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Abstract: The human immunodeficiency virus (HIV) is an infection that mainly impacts CD4+ T
cells inside the immune system, causing a gradual decline in immunological function. If untreated,
this can lead to acquired immunodeficiency syndrome (AIDS), a disorder in which the body becomes
extremely susceptible to opportunistic infections due to a severely compromised immune system.
This paper presents a rigorous analysis of a mathematical model that describes the dynamics of
HIV infectious disease transmission. There are some key outputs of the study presented. First, we
derive the basic reproduction number (R0) which determines the threshold for disease persistence.
Then, we analyze the stability of the disease-free and endemic equilibria. After that, we perform a
sensitivity analysis to identify the key parameters that influence the dynamics of the system.The basic
reproduction number (R0) is calculated using the next generation matrix approach. The stability of the
disease-free and endemic equilibria is investigated to understand the long-term behavior of the model.
A sensitivity analysis is conducted to determine which model parameters have the greatest impact on
the spread of HIV. The model includes a class of nonlinear ordinary differential equations, and has
both infection-free and endemic infection equilibrium points. The elasticity of R0 related to the model
parameters is determined, and the local sensitivities between the model variables and parameters are
numerically evaluated using non-normalization, half-normalization, and full-normalization techniques.
The numerical results show that there are different sensitivities between model compartments and
model parameters. The findings offer valuable insights for designing effective control strategies and
optimizing interventions aimed at curbing the spread of HIV.
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1. Introduction

The human immunodeficiency virus (HIV) weakens an individual’s immune system by infecting
the CD4+ T cells. On the other hand, acquired immune deficiency syndrome (AIDS) describes the
symptoms that follow HIV infection, which results in a compromised immune system. The United
Nations Program on HIV/AIDS (UNAIDS) and the World Health Organization (WHO) reported that
36.7 million people worldwide were living with HIV/AIDS in 2016. Despite significant
advancements in science and effective health intervention techniques, HIV remains one of the most
devastating diseases in human history. HIV is mainly transmitted from mother to child during
pregnancy, birth, or breastfeeding, as well as through unprotected sexual contact, sharing injectors
and other injection tools with HIV-positive individuals, and tainted blood transfusions. The virus
causes a serious infection once it enters the body, which frequently presents flu-like symptoms. The
immune system becomes increasingly compromised as the disease grows more serious, thus
increasing the likelihood that the person with the illness will get additional illnesses, known as
opportunistic infections, that are uncommon for healthy people.

There are four stages to HIV disease:
(1) Individuals who are living with HIV (PLHIV) and have progressed to stage one might experience

mild symptoms such as fever, diarrhea, and flu-like symptoms.
(2) Individuals who have progressed to stage two may exhibit signs such as skin disorders, swollen

lymph nodes, and Tuberculosis (TB).
(3) Stage three symptoms might include lymph node-related TB and other symptoms affecting the

mucous membranes.
(4) In the last stage, systemic meningoencephalitis may strike a person. A frequently term for stage

four is AIDS.
Although there is currently no vaccine or cure for HIV, antiretroviral therapies can reduce the

disease’s progression as well as improve the survival rates to levels that are close to a normal life [1].
HIV infection-related morbidity and death have been successfully decreased by highly active
antiretroviral therapy. HIV is one of the most dangerous and devastating infectious diseases. The
most important immune system cells, CD4+ cells, are harmed by HIV infection. The virus gradually
damages the human immune system, making the infected individual more susceptible to disease [2].

One important technique for performing time and cost-cutting analyses of real-world problems is
mathematical modeling. Additionally, it is an excellent tool to characterize, predict, analyze, and
suggest potential preventative measures for many infectious diseases [3]. In recent years, researchers
from various scientific fields have become interested in the topic of modeling in infection disease such
as [4–7].

In the field of mathematical modeling, analyzing the model dynamics of HIV compartments
became an interesting topic locally and globally. A dynamic system is represented by a mathematical
model derived from mathematical concepts, which is essential for the dynamical system of HIV
transmission prediction, examination, and control. While a model can be modified using controlling
functions, developing a model demands several assumptions and parameters [8]. A sensitivity
analysis makes it possible to investigate which input variables typically cause output variation, as well
as how uncertainty in the input variables affects the model outputs [9]. The most important aspect of
the biological procedure is mathematical modeling, which involves expressing hypotheses as either
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mathematical statements or models that are subsequently utilized to predict situations and/or provide
decisions. Models of disease transmission, statistical models, dynamical systems, and other types of
mathematical models are among them. There are various steps in converting an idea into a theoretical
model, which is followed by a quantitative model. It is clear that our idea is represented by arrows
and boxes in a theoretical model, and that chemical kinetics modeling is used to convert physical and
biological realities into mathematical representations. Additionally, there are some other real world
problems that can be expressed in terms of mathematical equations [10–14]. The field of
mathematical modeling of HIV infections has been proposed in recent decades such as [15, 16]. The
authors showed that the suggested models could fit well with some clinical HIV infection data sets by
examining the local and global stability of the endemic states. In [17], the authors investigated the
effects of HIV therapy, screening, and educational campaigns on the dynamics of HIV transmission.

To discuss the progression of HIV and predict the peak of the pandemic, we propose a
five-compartmental mathematical model (HEICV model), shown in Figure 1, that includes uninfected
CD4+ T cells (H), HIV-exposed CD4+ T cells (E), an HIV-infected CD4+ T cells (I), cytotoxic T
lymphocyte (CTL) cells (C), and free HIV particles in the blood V(t).

This research aims to investigate the transmission dynamics of HIV/AIDS infection by numerical
simulation and a sensitivity analysis for different model initial states and parameters. Moreover, the
basic reproduction number (R0), is calculated to identify the critical model transmissions.

The following are the main contributions of the present investigation:
(1) Obtaining the basic reproduction number (R0) and evaluating the stability of the HIV/AIDS-free

equilibrium point.
(2) A sensitivity analysis aids in determining which variable is very sensitive regarding the

parameters. By identifying the parameters that impact the most of spread and control of HIV, we can
concentrate on the most critical aspects of the epidemic.

(3) The concept of elasticity is important in describing the sensitivity between R0 and the model
parameters in the infectious disease models.

The article is structured as follows. In Section 2, we introduce the modified model of HIV infectious
transmission provided in [18]. This model is defined by nonlinear ordinary differential equations with
constant rates based on the mass action law. In Section 3, the basic reproduction numbers are calculated
for both the disease-free equilibrium point, E0, and the endemic equilibrium point, E1. In Section
5, we discuss the local stability of the disease-free equilibrium point. Accordingly, the methods of
local sensitivity and elasticity are used to identify the critical model parameters; see Sections 6 and
7. Moreover, some numerical results are computed for the different initial states and parameters in
Section 8. Finally, we conclude the main results in Section 9.

2. Mathematical formulation of the problem

In this section, we extend an HIV infectious disease model given in [18]; the model describes the
interaction between the HIV viruses, CD4+ T cells, infected cells, and the CTL immune response. In
this model, we have included the natural death rates to the compartments that represent exposed people
(E), infected people (I), free virus particles (V), and CTL in order to create a more accurate model of
HIV dynamics. This makes it possible for the model to represent the natural mortality that happens
separate from HIV-related variables. The model includes six variables: the total number of healthy
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Figure 1. The model diagram for an HIV infectious disease.

CD4+ T cells (H), exposed CD4+ T cells (E), infected CD4+ T cells (I) free virus (V), and CTL
cells (C). Additionally, the model includes thirteen parameters that describe the model transmissions.
According to the model transmission rates shown in Figure 1, healthy CD4+ T cells are produced at a
rate of λ, die with a natural death rate of µ1H, and become infected by the virus at a transmission rate
of k1HV

H+V . Exposed CD4+ T cells die by HIV viruses at a rate of d1E, die with a natural death at a rate
of µ1E, increase at a rate of k1HV

H+V , and become infected at a rate of k2E. Infected CD4+ T cells increase
at a rate of k2E, die by HIV viruses at a rate of d2I, and die with a natural death rate µ1I. The infected
cells are killed by the CTL response at a rate d3CI. In addition, CTL cells expand in response to a viral
antigen derived from infected cells at a rate of γCI, decrease in the absence of antigenic stimulation
at a rate of d4C and die with a natural death rate of µ2C. Finally, free HIV viruses are produced by
infected cells at a rate of αI, decay at a rate of d5V , and die with a natural death rate of µ3C.

The dynamics of an HIV infection disease with a CTL response are expressed by the following
nonlinear system of differential equations:

dH
dt

= λ − µ1H − k1HV
H+V ,

dE
dt

= k1HV
H+V − (µ1 + k2 + d1)E,

dI
dt

= k2E − d3CI − (µ1 + d2)I,

dC
dt

= γCI − (µ2 + d4)C,

dV
dt

= αI − (µ3 + d5)V ,

(2.1)

with the initial model states H(0) = H0, E(0) = E0, I(0) = I0, D(0) = D0, C(0) = C0 and V(0) =
V0. The model compartments and transmission rates with their biological meaning and estimate values
are given in Table 1.
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Table 1. The model initial individuals and parameters with their biological meaning and
estimated values.

Symbols Biological descriptions Estimated values Sources
H(0) Initial healthy CD4+ T cells 285.12 [18]
E(0) Initial exposed CD4+ T cells 6.55 [18]
I(0) Initial infected CD4+ T cells 3.33 [18]
C(0) Initial CTL cells 660.86 [18]
V(0) Initial free HIV virus 555.55 [18]
λ Source rate of CD4+ T cells [0, 10] [18]
k1 Average of infection [2.5 × 10−4, 0.5] [18]
k2 The rate that exposed become infected CD4+ T cells 1.1 [18]
µ1 Natural death of healthy, exposed and infected cells 0.05 Assumed
µ2 Natural death of CTL cells 0.02 Assumed
µ3 Natural death of free HIV virus 0.01 Assumed
d1 Death rate of exposed cells by HIV virus 0.0495 [18]
d2 Death rate of infected cells by HIV virus 0.5776 [18]
d3 Death rate of infected cells by CTL response 0.0024 [18]
d4 Death rate of CTL cells in the absence of antigenic

stimulation
0.5 [18]

d5 Death rate of free HIV virus by clearance [0.3466, 2.4] [18]
γ Activation rate of CTL cells 0.15 [18]
α The rate of production the virus by infected CD4+ T

cells
[2, 1250] [18]

3. Next generation matrix for infection diseases

An essential epidemiological concept used to measure the potential for an HIV infectious disease
transmission, is the basic reproduction number, denoted by R0 [1, 19]. In this work, we use the
next-generation matrix approach to calculate the basic reproduction number, R0, for the developed
compartmental model. Recently, this method has been the most widely used to calculate this
threshold parameter. This approach can be used when a model compartment includes both
asymptomatic and symptomatic cells. This section explains the compartmental model for infection
transmission. Based on the next-generation matrix approach, a compartment is referred to as being
infected if there are infected individuals within it. Individuals in this class demonstrate both
asymptomatic and symptomatic behaviors. Assume that there are s components in an infectious
disease model (x1, x2, . . . , xs).

Consider a system of ordinary differential equations for an infectious disease model as follows:

dxi

dt
= fi(x) f or i = 1, 2, ..., s. (3.1)

Assume that x = (x1, x2, · · · , xs)T are compartments; these compartments can be divided into
two classes: m infected compartments (x1, x2, · · · , xm) and n non-infected (healthy) compartments
(xm+1, xm+2, · · · , xs), where s = m + n. This means that
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x = (x1, x2, · · · , xs) = (x1, x2, · · · , xm, xm+1, xm+2, · · · , xs) (3.2)

Let Fi(x) represent the new infection rate in the ith compartment, and assume the following:

Vi(x) = V−i (x) − V+
i (x), (3.3)

Where V−i is the rate at which people are transferred out of the ith compartment, and V+
i is the rate

at which people are transferred into the ith compartment (see Figure 2).

Figure 2. Entering and leaving fluxes for a given compartments.

Furthermore, we denote the infected compartments by xI ∈ Rm and non-infected compartments by
xN ∈ Rn. Then, the model Eq 3.1 takes the following form:

dxI
i

dt
= Fi (xI , xN) −Vi (xI , xN) , i = 1, 2, . . . , m,

dxN
j

dt
= G j (xI , xN) , j = 1, 2, . . . , n.

(3.4)

Now, we determine the matricesH andW with components as follows:

H =

∂Fi

∂xI
j

(E0)

 ,

W =

∂Vi

∂xI
j

(E0)

 ,

(3.5)

Where W is a non-singular matrix, H is non-negative, and the free equilibrium of Eq 3.1 is E0.
The spectral radius, or dominant eigenvalue, of the next generation matrix HW−1 yields the basic
reproduction number R0, as demonstrated by the following expression:

R0 = ρ(HW−1), (3.6)
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Where ρ represents the spectral radius. The readers can see more details about the idea of the next
generation method in [20–22].

Understanding the dynamic behavior of infectious disease models and determining the model key
parameters are greatly aided by the next generation approach of computing R0.

4. Disease equilibrium E: The basic reproduction number R0

Two kinds of equilibrium points exist for system 2.1 when we take the right-hand side and equate it
to zero. The free disease equilibrium (FDE) point is provided below:

E0 =
(
λ
µ1

, 0, 0, 0, 0
)

; (4.1)

additionally, the endemic equilibrium point is provided below:

E1 = (H∗, E∗, I∗, C∗, V∗) , (4.2)

where
H∗ =

αλk2

αk1k2 + αk2µ1 − ηρσ
,

E∗ =
λ (αk1k2 − ηρσ)

(αk1k2 + αk2µ1 − ηρσ) η
,

C∗ = 0,

I∗ =
λk2 (αk1k2 − ηρσ)

(αk1k2 + αk2µ1 − ηρσ) ησ
,

V∗ =
αλk2 (αk1k2 − ηρσ)

(αk1k2 + αk2µ1 − ηρσ) ηρσ
.

The basic reproduction number (R0) of system 2.1 for E0 is calculated as follows:

Let

xI =


E
I
V

 , xN =

[
H
C

]
, (4.3)

and

d
dt


E

I

V


=



k1HV
H + V

0

0


−


(µ1 + d1 + k2)E

−k2E + d3CI + (µ1 + d2)I

−αI + (µ3 + d5)V


. (4.4)
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Then,

F (H, E, I, C, V) =



k1HV
H + V

0

0


, V(H, E, I, C, V) =


ηE

−k2E + d3CI + σI

αI − ρV


. (4.5)

At the infection-free equilibrium E0 and using Eq 3.5, we have the following:

H =
(
∂F(H,E,I,V ,V)
∂(E,I,V)

)∣∣∣∣
(E0)

= ∂
∂(E,I,V)



k1HV
H + V

0

0


=


0 0 k1

0 0 0

0 0 0


, (4.6)

W =
(
∂V

∂(E,I,V)

)∣∣∣∣
(FDE)

=


η 0 0

−k2 σ 0

0 −α ρ


and W−1 =



1
η

0 0

k2

ησ

1
σ

0

αk2

ηρσ

α

ρσ

1
ρ


, (4.7)

where η = µ1 + d1 + k2, σ = d2 + µ1, β = µ2 + d4 and ρ = µ3 + d5.
Therefore, the next generation matrix can be given as follows:

HW−1 =



αk1k2

ηρσ

αk1

ρσ

k1

ρ

0 0 0

0 0 0


. (4.8)

Thus,HW−1 has three eigenvalues:

λ1 = 0, λ2 = 0, and λ3 =
αk1k2

ηρσ
. (4.9)

The basic reproduction number is given by the spectral radius ofHW−1, which takes the following
form:

R0 =
αk1k2

ηρσ
. (4.10)

In addition, for system 2.1 and using the endemic equilibrium point E1 = (H∗, E∗, I∗, C∗, V∗), the
matricesH andW are defined as follows
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H =



0 0
(ηρσ)2

α2k2
2k1

0 0 0

0 0 0


and W =


η 0 0

−k2 σ 0

0 −α ρ


. (4.11)

Thus, the next generation matrix can be given as follows:

HW−1 =



ηρσ

αk1k2

η2ρσ

αk1k2
2

η2ρσ2

α2k1k2
2

0 0 0

0 0 0


. (4.12)

Therefore, HW−1 for E1 has three eigenvalues:

λ1 = 0, λ2 = 0, and λ3 =
ηρσ

αk1k2
. (4.13)

The basic reproduction number of the endemic equilibrium point is given as follows:

Rn =
ηρσ

αk1k2
. (4.14)

5. Local stability of the disease-free equilibrium point

In this section, we study the local stability of the disease-free equilibrium point E0 =
(
λ
µ1

, 0, 0, 0, 0
)

by calculating the Jacobian matrix of system 2.1, which is provided as follows:

J(H, E, I, C, V) =



−µ −
k1V2

(H + V)2
0 0 0 −

k1H2

(H + V)2

k1V2

(H + V)2
−η 0 0

k1H2

(H + V)2

0 k2 −d3C −σ −d3I 0

0 0 γC γI − β 0

0 0 α 0 −ρ



.
(5.1)
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Theorem 5.1. The disease-free-equilibrium, E0 is locally asymptotically stable if the basic
reproduction number R0 < 1 and unstable if R0 > 1. The value of R0 is determined using Eq 4.1.

Proof. The local stability of the disease-free-equilibrium can be determined from the Jacobian
matrix. In addition, the Jacobian matrix for the disease-free equilibrium is given by the following:

J (E0) =



−µ1 0 0 0 −k1

0 −η 0 0 k1

0 k2 −σ 0 0

0 0 0 −β 0

0 0 α 0 −ρ


.

(5.2)

Therefore,the eigenvalues are diagonal elements λ1 = −µ1 < 0, λ2 = −η < 0, λ3 = −σ < 0,

λ4 = −β < 0, and λ5 = −ρ+
k1k1α

ησ
< 0 if ρ >

k1k1α

ησ
when R0 < 1 and λ5 > 0 when R0 > 1.

Thus, λ5 < 0 if R0 < 1 and λ5 > 0 if R0 > 1. Clearly, it can be seen that when R0 < 1, all the
eigenvalues have a negative real part; therefore, the disease-free equilibrium, E0, is locally
asymptotically stable and unstable when R0 > 1.

6. Elasticity of R0

In the context of epidemiological models, elasticity refers to how sensitive the model outcomes
are to changes in particular parameters. Understanding the relative change of the model parameter
responsible for transmission might help select the most effective control techniques. Accordingly,
R0 is associated with disease transmissions, and the sensitivity indicates which parameters have a
significant influence on R0. Let us consider a transmissible disease model with p parameters (ω j)

for j = 1, 2, · · · , p. According to the model parameters, ω j, the sensitivity index of R0 is
∂R0

∂ω j
. The

elasticity index, also known as the normalized sensitivity index, is an additional measure that calculates
the relative change of R0 with regard to ω j, represented by ΥR0

ω j , which is defined as follows:

ΥR0
ω j

=
∂R0

∂ω j
×
ω j

R0
. (6.1)

Although the value of the elasticity index establishes the proportional importance of the parameter,
the sign indicates whether R0 grows (positive sign) or decreases (negative sign) with the parameter.

The elasticity index for each parameters of Model 2.1 is as follows:
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ΥR0
λ =

∂R0

∂λ
×
λ

R0
= 0,

ΥR0
k1
=
∂R0

∂k1
×

k1

R0
= 1,

ΥR0
k2
=
∂R0

∂k2
×

k2

R0
=

µ1 + d1

µ1 + d1 + k2
,

ΥR0
µ1
=
∂R0

∂µ1
×
µ1

R0
= −

µ1(2µ1 + d1 + d2 + k2)

(µ1 + d1 + k2)(µ1 + d2)
,

ΥR0
µ2
=
∂R0

∂µ2
×

k1

R0
= 0,

ΥR0
µ3
=
∂R0

∂µ3
×
µ3

R0
= −

µ3

(µ3 + d5)
,

ΥR0
d1
=
∂R0

∂d1
×

d1

R0
= −

d1

(µ1 + d1 + k2)
,

ΥR0
d2
=
∂R0

∂d2
×

d2

R0
= −

d2

(µ1 + d2)
,

ΥR0
d3
=
∂R0

∂d3
×

d3

R0
= 0,

ΥR0
d4
=
∂R0

∂d4
×

d4

R0
= 0,

ΥR0
d5
=
∂R0

∂d5
×

d5

R0
= −

d5

(µ3 + d5)
,

ΥR0
α =

∂R0

∂α
×
α

R0
= 1,

ΥR0
γ =

∂R0

∂γ
×
γ

R0
= 0.

We can use the baseline parameter values given in Table 1 to compute the model elasticity.
The sensitivity index of R0 (elasticity) with regard to the model parameters is determined using

MATLAB codes, and the findings are shown in Table 2 and Figure 3. Such indices may have a positive
sign such as (k1, k2 and α), or negative sign such as (µ1, µ3, d1, d2 and d5). These indicate either a direct
or indirect relationship between R0 and the model parameters. For example, positive values indicate
that the value of R0 increases when these parameters increase, and the virus spreads more quickly.
Furthermore, a strong positive association is found for the parameters k1 and α, indicating that R0 is
extremely sensitive to the transmission rate between healthy CD4+ T cells and infected CD4+ cells.
Additionally, a negative sign indicates that raising these parameters can reduce the value of the basic
reproduction number. Eventually, we may conclude that the parameters λ, µ2, d3, d4, and γ have a
smaller impact on the spreading virus.

7. Sensitivity analysis

Sensitivity analyses have been extensively used in systems biology models during the few last
decades. This method can be applied into infectious disease models to determine the most sensitive
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Table 2. Elasticity values of R0 regarding to model parameters.

Parameters ΥR0
ω

λ 0
k1 1
k2 0.0830
µ1 −0.1214
µ2 0
µ3 −0.0041
d1 −0.0413
d2 −0.9203
d3 0
d4 0
d5 −0.9959
γ 0
α 1

parameters and variables. Local and global sensitivities are the two most common types of
sensitivities used to study biological systems [23]. Let us consider a transmissible disease model with
p parameters (ω j) for j = 1, 2, · · · , p, and s compartments (xi) for i = 1, 2, · · · , s. The differential
equation system that represents the model balancing equations appears as follows:

dxi

dt
= fi(x,ω), (7.1)

where x ∈ Rs and ω ∈ Rp.
A local sensitivity is the changes in the state variables xi regarding the parameters ω j. From a

mathematical perspective, the first order derivatives represent the time-dependent sensitivities of xi

with regard to each parameter value:

ςi j =
∂xi

∂ω j
= lim

∆ω j→0

xi (ω j + ∆ω j) − xi (ω j)

∆ω j
(7.2)

A direct sensitivity analysis, commonly known as a “forward sensitivity analysis,” is an additional
technique to compute the derivatives. It is possible to solve ordinary differential equations for the
sensitivity coefficients using this method. The differential equations represent the state variables xi’s
first order derivatives over time with regard to the model parameters ω j.

∂ςi j

∂t
=
∂

∂t

(
∂xi

∂ω j

)
=
∂

∂ω j

(
∂xi

∂t

)
=
∂

∂C
( fi(x,ω)) (7.3)

The Jacobian matrix for performing a sensitivity analysis is described as follows, using the
following chain rule of the system:

Ṡ = Wω j +J · S, j = 1, 2, . . . , p (7.4)

Where Wω j ,J , and S are defined by the following:
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Figure 3. Elasticity values of R0 regarding to model parameters.

S =


∂x1
∂ω j
∂x2
∂ω j
...
∂xs
∂ω j

 , Wω j =


∂ f1
∂ω j
∂ f2
∂ω j
...
∂ fs
∂ω j

 , J =


∂ f1
∂x1

∂ f1
∂x2
· · ·

∂ f1
∂xs

∂ f2
∂x1

∂ f2
∂x2
· · ·

∂ f2
∂xs

...
... . . . ...

∂ fs
∂x1

∂ fs
∂x2
· · ·

∂ fs
∂xs

 . (7.5)

The input parameter ω j and the starting state of the output variables xi determine the system’s initial
circumstances 7.5.

Three well-known methods (non-normalization, half-normalization, and full-normalization) can be
used to calculate the local sensitivity. We provide ςxi

ω j as a measured sensitivity coefficient for each xi

with respect to each parameter k j in order to compute the sensitivity analysis.
The full-normalization sensitivities can be found as follows:

ςxi
ω j

=

(
ω j

xi

) (
∂xi

∂ω j

)
. (7.6)

The half-normalization sensitivities are defined as follows:

ςxi
ω j

=

(
1
xi

) (
∂xi

∂ω j

)
. (7.7)

The non-normalization sensitivities are given as follows:

ςxi
ω j

=
∂xi

∂k j
, (7.8)

This approach can be applied in simulations to calculate the local sensitivities for full-, half-, and
non-normalization in order to demonstrate how the input parameters affect the output variables. The
model-sensitive analysis is a significant aspect that can be investigated in the context of HIV.
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Additionally, MATLAB’s SimBiology Toolbox can be used to calculate this approach. Additional
information, improvements, and sensitivity analysis applications in the field of systems biology can
be found in [20,23–25].

As mentioned before, our aim in this section is to determine the crucial model parameters based on
the sensitivity analysis; more thorough and accurate work is required for the described HIV model
presented in Eq 2.1. We use the estimated values of the model parameters and variables listed in Table
1 for the computational cases. Computational findings are produced by the use of SimBiology
Toolbox for MATLAB in three different types: full-normalizations, half-normalizations, and
non-normalizations, see Figures 4–6. Interestingly, the results assist us to understand the model better
and allow us identify which model parameters are crucial.

Figure 4. Local sensitivity analysis with full-normalization method of all variables
in computational simulations using MATLAB with respect to (a) all parameters (b) all
parameters exception of µ1.

Figure 5. Local sensitivity analysis with half-normalization method of all variables
in computational simulations using MATLAB with respect to (a) all parameters (b) all
parameters exception of µ1.
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Figure 6. Local sensitivity analysis with non-normalization method of all variables
in computational simulations using MATLAB with respect to (a) all parameters (b) all
parameters exception of µ1.

Figure 7. The dynamics of the model Equation 2.1 for for λ = 10, k1 = 0.5, k2 = 1.1,
µ1 = 0.05, µ2 = 0.02, µ3 = 0.01, d1 = 0.0495, d2 = 0.5776, d3 = 0.0024, d4 = 0.5,
d5 = 2, γ = 0.15, α = 25. The basic reproduction number for the used parameters in this
figure is R0 = 9.0871 > 1, this means that the solutions tending to the endemic steady state.

8. Numerical results and discussions

Using the Matlab software, we can calculate the elasticity of R0 with respect to the model
parameters. The results are shown in the third column of Table 2 and are represented as a bar graph
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Figure 8. The dynamics of the model Equation 2.1 for for λ = 10, k1 = 0.00025, k2 = 1.1,
µ1 = 0.05, µ2 = 0.02, µ3 = 0.01, d1 = 0.0495, d2 = 0.5776, d3 = 0.0024, d4 = 0.5,
d5 = 0.9, γ = 0.15, α = 45. The basic reproduction number for the used parameters in
this figure is R0 = 0.0.0182 < 1, this means that the solutions of the system converge to the
disease-free equilibrium point.

(see Figure 3). Table 2 shows that all parameters have an impact on the basic reproduction number
R0, which can be positive such as (k1, k2 and α), or negative such as (µ1, µ3, d1, d2 and d5). These show
whether R0 and the model parameters are related either directly or indirectly. For instance, positive
results show that the virus spreads more quickly when these parameters are increased and the value of
R0 grows. In addition, R0 is highly sensitive to the rate of transmission between healthy CD4+ T cells
and infected CD4+ cells; A negative sign suggests that increasing these parameters can lower the
fundamental reproduction number. Finally, we may draw the conclusion that the parameters
λ, µ2, d3, d4, and γ have little effect on the virus’s propagation. The simulated findings shown indicate
that the majority of the model classes demonstrate a sensitivity with respect to the critical parameters.
The suggested techniques of local sensitivity used here indicate how the input parameters affect the
output variables. For example, through the first full-normalization technique of the sensitivity
analysis, the variable V (those have free HIV particles in the blood) is more sensitive to d5 compared
to the other relevant parameters; see Figure 4). Alternatively, in Figure 5, variables E (HIV-exposed
CD4+ T cells) and I (HIV-infected CD4+ T cells) are more sensitive to the parameter k1 as compared
to others parameters. Furthermore, Figure 6 shows that variable H (uninfected CD4+ T cells) is
sensitive to the parameter µ1, and variable C (CTL cells) is sensitive to the model parameters µ2 and
d5, as they have a smaller sensitivity compared to the other parameters.

Accordingly, there are some interesting points based on the influence of each included parameter
over the model states using all methods of the local sensitivity analysis. First, even when all model
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parameters are included, the non-normalization approach is unable to accurately determine the effect
of the model parameters on the model variables ; see Figure 6. In order to understand the effect of all
parameters, we can exclude some parameters such as k1, µ1, µ2, and d4 from the model computational
simulations; see Figure 6b. Consequently, as shown in Figure 5, the computational results based on the
local sensitivity for a half-normalization simulation indicates that most of the parameters significantly
influence the model variable sensitivities.

Consequently, the same set of parameter values given in Table 1 is used to show the dynamics of
the model Equation 2.1 for the disease-free and endemic steady states. The basic reproduction number
R0 < 1 if λ = 10, k1 = 1.1, d5 = 0.9, and α = 45. The model dynamics for the given disease-
free equilibrium converge to the disease-free equilibrium point, as illustrated graphically in Figure 8.
However, R0 > 1 when λ = 10, k1 = 0.05, d5 = 2, and α = 25, and Figure 7 shows the model
dynamics to an endemic steady state.

9. Conclusions

This study presented a mathematical model that captured the dynamics of HIV transmission and
the impact of antiretroviral therapy (ART). The model divides the population into five compartments:
healthy individuals (H), exposed individuals (E), infected individuals (I), individuals receiving ART
(C), and free virus particles (V). The model equations and assumptions were biologically grounded
and reflected the current understanding of HIV epidemiology. The key findings of this study are as
follows:

(1) Disease equilibria and basic reproduction number (R0): The analysis of the disease-free and
endemic equilibria showed that the stability of these equilibria is determined by the basic reproduction
number R0. When R0 < 1, the disease-free equilibrium is stable, and the infection dies out. When
R0 > 1, the endemic equilibrium is stable, and the infection persists in the population.

(2) Sensitivity analysis: Using various normalization techniques, the sensitivity analysis identified
the key parameters that have the greatest impact on the value of R0 and the spread of HIV. Parameters
such as the transmission rate (k1), the rate of progression from exposed to infected (k2), and the
infectivity of treated individuals (α) were found to be the most influential.

These results align with the current understanding of HIV epidemiology and the factors that drive
disease transmission. The sensitivity analysis provided valuable insights into the relative importance
of different model parameters, which can inform the development of targeted interventions and control
strategies. Overall, the manuscript presents a comprehensive mathematical modeling approach to study
the dynamics of HIV transmission and the effects of ART. The findings contribute to the existing
knowledge on HIV epidemiology and can aid in the design of more effective strategies for managing
the HIV epidemic.

Based on the findings, we recommend the following future research directions:
(1) Incorporating spatial heterogeneity: The current model assumes a well-mixed population.

Extending the model to incorporate spatial heterogeneity, such as the distribution of high-risk and
low-risk regions, could provide insights into the localized dynamics of HIV transmission and the
impact of targeted interventions.

(2) Exploring optimal control strategies: Building upon the sensitivity analysis, future studies could
focus on developing optimal control strategies that target the most influential parameters. This could
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involve the use of an optimal control theory to determine the best combination of interventions, such
as increased testing, an improved treatment adherence, and behavioral change campaigns.

(3) Validating model with real-world data: The model parameters used in this study were obtained
from the literature. Validating the model against real-world epidemiological data, such as the
incidence and prevalence rates, would strengthen the model’s predictive capabilities and its
applicability to specific geographic regions or populations.

(4) Investigating the impact of comorbidities: The current model does not consider the potential
impact of comorbidities, such as TB or hepatitis, on the dynamics of HIV transmission and disease
progression. Incorporating these factors could lead to a more comprehensive understanding of the
challenges faced in HIV management.

(5) Exploring the role of social determinants: Future research could investigate the influence of
social determinants of health, such as socioeconomic status, education, and access to healthcare, on
the spread of HIV and the effectiveness of intervention strategies.

By addressing these future research directions, the scientific community can further enhance the
understanding of HIV epidemiology and develop more targeted and effective strategies to control the
HIV pandemic.
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