniques

This section examines the prediction results of the deep neural network (DNN) model using
individual and hybrid feature extraction methods. Machine learning techniques such as k-fold cross-
validation (CV) have been widely used in the literature to evaluate model performance. A 10-fold
cross-validation approach was adopted in this study, offering an optimal balance between
computational efficiency and comprehensive performance evaluation while minimizing the influence
of data variability. Table 7 presents the DNN model’s predicted outcomes on the balanced dataset
using various feature vectors.
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Table 7. Different feature extraction methods on the balance dataset.

Methods ACC (%) SP (%) SN (%) MCC
PCA 72.37 70.61 74.13 0.481
LDA 84.88 81.22 88.54 0.703
GR 77.85 76.38 79.32 0.561
PCC 82.38 79.12 85.64 0.662
RFA 81.32 78.18 84.46 0.665
Hybrid feature (before SHAP) 89.36 88.21 90.44 0.797
Hybrid feature (after SHAP) 90.12 88.17 92.05 0.825

Table 7 demonstrates that the DNN model attained superior performance with a hybrid feature
vector compared to the individual feature extraction technique. The DNN model achieved an average
accuracy of 89.36%, sensitivity of 90.44%, specificity of 88.21%, and an MCC of 0.797 utilizing a
hybrid feature vector. In order to further enhance the performance of the proposed DNN model, we
apply the feature selection method, i.e., SHAP. SHAP-selected features attained an accuracy of 90.12%,
sensitivity of 92.05%, specificity of 88.17%, and a Matthew’s correlation coefficient of 0.825. The
result demonstrates the effectiveness of feature selection in enhancing prediction accuracy and target
result identification in deep neural networks (DNNs).

4.3. Performance comparison with other classifiers

In this section, we compare the performance of various classification methods based on
accuracy (ACC), sensitivity (SN), specificity (SP), and Matthew’s correlation coefficient (MCC). The
classifiers being assessed are random forest (RF) [23], support vector machine (SVM) [24], and k-
nearest neighbor (KNN) [25]. RF is a popular ensemble learning method for classification and
prediction, building multiple decision trees from random samples. SVM is widely used in life sciences
for linear and nonlinear classification, as it finds the best boundary to separate classes [26]. KNN,
commonly used in image processing, is a distance-based method that classifies by comparing examples.
Table 8 shows the overall performance comparison of the different classifiers on the benchmark dataset.

Table 8. Comparison of the DNN model with other commonly used machine learning algorithms.

Method ACC (%) SN (%) SP (%) MCC
Proposed DNN 90.12 92.05 88.17 0.825
SVM 89.66 87.75 91.67 0.794
RF 87.86 84.98 90.91 0.759
KNN 85.96 84.98 86.96 0.719
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The proposed DNN model achieved the highest accuracy of 90.12%, with a sensitivity of 92.05%
and specificity of 88.17%, resulting in an MCC of 0.825. Comparatively, among the traditional
machine learning models, the SVM demonstrated an accuracy of 89.66%, a sensitivity of 87.75%, a
specificity of 91.67%, and an MCC of 0.794. Similarly, the RF and KNN models achieved lower
accuracy, at 87.86% and 85.96%, respectively. Overall, the proposed DNN demonstrates the most
balanced and robust performance, improving average accuracy by 2.29%. The superior performance
of the DNN model compared to traditional machine learning algorithms can be attributed to its use of
multi-stack processing layers. These layers enable DNN to effectively handle complex datasets with
high nonlinearity, a task that traditional ML algorithms struggle with due to their reliance on single-
stack processing layers, which are insufficient for such intricate data. These findings confirm that the
DNN model outperforms conventional learning methods in predicting liver and non-liver diseases.
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Figure 5. Area under the curve (AUC) performance comparison of machine learning
algorithms.

Furthermore, we also compared the performance of the DNN model in terms of AUC (area under
the ROC curve) [27] with traditional learning algorithms, as shown in Figure 5. The figure shows that
the DNN model achieved the highest AUC value compared to the other algorithms. Specifically, the
DNN model had an AUC of 0.921, while the SVM, RF, and KNN algorithms had AUC values
0f 0.901, 0.889, and 0.872, respectively. The main reason for the DNN model’s superior performance
is its multi-layer structure (hidden layers) with backpropagation, which effectively optimizes weights.
This allows the DNN to handle complex and highly nonlinear datasets better than other models, which
use a single-layer processing approach and struggle with such data. Additionally, the confusion matrix
analysis in Figure 6 shows that our proposed DNN model achieves balanced recognition of both
positive and negative. This strongly confirms the model's accuracy and reliability in distinguishing
between positive and negative samples, making it particularly suitable for predictive tasks in the
specific problem domain
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4.4. Performance comparison with the existing predictors

In this section, we compare the performance of the proposed model with the existing state-of-the-
art models, as mentioned in [10,28-30]. Table 9 shows the comparative findings. Moreover, we
provide the proposed models from published research works based on the same dataset. Table 9 shows
that the proposed model provided the best prediction accuracy among four previously published
predictors. For example, K. Gupta et al. [29] achieved an accuracy level of 63%, whereas the recently
published predictor, R. Amin et al. [10], achieved an accuracy of 88.10%. Similarly, D. Elias et al. [30]
achieved 80.10%. These results confirm that the proposed model performed better than the existing
predictors, with an average accuracy improvement of 13.93%.

Table 9. Comparison of the proposed model performance with the existing models.

Method Classifiers ACC (%)
K. Gupta et al. [29] Light GB 63.00
Altaf et al. [28] Voting 73.56
D. Elias et al. [30] Voting 80.10
R. Amin et al. [10] Random Forest 88.10
Proposed DNN DNN 90.12
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5. Conclusion

Liver disease (LD) is a severe condition that poses significant risks to human health and requires
timely medical intervention. Healthcare professionals rely on neurological techniques for evaluating
and diagnosing affected individuals. In this paper, we explored the prediction of chronic LD using a
deep neural network algorithm enhanced with integrated and optimized features. Our model used
several techniques to assess feature importance, including PCA, LDA, gain ratio, Pearson correlation
coefficient, and ReliefF algorithm. We also employed SHAP analysis to interpret complex features
and select the most relevant ones for accurate LD prediction. Our novel approach demonstrated
superior performance compared to existing models, which can be attributed to the implementation of
efficient feature extraction methods, advanced compression techniques, and an optimized feature
selection process. The results show that our model enhances discriminative ability, offering a more
reliable tool for the early detection of chronic liver disease. Integrating Al and machine learning into
clinical settings holds great potential for advancing disease detection and improving patient outcomes.

In the future, we plan to create an accessible web platform for biologists to use this model.
Additionally, we aim to expand the dataset, explore new features, and implement more advanced
algorithms to refine further and validate our model’s predictive capabilities.
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