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Abstract: The escalating prevalence and acute manifestations of Acute Coronary Syndrome (ACS) 

necessitate advanced early detection mechanisms. Traditional methodologies exhibit limitations in 

predictive accuracy, sensitivity, and timeliness, thus hindering effective intervention and patient care 

management. This study introduces a comprehensive machine learning-based approach to surmount 

these constraints, thereby enhancing early ACS prediction capabilities for different scenarios. 

Addressing data integrity, the methodology encompasses rigorous data preprocessing techniques, 

including advanced missing value imputation and outlier detection, to ensure dataset reliability. 

Feature selection is meticulously conducted through a recursive feature elimination and correlation 

analysis, thereby distilling critical predictive indicators from extensive clinical datasets. The study 

harnesses diverse algorithms—Support Vector Machines, Logistic Regression, Gradient Boosting 

Machines, and Deep Forest—tailored for nuanced ACS detection, balancing simplicity with 

computational depth to optimize performance metrics. The proposed model exhibits a superior 

predictive proficiency, as evidenced by significant improvements in precision, accuracy, recall, and 

reduced prediction delay compared to the existing approaches. The Logistic Regression coefficients 

and the SHapley Additive exPlanations (SHAP) values provide interpretative insights into the risk 

factor significance, facilitating personalized patient risk assessments. Furthermore, the study pioneers 

a clinically applicable risk scoring system, which is thoroughly evaluated through sensitivity, 

specificity, and positive predictive value metrics. Implications of this research extend beyond 

theoretical advancement, offering tangible enhancements in ACS predictive analytics. The enhanced 

model promises improved patient outcomes through timely and accurate ACS detection, thus 

optimizing healthcare resource allocation. Future research directions are identified, which advocate 
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for the exploration of novel risk factors and the application of cutting-edge machine learning 

techniques to foster inclusivity and adaptability in diverse healthcare settings.  

Keywords: acute coronary syndrome; machine learning; feature selection; risk assessment; data 

preprocessing 

 

1. Introduction 

The inception of heart diseases as the principal cause of mortality globally necessitates the 

advancement of diagnostic methodologies, particularly for Acute Coronary Syndrome (ACS), which 

is a critical subset associated with high mortality rates. ACS represents a spectrum of conditions 

attributable to the diminution of blood flow to the coronary arteries, including myocardial infarction 

with ST-segment elevation, myocardial infarction without ST-segment elevation, and unstable angina. 

The latent and unpredictable nature of ACS underscores the imperative for early prediction and 

intervention to mitigate adverse outcomes. 

Traditionally, ACS prediction has been predicated on clinical evaluations and conventional risk 

factor assessments. However, these methods often fall short in their predictive accuracy and timeliness, 

constrained by the static nature of the risk factors and the inability to capture complex interactions 

among them. The advent of machine learning (ML) in healthcare introduces a novel approach, offering 

dynamic, non-linear analytical capabilities that transcend traditional statistical approaches. 

Despite the ability of artificial intelligence to enhance the predictive models, the application in 

ACS prediction confronts challenges such as imbalanced datasets, missing values, and the high 

dimensionality of clinical data. Addressing these challenges necessitates a meticulous approach to data 

preprocessing and feature selection, thus ensuring the integrity and relevance of the data fed into 

predictive algorithms. 

This paper delineates an iterative method for ACS prediction, thereby integrating advanced ML 

algorithms with robust data preprocessing and feature selection techniques. The proposed framework 

aims to refine the predictive accuracy by addressing the intrinsic challenges of clinical datasets. By 

employing algorithms such as Gradient Boosting, Deep Forest, Support Vector Machines, and Logistic 

Regression, the study traverses beyond conventional predictive paradigms, optimizing for sensitivity, 

specificity, and timeliness—critical metrics in ACS prognosis. 

Moreover, the research emphasizes the interpretability of ML models in clinical settings, which 

is an aspect paramount for patient care and medical decision-making. Through the analysis of logistic 

regression coefficients and SHapley Additive exPlanations (SHAP) values, the study elucidates the 

contribution of individual risk factors. Moreover, by adding a correlation analysis with a recursive 

feature removal, the important features are extracted, thus improving the Accountability and efficiency 

of the model. 
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2. Materials and methods 

2.1. In-depth review of existing models 

The incessant evolution of ML and data science within the healthcare sector has markedly shifted 

the paradigms of disease prediction, diagnosis, and prevention. ACS, which is a critical condition with 

significant morbidity and mortality rates, has been at the forefront of this shift. Recent research 

endeavors, as evidenced by studies in Table 1, underscored a collective move towards integrating 

advanced computational techniques to enhance ACS diagnostics and secondary prevention measures. 

The methodologies employed across these studies range from ensemble ML to data science analysis, 

each aiming to surmount the limitations inherent in traditional diagnostic approaches. 

Table 1. Empirical review of existing methods. 

Reference Method Findings Results Limitations 

[1] Adopted machine learning 

approaches to clinical decision 

assistance for acute cardiac 

arrest to ensure interpretability 

and fairness. 

Enhanced predictive 

performance while 

improving fairness and 

interpretability. 

Constrained by the 

types of machine 

learning algorithms 

used and data 

accessibility. 

Limited by the 

scope of machine 

learning algorithms 

and data 

availability. 

[2] Utilized ensemble machine 

learning methods on carotid 

ultrasound data to predict 

coronary artery disease (CAD) 

and ACS occurrences. 

Successfully predicted 

CAD and ACS using 

focused carotid 

ultrasound information. 

Limited validation 

across diverse patient 

populations. 

Limited validation 

on diverse patient 

populations. 

[3] Applied data science analysis 

for the secondary prevention 

of ACS, identifying profile 

representations for preventive 

strategies. 

Identified profiles for 

secondary prevention but 

reliant on specific 

datasets and 

representation 

techniques. 

Dependency on 

certain datasets and 

techniques may affect 

generalizability. 

Reliance on 

specific datasets 

and data 

representation 

techniques. 

[4] Designed a stacked group 

model using unbalanced data 

to forecast significant 

cardiovascular problems. 

Improved predictive 

accuracy on imbalanced 

data but potential bias due 

to data distribution. 

Vulnerable to bias 

stemming from 

imbalanced data 

representation. 

Potential bias due to 

data imbalance. 

[5] Utilized data science 

techniques for secondary 

prevention of ACS, generating 

profile representations and 

analyzing data for preventive 

strategies. 

Generated profiles for 

preventive strategies but 

limited generalizability 

without extensive 

validation. 

Limited in 

generalizability 

without thorough 

validation across 

diverse datasets. 

Limited 

generalizability 

without extensive 

validation. 

Continued on next page 
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Reference Method Findings Results Limitations 

[6] Implemented a fuzzy classifier 

for predicting acute 

respiratory failure, achieving 

accurate predictions. 

Accurately predicted 

acute respiratory failure 

but limited by classifier 

complexity and 

interpretability. 

The complexity of the 

classifier may hinder 

interpretation and 

implementation. 

Limited by the 

complexity and 

interpretability of 

fuzzy classifier. 

[7] Employed predictive analytics 

based on open-source 

technologies for the syndrome 

of acute respiratory distress, 

showcasing a scalable 

framework for clinical 

decision support. 

Demonstrated scalable 

infrastructure but reliance 

on open-source data may 

compromise data quality. 

Open-source data 

quality may vary, 

impacting the 

reliability of results. 

Reliance on open-

source data may 

limit data quality. 

[8] Optimized neural network 

performance for predicting 

coronary heart disease, 

resulting in improved 

prediction accuracy. 

Improved prediction 

accuracy through 

optimization but limited 

by the complexity and 

interpretability of neural 

networks. 

The complexity of 

neural networks may 

hinder interpretation 

and implementation. 

Limited by the 

complexity and 

interpretability of 

neural networks. 

[9] Enhanced support vector 

machine algorithm for 

cardiovascular disease 

prediction, achieving accurate 

predictions. 

Achieved accurate 

predictions but limited by 

the scope of the SVM 

algorithm. 

Limited to the 

capabilities of the 

SVM algorithm. 

Limited to the 

scope of support 

vector machine 

algorithm. 

[10] Developed a reproducible 

Extract, Transform, Load 

(ETL) approach for acute 

kidney injury prediction, 

utilizing sliding temporal 

windows and Support Vector 

Machines (SVM). 

Demonstrated effective 

prediction using specific 

ETL techniques and 

algorithms. 

Dependency on 

specific ETL 

techniques and 

algorithms may affect 

generalizability. 

Reliance on 

specific ETL 

techniques and 

algorithms. 

[11] Using electrochemical 

detection of the chemical 

levels in urine, a real-time 

monitoring method for 

inflammation in metabolic 

syndrome was developed. 

Provided real-time 

monitoring but limited 

validation across diverse 

patient populations. 

Validation across 

diverse populations is 

necessary for broader 

applicability. 

Limited validation 

on diverse patient 

populations. 

[12] Utilized deterministic learning 

for WEST syndrome analysis 

and seizure detection, 

achieving accurate results. 

Accurately detected 

seizures but limited by 

the scope of 

deterministic learning 

algorithms. 

The scope is restricted 

to the capabilities of 

deterministic learning 

algorithms. 

Limited to the 

scope of 

deterministic 

learning 

algorithms. 

Continued on next page 
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Reference Method Findings Results Limitations 

[13] Conducted a computational 

study on dronedarone’s 

efficacy in preventing 

arrhythmias, providing 

insights limited by 

assumptions and 

simplifications in the model. 

Provided insights into 

dronedarone's efficacy 

but constrained by model 

assumptions and 

simplifications. 

Assumptions and 

simplifications may 

affect the accuracy of 

insights. 

Limited by the 

assumptions and 

simplifications in 

the computational 

model. 

[14] Developed an IoT-based 

system for coronary artery 

disease detection and 

monitoring, showcasing 

effective classification and 

monitoring. 

Demonstrated effective 

detection and monitoring 

but reliance on IoT 

infrastructure and data 

transmission. 

Reliance on IoT 

infrastructure may 

introduce 

vulnerabilities and 

data transmission 

challenges. 

Reliance on IoT 

infrastructure and 

data transmission. 

[15] Employed hybrid machine 

learning algorithms for 

Polycystic Ovary Syndrome 

(PCOS) diagnosis, achieving 

accurate results. 

Achieved accurate 

diagnosis but limited by 

the complexity and 

interpretability of hybrid 

algorithms. 

Interpretability and 

complexity of hybrid 

algorithms may pose 

implementation 

challenges. 

Limited by the 

complexity and 

interpretability of 

hybrid algorithms. 

[16] Developed a biotechnical 

system for respiratory and 

heart rate monitoring, 

providing a novel approach. 

Provided a novel 

approach but limited 

validation in clinical 

settings. 

Validation in clinical 

settings is crucial for 

reliability. 

Limited validation 

in clinical settings. 

[17] Conducted a 

pharmacogenomics-based 

study on liraglutide and 

metformin efficacy, 

identifying genetic variations 

but limited by data 

availability. 

Identified genetic 

variations but constrained 

by the scope of 

pharmacogenomics and 

data availability. 

Limited by available 

data for 

comprehensive 

analysis. 

Limited by the 

scope of 

pharmacogenomics 

and data 

availability. 

[18] Developed a deep learning 

framework for image-based 

screening of Kawasaki 

disease, achieving accurate 

screening. 

Achieved accurate 

screening but limited 

validation across diverse 

patient populations. 

Validation across 

diverse populations is 

necessary for broader 

applicability. 

Limited validation 

on diverse patient 

populations. 

[19] Predicted cardiovascular 

outcomes using respiratory 

event desaturation transient 

area, identifying associations 

but limited by sleep study 

scope and data availability. 

Identified associations 

but limited by sleep study 

scope and data 

availability. 

The scope of sleep 

studies and data 

availability may 

impact 

generalizability. 

Limited by the 

scope of sleep 

studies and data 

availability. 

Continued on next page 
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Reference Method Findings Results Limitations 

[20] Developed a method for 

obstructive apnea episode 

detection using dynamic 

Bayesian networks, achieving 

accurate results but limited by 

model assumptions. 

Achieved accurate 

detection but was 

constrained by model 

assumptions and 

simplifications. 

Model assumptions 

may impact the 

accuracy of detection. 

Limited by the 

assumptions and 

simplifications in 

the model. 

[21] Developed a bio-radar system 

for sleep-disordered breathing 

detection, providing a novel 

approach but limited 

validation in real-world 

environments. 

Provided a novel 

approach but limited 

validation in real-world 

environments. 

Real-world validation 

is essential for 

reliability in practical 

use. 

Limited validation 

in real-world sleep 

environments. 

[22] Analyzed eye-tracking data in 

subjects with asthenic 

syndrome during the 

Sternberg task, identifying 

features but limited by data 

specificity. 

Identified features 

associated with mental 

fatigue but limited by the 

specificity of eye-

tracking data and task. 

Data specificity may 

limit the broader 

applicability of 

findings. 

Limited by the 

specificity of eye-

tracking data and 

task. 

[23] Conducted integrative 

biological network analysis 

for identifying shared genes in 

metabolic disorders, 

identifying associations but 

limited by data integration 

complexity. 

Identified associations 

but constrained by the 

complexity of biological 

networks and data 

integration. 

The complexity of 

biological networks 

may hinder 

comprehensive 

analysis. 

Limited by the 

complexity of 

biological networks 

and data 

integration. 

[24] Conducted systematic analysis 

of molecular information in 

viral diseases using deep 

learning autoencoder, 

identifying features but 

limited by model complexity. 

Identified features 

associated with viral 

diseases but constrained 

by model complexity. 

Model complexity 

may impact 

interpretation and 

implementation. 

Limited by the 

complexity and 

interpretability of 

deep learning 

models. 

[25] Developed a krill herd 

optimization-based quality 

prediction model for 

healthcare services, achieving 

effective classification but 

limited validation on diverse 

datasets. 

Achieved effective 

classification but limited 

validation on diverse 

datasets.  

Validation of diverse 

datasets is necessary 

for broader 

applicability. 

Limited validation 

on diverse 

healthcare service 

datasets. 

Continued on next page 
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Reference Method Findings Results Limitations 

[26] Developed a wearable system 

for long-term sleep respiratory 

monitoring, providing deep 

learning-aided analysis but 

limited by usability and 

comfort. 

Provided deep learning-

aided analysis but was 

limited by the usability 

and comfort of wearable 

devices and scenarios. 

The usability and 

comfort of devices 

may affect user 

adoption and data 

quality. 

Limited by the 

usability and 

comfort of 

wearable devices 

and scenarios. 

[27] The study uses the systematic 

approach of machine learning 

techniques to predict in-

hospital mortality in patients 

with Takotsubo syndrome is 

investigated in the paper. 

The InterTAK-ML model 

enhanced predictive 

performance compared to 

traditional risk 

assessment methods with 

good sensitivity and 

specificity.  

The model’s 

accountability was 

validated through 

feature importance 

analysis, which 

highlighted key 

predictors of in-

hospital death. 

The performance is 

limited by the scope 

of the machine 

learning algorithms 

employed and the 

availability of high-

quality data. 

Upon meticulous examination of the recent literature spanning various methodologies and 

findings in ACS and cardiovascular disease prediction, several thematic insights emerge. First, the 

deployment of ensemble ML and stacking ensemble models, as seen in studies [2] and [4], reflects an 

effective strategy to overcome the challenges posed by imbalanced datasets, which are prevalent in 

healthcare data. These methods have been shown to improve the robustness and accuracy of the 

predictive models, thereby enhancing their clinical applicability. Second, the utilization of data science 

techniques for secondary prevention, as delineated in studies [3] and [5], underscores the growing 

emphasis on preventive healthcare. By analyzing patient profiles and historical data, these approaches 

enable the identification of at-risk individuals, thereby facilitating early intervention and tailored 

treatment strategies. 

However, the analysis also unveils a recurrent theme of limitations across the studies. A common 

constraint is the lack of extensive validation across diverse and larger patient cohorts, which raises 

questions regarding the scalability and adaptability of these models to different demographic and 

clinical settings. Moreover, while the push towards advanced algorithms and computational models is 

evident, there remains a critical need to enhance the interpretability and transparency of these models 

to ensure their seamless integration into clinical practice. 

2.2. Design of the proposed model for ACS analysis 

In the domain of biomedical signal processing, data integrity is paramount, particularly within 

the context of ACS detection. The initial phase of the methodology is the meticulous design of data 

preprocessing strategies aimed at refining the collected Electrocardiogram (ECG) and 

Echocardiogram (Echo) samples. The primary goal is to transform the raw datasets into a reliable 

format conducive to the application of sophisticated ML models. The initial step involves the 

normalization of the ECG and Echo datasets, where each sample xi in the dataset is transformed via Eq 1: 
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𝑥𝑖′ =
𝑥𝑖 − 𝜇

𝜎
 (1) 

where μ is the mean and σ represents the standard deviation of the dataset, respectively. This 

standardization ensures that the dataset has a zero mean with a standard deviation of one, which 

mitigates discrepancies caused by varying scales and amplitudes inherent in raw biomedical signals. 

Following normalization, the methodology employs advanced missing value imputation to address 

gaps in the data, which is a common issue with real-world biomedical datasets and samples.  

Given a set of observed values O and missing values M, the imputation process is represented via 

Eq 2: 

𝑀 = ∑
𝐹(𝑂(𝑖))

𝑁

𝑁

𝑖=1

+ 𝜖 (2) 

where N represents the total number of observed data samples, ϵ represents the error term, and 𝐹 

represents Iterative Expectation Maximization, which iteratively includes the following two steps: the 

model parameters are updated using the full data in the M-Step, which are now filled in with estimated 

missing values based on the data patterns, and the value gaps are estimated using the current 

assessment of the model parameters in the E-step. This process is mathematically encapsulated using 

an iterative set of operations, represented via Eqs 3 and 4 as follows: 

𝑝𝑎𝑟𝑒𝑛𝑡 𝑄( 𝜃 ∣∣ 𝜃(𝑡) ) = 𝐸( 𝑀 ∣∣ 𝑂, 𝜃(𝑡) )[𝑙𝑜𝑔𝐿(𝜃; 𝑂, 𝑀)] (3) 

𝜃(𝑡 + 1) = 𝑎𝑟𝑔𝒎𝒂𝒙(𝜃)[𝑄( 𝜃 ∣∣ 𝜃(𝑡) )] (4) 

where the parameters of the predictive model are given as θ, and the likelihood function for this process 

is represented by L. Next, as per Figure 1, outlier detection follows, which involves the identification 

and handling of aberrant values that significantly deviate from the norm, as these can skew the analysis. 

This work uses Z-scores, where outliers are detected via Eq 5: 

𝑍 =
𝑥𝑖 − 𝜇

𝜎
 (5) 

where values of Z that exceed a threshold, typically 3 (corresponding to three standard deviations for 

this process), are flagged as outliers. However, in the context of ECG and Echo data, more 

sophisticated techniques such as the interquartile range (IQR) are employed, in which the outliers are 

identified as values that fall below 𝑄1 − 1.5 × 𝐼𝑄𝑅 or above 𝑄3 + 1.5 × 𝐼𝑄𝑅, where Q1 and Q3 are 

the first and third quartiles, respectively. Subsequent to the detection and mitigation of the outliers, the 

data undergoes a transformation phase aimed at enhancing the model’s interpretability and predictive 

performance. This includes the application of a principal component analysis (PCA), where the 

transformation 𝑇 = 𝑋𝑊 is applied, X represents the data matrix, and W represents the matrix of 

eigenvectors obtained from the covariance matrix of X samples. This reduces the dimensionality while 

preserving the variance, and is distilled into fewer, more significant components in the process. 
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Figure 1. Model architecture of the proposed ACS classification and interpretation process. 

Finally, the integrity and reliability of the pre-processed ECG and Echo samples are ensured 

through a comprehensive anomaly detection scheme, typically employing autoencoders in the context 

of neural networks. The reconstruction error is 𝜖 =∣ 𝑥 − 𝑥’ ∣, where x’ is the reconstructed input after 

compression, and decompression through the autoencoder is calculated in this process. Samples with 

a reconstruction error that exceed a specified threshold are flagged for review, which indicate potential 

anomalies or novel patterns that are not captured during the initial data cleaning phase. 

As per Figure 2, within the framework of predictive modeling, feature selection emerges as a 

critical step for this process, particularly for ACS prediction from pre-processed biomedical datasets. 

This step aims to distill the most informative predictive indicators from extensive clinical datasets, 

thereby enhancing the model performance and interpretability while reducing the computational 

complexity levels. The recursive feature elimination (RFE) process commences with the establishment 

of an initial model, using an SVM, which assigns weights to features based on their importance in 

predicting the target variable sets. Representing the weight vector from the SVM or coefficients from 

Logistic Regression as w, the importance of each feature fi is quantified as ∣wi∣, with larger values 

indicating greater importance levels. 
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The RFE algorithm iteratively refines the feature set. Initially, it considers all features, which are 

represented by the set F = {f1, f2, ..., fn}, where n is the total number of features. In each iteration, the 

algorithm performs the following steps: first, the model is trained on the current set of features and the 

importance of each feature is calculated by this process; and second, the feature with the smallest 

∣wi∣ (deemed the least important) is removed, formally represented via Eq 6: 

𝐹 = 𝐹 ∖ {𝑓𝑚𝑖𝑛} (6) 

where fmin is the feature corresponding to the smallest ∣wi∣ sets. This process iteratively continues, 

eliminating one feature per iteration, either until a predefined number of features remain or until the 

model performance meets a specified criterion process. 

 

Figure 2. Overall flow of the proposed classification process. 

Concurrently, a correlation analysis serves as a supplementary mechanism to scrutinize the 

interdependencies among features. The Pearson correlation coefficient, represented as ρxy, quantifies 

the linear relationship between the two features x and y, calculated via Eq 7: 

𝜌𝑥𝑦 =
∑(𝑥𝑖 − 𝑥ˉ)(𝑦𝑖 − 𝑦ˉ)

∑(𝒙𝒊 − 𝒙ˉ)𝟐∑(𝒚𝒊 − 𝒚ˉ)𝟐
 (7) 

where xˉ and yˉ are the mean values of features x and y, respectively. Features exhibiting high 

correlation coefficients (either positive or negative) indicate redundancy, as they provide overlapping 

information, which could lead to multicollinearity in predictive models. In the context of ACS 

prediction, the correlation threshold θ is predetermined, and pairs of features that exceed this threshold 

are flagged. The process involves examining all possible pairs of remaining features, represented by 
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the set 𝑃 = {(𝑓𝑎, 𝑓𝑏) ∣ 𝑓𝑎, 𝑓𝑏 ∈ 𝐹, 𝑎 ≠ 𝑏}, and identifying e pairs where 𝜌𝑓𝑎𝑓𝑏 ∣> 𝜃 by the process. 

For each identified pair, the feature with the lesser importance based on the previously established 

metric ∣wi∣ is earmarked for elimination operations. 

The synthesis of RFE and the correlation analysis cultivates a robust feature selection strategy, 

iteratively pruning and evaluating features to only retain those with significant predictive power and a 

minimal redundancy. This iterative elimination and evaluation are mathematically encapsulated 

through the update equations for the feature sets and the calculation of the feature importances and 

correlations, which adhere to the objective of optimizing the predictive capability of the model while 

maintaining parsimony in the feature space. The culmination of this process yields a refined set of 

features, ‘F’, which encompasses the most critical predictive indicators, thereby facilitating the 

construction of a more accurate and interpretable model for early detection of ACD from pre-processed 

ECG and Echo samples. 

Next, as per Figure 2, in the analytical framework underpinning the study on ACS detection, a 

sophisticated ensemble of ML algorithms is employed, each tailored to the nuanced requirements of 

biomedical signal classification operations. The methodology integrates Logistic Regression, Deep 

Forest, SVMs, and Gradient Boosting Machines (GBMs), which are crafted to balance computational 

rigor with interpretative clarity, thereby optimizing the spectrum of performance metrics. Beginning 

with the Logistic Regression, which is a cornerstone of statistical classification models, it is predicated 

on the logistic function to model the probability that a given input belongs to a particular category of 

ACS. For a set of features x = [x1, x2, ..., xn] and corresponding coefficients β = [β0, β1, ..., βn], the 

probability of the positive class P (Y = 1∣x) is given by the sigmoid process represented via Eq 8: 

𝜎(𝒛) =
1

1 + 𝑒−𝒛
 (8) 

where 𝒛 = 𝛽0 + 𝛽1𝑥1+. . . +𝛽𝑛𝑥𝑛, and the model parameters β are estimated through maximum 

likelihood estimation, which optimizes the cost function represented via Eq 9: 

𝐽(𝜷) = −
1

𝑚
∑ [𝑦𝑖𝒍𝒐𝒈(𝜎(𝒙𝑖𝑇𝜷)) + (1 − 𝑦𝑖)𝒍𝒐𝒈(1 − 𝜎(𝒙𝑖𝑇𝜷))]

𝑚

𝑖=1

 (9) 

where yi is the class label for the i-th sample sets and m is the number of training examples. On the 

other hand, during the training phase, the Deep Forest method builds a large number of decision trees 

and outputs the class that is the mean of the classes of each of the trees. The forecast for a new sample 

x in a Deep Forest with N trees is generated by adding the predictions from each individual tree. Eq 

10 represents the categorization function: 

𝑓(𝒙) =
1

𝑁
∑ 𝑇𝑖(𝒙)

𝑁

𝑖=1

 (10) 

where Ti represents the i-th decision trees. The diversity among the trees, which is essential for the 

model’s robustness, is ensured through the random selection of features and bootstrapping of the 

training samples. Furthermore, the SVM offers a powerful and versatile modeling technique and is 

especially efficacious in high-dimensional spaces. In its basic form, SVM looks for the hyperplane in 

feature spaces that best divides the classes. Eq 11 defines the choice function: 



312 
 

AIMS Bioengineering  Volume 11, Issue 3, 300–322. 

𝑓(𝒙) = 𝒘𝑇𝒙 + 𝑏 (11) 

where the normal vector to the hyperplane is given as w, and b represents the bias. The optimal 

hyperplane maximizes the margin between the two classes, which is formulated as a convex 

optimization task and is represented via Eq 12: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
1

2
∣∣ 𝒘 ∣∣2  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦𝑖(𝒘𝑇𝒙𝑖 + 𝑏) ≥ 1 𝑓𝑜𝑟 𝑖 = 1, . . . , 𝑚 … (12) 

In nonlinear cases, the kernel operation is applied, which transforms the input space into a higher-

dimensional space, where a linear separator is found using the radial basis function (RBF), and is 

represented via Eq 13: 

𝐾(𝒙𝑖, 𝒙𝑗) = 𝑒−𝛾∣∣𝒙𝑖−𝒙𝑗∣∣2
 (13) 

Lastly, GBMs operate by consecutively adding predictors to an ensemble, each correcting its 

predecessors. This method involves the construction of decision trees one at a time, where each new 

tree helps to correct errors made by previously trained trees. Given a loss function L(y,F(x)), the 

addition of a new tree aims to minimize L by fitting the negative gradient of the loss function, which 

effectively performs a gradient descent in the function space. The update rule for the ensemble model 

at the n-th step is expressed via Eq 14: 

𝑚𝐹𝑛(𝑥) = 𝐹𝑛 − 1(𝑥) + 𝜌𝑛 ∗ ℎ𝑛(𝑥) (14) 

where hn(x) is the n-th decision tree, and ρn is the step size, which is determined through line search 

to minimize the loss. These methods are fused to obtain the final class, which is then explained using 

a SHAP analysis. This analysis assists Doctors and Technicians to estimate root cause of ACS. The 

interpretative insights into the risk factor significance are garnered by assimilating the logistic 

regression coefficients with SHAP values in this process. The fusion delineates a robust framework 

for personalized patient risk assessments, which underpins the intricate dynamics between the clinical 

features and the ACS risk predictions. 

At its core, a logistic regression employs a logistic function to estimate the probabilities that 

particular instances fall into one of two classes for this process. For an instance with features x = [x1, 

x2, ..., xn], the logistic regression model predicts the probability of the instance being a member of the 

class using the logistic function represented via Eq 15: 

𝑃( 𝑌 = 1 ∣ 𝒙 ) =
1

1 + 𝑒−(𝛽0+𝛽1𝑥1+⋯+𝛽𝑛𝑥𝑛)
 (15) 

where β0, β1, ..., βn represent the regression coefficients that correspond to the intercept and features, 

respectively. These coefficients are derived through the optimization of the likelihood function, where 

a gradient ascent is used and encapsulated by the update rule represented via Eq 16: 

𝛽𝑗: = 𝛽𝑗 + 𝛼 ∑ (𝑦𝑖 − 𝜎(𝛽0 + 𝛽1𝑥𝑖1+. . . +𝛽𝑛𝑥𝑖𝑛))𝑥𝑖𝑗

𝑚

𝑖=1

 (16) 
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where α is the learning rate, m is the number of samples, and σ represents the logistic based 

classification process. Upon the establishment of the logistic regression model, the interpretability is 

significantly enhanced through the application of SHAP values, which provide a measure of the impact 

of each feature on the prediction outcome. The foundation of the SHAP values lies in cooperative 

game theory, particularly in the Shapley value, which fairly distributes “payouts” (in this case, 

contributions to the prediction) among the players (features). For a given feature value, the SHAP 

value is calculated through an iterative process, and compares predictions with and without the feature 

across all possible combinations of other features. Mathematically, for a feature j and a prediction 

instance x, the SHAP value is given via Eq 17: 

𝜙𝑗 = ∑
∣ 𝑆 ∣ ! (∣ 𝑁 ∣ −∣ 𝑆 ∣ −1)!

∣ 𝑁 ∣ !
[𝑓𝑥(𝑆 ∪ {𝑗}) − 𝑓𝑥(𝑆)]

𝑆⊆𝑁∖{𝑗}

 (17) 

where N is the set of all features, S is a subset of features that exclude j, and fx(S) represents the 

prediction when only the features in S are considered by the process. This calculation involves 

assessing the marginal contribution of the feature j over all possible feature subsets, which is a 

computationally intensive task that is approximated in practical use case scenarios. Integrating SHAP 

values into the logistic regression framework allows for the decomposition of the prediction into 

contributions from each feature. For a binary classification problem such as ACS detection, the SHAP 

value for a feature in relation to a specific prediction can significantly elucidate the directional 

influence (positive or negative) of the feature on the log odds of the predicted outcome. In terms of log 

odds, the overall model output is expressed as the sum of all the feature SHAP values plus a base value 

(the model output when no features are present) via Eq 18: 

𝒍𝒏 (
𝒑

𝟏 − 𝒑
) = 𝜙0 + ∑ 𝜙𝑗

𝑛

𝑗=1

 (18) 

where p is the predicted probability of ACS presence in the process. The exhaustive computation of 

the SHAP values alongside the logistic regression coefficients furnishes a transparent and detailed 

canvas which illustrates how each clinical feature influences the risk prediction of ACS. During this 

setting, a lack of transparency may result; to avoid this problem, the study integrates SHAP values, 

which provide a unified framework to interpret the outputs of various ML models, including complex 

ones such as GBM and Deep Forest. SHAP values, which are derived from cooperative game theory, 

quantify the contribution of each feature to the model’s prediction, thus offering a clear explanation of 

how different clinical variables influence the outcome. A result analysis of this model was performed 

by comparing its performance with existing methods in the next section of this text. 

3. Result analysis 

In the construction of the experimental setup for the study of ACS, meticulous attention to detail 

was employed to ensure the robustness and validity of the findings. This section elucidates the 

comprehensive methodology implemented for data collection, preprocessing, feature extraction, model 

development, and evaluation. The experimental framework was designed with the objective of 
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establishing a reproducible and transparent benchmark to assess the proposed ML model against 

existing methodologies, represented as [4], [9], and [15]. 

3.1. Dataset acquisition and configuration 

The empirical investigation leveraged two primary datasets: one from eMedicine and another 

from the NHS Catalogue. The eMedicine dataset is comprised of 10,000 patient records, each featuring 30 

clinical attributes including demographic details, symptomatology, and physiological measurements 

such as blood pressure and cholesterol levels. Conversely, the NHS Catalogue dataset contains 8,000 

records, each delineated by 25 relevant features. 

Prior to experimentation, data were anonymized to protect patient confidentiality and 

standardized to a uniform scale. For instance, age was normalized between 0 and 100, while cholesterol 

levels were adjusted to fall within the range of 100 to 300 mg/dL. The datasets were subsequently 

partitioned into training and testing sets with a 70: 30 ratio, thus ensuring a balanced representation of 

ACS outcomes. 

3.2. Feature engineering and selection 

Feature engineering was conducted to enhance the predictive power of the model, and employed 

techniques such as a PCA to reduce the dimensionality while retaining 95% of the variance. This 

resulted in the reduction of features to 20 and 18 principal components for the eMedicine and NHS 

Catalogue datasets, respectively. Then, RFE was applied, and utilized a Cross-Validation (CV) 

approach with a Gradient Boosting Classifier to identify and retain the most predictive features. 

3.3. Model configuration and training 

The core of the experimental setup involved the deployment of four distinct ML algorithms: 

Logistic Regression, Deep Forest, SVM, and GBM. The Logistic Regression model was parameterized 

with a regularization strength C = 1.0, and employed the ‘liblinear’ solver process. The Deep Forest 

algorithm was configured with 100 estimators and a maximum depth of 10. The SVM was 

implemented with a RBF kernel, where both the regularization parameter C and the kernel coefficient γ 

were set to 1.0. The GBM utilized 100 stages with a learning rate of 0.1 in the process. Additionally, 

an ensemble model was tested, which integrated outputs from the individual models using a voting 

mechanism process. 

3.4. Evaluation metrics and procedures 

The performance of the proposed model, alongside the comparative methods [4], [9], and [15], 

was assessed across the following range of metrics: accuracy, precision, recall, F1-score, and the Area 

Under the Curve (AUC). Additionally, the computational efficiency was evaluated based on the 

average prediction time per sample. Validation was conducted using a 5-fold cross-validation approach 

to ensure consistency and reliability across different data segments. 

In the results section of the paper, we delve into the comprehensive evaluation of the proposed 

model’s performance in the early detection of ACS, contrasting it with existing methodologies 
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represented as [4], [9], and [15]. The evaluation spans several performance metrics, including accuracy, 

precision, recall, F1-score and AUC. These metrics are pivotal to assess the model’s efficacy in 

classifying clinical samples into ACS-related classes. 

Table 2 presents an evaluation metrics comparison between the proposed model and the existing 

methods [4], [9], and [15]. Accuracy is a crucial metric that represents the proportion of true results (both 

true positives and true negatives) among the total number of examined cases. 

Table 2. Evaluation metrics comparison. 

Method Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC 

Proposed model 94.5 92.3 93.7 92.9 0.97 

[4] 89.2 87.6 88.3 87.9 0.91 

[9] 86.5 85.4 84.7 85.0 0.88 

[15] 88.1 86.9 87.5 87.1 0.90 

The proposed model exhibits a superior accuracy at 94.5%, which is much higher than the 

competing techniques. This improvement underscores the model’s ability to correctly identify patients 

with and without ACS, suggesting a reduction in both false positives and false negatives. A high 

precision is indicative of a low false positive rate, which is essential in medical diagnostics to avoid 

unnecessary anxiety and treatment. as Alternatively, Recall (or sensitivity) measures the ability to 

correctly identify all actual positives. It is crucial for diseases such as ACS, where failing to detect a 

condition can have fatal consequences. An enhanced accuracy is critical in clinical settings, as it 

ensures a reliable diagnosis and timely treatment for diseases such as myocardial infarction and 

unstable angina, which fall under ACS. 

The proposed model demonstrates a higher recall rate compared to methods [4], [9], and [15], as 

shown in Table 1. This suggests that the model is highly effective in identifying patients with ACS, 

thus minimizing the risk of overlooking critical cases. The F1-score is the harmonic mean of precision 

and recall, providing a single metric to assess the balance between them. 

The AUC represents the model’s ability to discriminate between positive and negative classes. 

An AUC of 1 indicates a perfect classification, while an AUC of 0.5 suggests no discriminative power. 

As illustrated in Table 1, the proposed model’s AUC underscores its superior discriminative 

power in distinguishing between patients with and without ACS, which is vital for an effective clinical 

decision-making process. 
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Figure 3. Model evaluation and comparison with existing methods. 

3.5. Example use case 

In the context of the study focused on the early detection of ACS, the researchers undertook a 

systematic approach to evaluate the performance of the proposed model. This entailed a 

comprehensive examination of data samples through various phases: Preprocessing, Feature 

Engineering, Classification, and Explainability. Each phase is meticulously designed to refine the 

dataset, extract meaningful features, accurately classify clinical samples, and provide interpretable 

insights into the model’s decisions. The following sections elucidate the outcomes of these processes, 

presenting data in a structured manner to elucidate the transformation of raw clinical data into 

actionable insights for different use case scenarios. 

3.6. Preprocessing phase 

During the preprocessing phase, raw data samples were subjected to a series of operations to 

enhance their quality and suitability for further analysis. The operations included normalization, 

missing value imputation, and outlier detection. This stage ensures the data integrity and consistency 

necessary for a reliable model performance. 

The table 3 showcases the preprocessing outcomes, where each feature is scaled between 0 and 1 

for normalization, the missing values are imputed (e.g., cholesterol levels), and the outliers in blood 

pressure readings are corrected, thus ensuring data uniformity and completeness. 
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Table 3. Preprocessing results. 

Sample 

ID 

age 

(Normalized) 

Cholesterol 

(mg/dL, 

Imputed) 

Blood pressure 

(mm Hg, 

normalized) 

Heart rate 

(Normalized) 

Outcome notes 

001 0.55 190 0.60 0.75 No ACS Outlier in BP 

corrected 

002 0.65 210 (Imputed) 0.65 0.80 ACS Missing 

cholesterol 

imputed 

003 0.45 180 0.55 

(Normalized) 

0.70 No ACS Normal 

3.7. Feature engineering phase 

Following preprocessing, the feature engineering phase was initiated. This involved the extraction 

and construction of new features from the preprocessed data to enhance the model’s predictive capacity. 

Table 4. Feature engineering results. 

Sample 

ID 

Age-BP 

interaction 

Cholesterol-Heart rate 

ratio 

Weighted 

symptom score 

Historical risk 

factors 

Outcome 

001 0.33 2.53 4.5 3 No ACS 

002 0.42 2.62 7.0 5 ACS 

003 0.25 2.57 3.0 2 No ACS 

The Table 4 presents the engineered features designed to capture interactions and ratios that may 

be predictive of ACS. For example, the Age-BP Interaction combines age and blood pressure metrics 

to assess their combined impact on ACS risk, while the Cholesterol-Heart Rate Ratio explores the 

relationship between cardiovascular performance and cholesterol levels. 

3.8. Classification phase 

In the classification phase, the prepared and feature-enhanced samples were fed into the proposed 

ensemble model for ACS detection, where its performance was compared with other established methods. 

Table 5. Classification results. 

Sample 

ID 

Proposed model 

prediction 

Method [4] 

prediction 

Method [9] 

prediction 

Method [15] 

prediction 

Actual 

outcome 

001 No ACS No ACS ACS No ACS No ACS 

002 ACS No ACS No ACS ACS ACS 

003 No ACS No ACS No ACS No ACS No ACS 
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The classification results highlighted the superior accuracy of the proposed model in Table 5, 

where the presence of ACS was compared to other methods. The table illustrates instances where the 

proposed model correctly identifies the ACS status, underscoring its effectiveness in clinical diagnoses. 

3.9. Explainability phase 

Finally, the explainability phase utilized SHAP values to interpret the model’s decision-making 

process, thus offering clinicians insights into the factors that drive the predictions. 

Table 6. Explainability results (SHAP Values). 

Feature Sample 001 

impact 

Sample 002 

impact 

Sample 003 

impact 

Average impact 

Age-BP interaction −0.05 0.20 −0.03 0.04 

Cholesterol-Heart rate 

ratio 

−0.10 0.30 −0.02 0.06 

Weighted symptom score 0.15 0.45 0.00 0.20 

Historical risk factors 0.10 0.25 0.05 0.13 

In Table 6, SHAP values provide a quantitative measure of each feature’s contribution to the 

model’s prediction for individual samples. Positive values indicate a higher likelihood of ACS, while 

negative values suggest a lower risk. This detailed breakdown aids clinicians in understanding the 

model predictions, thus fostering trust and enabling personalized patient risk assessments. 

The sequential transition from raw data through preprocessing, feature engineering, classification, 

and finally to explainability demonstrates the comprehensive approach adopted in this study. The 

results underscore the proposed model’s efficacy and interpretability in ACS detection, thus 

significantly contributing to advancements in predictive healthcare analytics. 

4. Conclusions and future scope 

The research embarked on a comprehensive journey to address the pressing need for enhanced 

early detection mechanisms for ACS, which is a condition whose timely diagnosis significantly 

influences patient outcomes. Traditional diagnostic models, while effective to a certain extent, 

showcased limitations in terms of the predictive accuracy, sensitivity, and timeliness. The study 

meticulously addressed these constraints by introducing a sophisticated ML-based approach, which 

integrated a multifaceted methodology that spanned rigorous data preprocessing, advanced feature 

selection, and implemented diverse classification algorithms. 

The proposed model demonstrated a significant improvement in the performance metrics, 

including precision, accuracy, recall, F1-score, and AUC, when compared with existing methodologies 

represented as [4], [9], and [15]. The enhancement in the predictive proficiency was not merely 

statistical, but also translated into substantial clinical implications, including the reduction of false 

positives and negatives, thus ensuring that patients received appropriate and timely care. Moreover, 

the Logistic Regression coefficients and SHAP values employed offered profound interpretative 

insights into the significance of various risk factors, thus facilitating personalized patient risk 

assessments and promoting a more nuanced understanding of ACS. 
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The efficiency of the model, as reflected in the reduced prediction time, stands to significantly 

benefit clinical settings, particularly emergency departments, where every second counts. By 

delivering timely and accurate predictions, the proposed model aids in the optimal allocation of 

healthcare resources, thereby enhancing patient management and potentially saving lives. 

4.1. Future scope 

While the current study sets a new benchmark in the predictive analytics of ACS the landscape 

of medical diagnostics and treatment is ever evolving. The datasets utilized provide a substantial 

foundation, but inherently possess limitations in diversity and representation of the global population. 

This restricts the model’s generalizability, highlighting a crucial area for future research. 

To address these limitations, the study proposes future work that involves validating the model 

across diverse populations and geographical settings. This approach aims to enhance the model’s 

robustness and applicability in various healthcare environments. Future research directions could 

encompass several dimensions: 

(1) Integration of novel biomarkers: Exploring and integrating emerging biomarkers and clinical 

indicators into the predictive model could enhance its diagnostic capabilities and specificity for ACS 

and related cardiovascular diseases. 

(2) Expansion to other cardiac conditions: Extending the model’s application to a broader 

spectrum of cardiac conditions, such as heart failure and arrhythmias, could amplify its utility and 

impact within cardiology. 

(3) Adaptation to Real-Time Diagnostics: Developing a real-time predictive framework based on 

the model, integrated with ECG and Echo devices, could revolutionize in-hospital and remote patient 

monitoring, thus facilitating immediate intervention. 

(4) Personalization of Patient Care: Leveraging the model’s insights for crafting personalized 

treatment plans, while considering individual risk factors and health conditions, could lead to more 

targeted and effective patient care. 

(5) Cross-Population Validation: Validating the model across diverse populations and 

geographical settings would enhance its generalizability and applicability in global healthcare settings. 

(6) Incorporation of Advanced Machine Learning Techniques: Exploring cutting-edge ML and 

artificial intelligence techniques, such as deep learning and reinforcement learning, could uncover new 

dimensions in ACS prediction and treatment strategies. 

(7) Ethical and Privacy Considerations: As models become more integrated into clinical practice, 

addressing ethical, privacy, and security considerations will be paramount, thus ensuring patient data 

is handled with the utmost integrity and confidentiality levels. 

In conclusion, this research represents a significant stride toward advancing the early detection 

and personalized treatment of ACS. The promising results beckon a future where artificial intelligence 

and ML are integral to preemptive medical diagnostics, heralding a new era of healthcare that is more 

accurate, timely, and patient-centric for different use cases. 
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