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Abstract: Molecular biological networks are highly nonlinear systems that exhibit limit point 

singularities. Bifurcation analysis and multiobjective nonlinear model predictive control (MNLMPC) 

of a molecular network problem represented by the Pettigrew model were performed. The Matlab 

program MATCONT (Matlab continuation) was used for the bifurcation analysis and the optimization 

language PYOMO (python optimization modeling objects) was used for performing the multiobjective 

nonlinear model predictive control. MATCONT identified the limit points, branch points, and Hopf 

bifurcation points using appropriate test functions. The multiobjective nonlinear model predictive 

control was performed by first performing single objective optimal control calculations and then 

minimizing the distance from the Utopia point, which was the coordinate of minimized values of each 

objective function. The presence of limit points (albeit in an infeasible region) enabled the MNLMPC 

calculations to result in the Utopia solution. MNLMPC of the partial models also resulted in Utopia solutions. 

Keywords: molecular network; optimal control; bifurcation; Utopia solution 

 

1. Introduction 

Molecular biological networks are complex systems with a high degree of nonlinearity [1–4]. The 

presence of singularities in the form of limit points in the Pettigrew model for molecular networks was 

demonstrated by Song and co-workers [5], Sridhar [6] showed for small-scale problems that the 

presence of singularities in the form of limit and branch points are beneficial for multiobjective 

nonlinear model predictive calculations and enable one to obtain the best possible solution (Utopia 

Point). The aim of this paper is to demonstrate that in the molecular network problem where the 
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Pettigrew model is used, the presence of limit points (albeit in an infeasible region) can benefit the 

multiobjective nonlinear model predictive calculations, and the result obtained is the Utopia solution. 

This paper is organized as follows. First, the background section dealing with the work done on 

molecular network models is described. This is followed by a description of the bifurcation analysis 

techniques and the strategy for performing the multiobjective nonlinear model predictive control 

calculations. A section on the interaction between bifurcation analysis and multiobjective nonlinear 

model predictive control is followed by a description of the Pettigrew model. The results and 

discussion section are then presented followed by the conclusions. 

2. Background 

Several workers did a considerable amount of work on biological networks. Pinsker et al. [7] 

looked at long-term sensitization of a defensive withdrawal reflex in Aplysia California. Frost et al. [8] 

studied monosynaptic connections made by the sensory neurons of the gill- and siphon-withdrawal 

reflex in Aplysia participate in the storage of long-term memory for sensitization. Scholz and Byrne, 1987 

investigated long-term sensitization in Aplysia: Biophysical correlates in tail sensory neurons. Walters 

and co-workers [9,10] developed a simple model of long-term hyperalgesia and multiple sensory 

neuronal correlates of site-specific sensitization in Aplysia. 

Castellucci et al. [11] 1989 showed that inhibition of protein synthesis blocks long-term 

behavioral sensitization in the isolated gill-withdrawal reflex of Aplysia. Goldsmith and Byrne [2] 

discovered that bag cell extract inhibits tail-siphon withdrawal reflex, suppresses long-term but not 

short-term sensitization, and attenuates sensory-to-motor neuron synapses in Aplysia. Cleary [12] 

further studied cellular correlates of long-term sensitization in Aplysia. Wright et al. [13] 1scussed the 

developmental emergence of long-term memory for sensitization in Aplysia. Levenson et al. [14] 

showed that serotonin levels in the hemolymph of Aplysia are modulated by light/dark cycles and 

sensitization training. Sutton et al. [15] studied the interaction between the amount and pattern of 

training in the induction of intermediate and long-term memory for sensitization in Aplysia. 

Wainwright et al. [16] investigated localized neuronal outgrowth induced by long-term sensitization 

training in Aplysia. Wainwright et al. [17] studied the dissociation of morphological and physiological 

changes associated with long-term memory in Aplysia.  

Pettigrew and co-workers [18] developed a model that represents short (STF)-, intermediate (ITF)-, 

and long (LTF)-term phases of protein kinase A (PKA) activation and corresponding phases of 

facilitation of the Aplysia sensorimotor synapse. This model studies biophysical mechanisms that may 

be implicated in learning and memory. The model also represents phosphorylation of the transcription 

factor CREB1 (cyclic adenosine monophosphate responsive element binding protein 1) by PKA and 

induction of the immediate-early gene Aplysia ubiquitin hydrolase (Ap-uch); Ap-uch is necessary for LTF. 

PKA and ERK (Extra-cellular Signal Regulated Kinase) activation, CREB1 and CREB2 

phosphorylation, and Ap-uch induction are dealt with in this model where biochemical processes in 

the presynaptic sensory neuron that contribute to STF, ITF, and LTF of the sensorimotor synapse are 

represented. More details of this model can be found in Pettigrew et al. [18] and Song et al. [19]. 

Song et al. [19] demonstrates the existence of limit points that cause multiple steady-states for 

unrealistic parameters of the Pettigrew model. The aim of this paper is to show that the limit points (even 

if found in the infeasible region) are beneficial in obtaining the Utopia solution when multiobjective 

nonlinear model predictive calculations are performed. 
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3. Bifurcation analysis 

There has been a lot of work in chemical engineering involving bifurcation analysis throughout 

the years. The existence of multiple steady-states and oscillatory behavior in chemical processes has 

led to a lot of computational and analytical work to explain the causes for these nonlinear phenomena. 

Multiple steady states are caused by the existence of branch and limit points while oscillatory behavior 

is caused by the existence of Hopf bifurcations points.  

In the case of branch points and limit points, the Jacobian matrix of the set of steady-state 

equations is singular. However, at a branch point, there are 2 distinct tangents at the singular point, 

while at a limit point, there is only one tangent at the singular point. Singularities in the Jacobian matrix 

is often indicative of an optimal solution and this motivates the investigation of how the singular points 

in the Jacobian matrix, indicated by branch and limit points, would affect the multiobjective 

dynamic optimization.  

One of the most commonly used software to locate limit points, branch points, and Hopf 

bifurcation points is MATCONT (Dhooge et al, [20,21]). This software detects limit points, branch 

points, and Hopf bifurcation points. Consider an ODE (ordinary differential equation) system 

𝑥̇ = 𝑓(𝑥, 𝛽) (1) 

where nx R . Let the tangent plane at any point x be 1 2 3 4 1[ , , , ,.... ]nv v v v v + . Define matrix A given by  

𝐴 =

[
 
 
 
 
 
 
 
 
𝜕𝑓1
𝜕𝑥1

 
𝜕𝑓1
𝜕𝑥2

 
𝜕𝑓1
𝜕𝑥3

 
𝜕𝑓1
𝜕𝑥4

. . . . . . . . . .
𝜕𝑓1
𝜕𝑥𝑛

 
𝜕𝑓1
𝜕𝛽

𝜕𝑓2
𝜕𝑥1

 
𝜕𝑓2
𝜕𝑥2

 
𝜕𝑓2
𝜕𝑥3

 
𝜕𝑓2
𝜕𝑥4

. . . . . . . . . .
𝜕𝑓2
𝜕𝑥𝑛

 
𝜕𝑓2
𝜕𝛽

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
𝜕𝑓𝑛
𝜕𝑥1

 
𝜕𝑓𝑛
𝜕𝑥2

 
𝜕𝑓𝑛
𝜕𝑥3

 
𝜕𝑓𝑛
𝜕𝑥4

. . . . . . . . . .
𝜕𝑓𝑛
𝜕𝑥𝑛

 
𝜕𝑓𝑛
𝜕𝛽 ]

 
 
 
 
 
 
 
 

 (2) 

The matrix A can be written in a compact form as  

𝐴 = [𝐵|  
𝜕𝑓

𝜕𝛽
] (3) 

The tangent surface must satisfy the equation  

𝐴𝑣 = 0 (4) 

For both limit and branch points, the matrix B must be singular. For a limit point, the n+1th 

component of the tangent vector 1nv +  = 0 and for a branch point the matrix 
T

A

v

 
 
 

 must be singular. 

For a Hopf bifurcation, the function should be zero. e  indicates the bialternate product while nI  is 

the n-square identity matrix. More details can be found in Kuznetsov [22,23] and Govaerts [24].  
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3.1. The multiobjective nonlinear model predictive control (MNLMPC) method 

The MNLMPC method was first proposed by Flores Tlacuahuaz et al. [25] and used by 

Sridhar [26–30]. Similar optimization work was done by Younius and co-workers [31–33] and Safari [34]. 

This method is rigorous and it does not involve the use of weighting functions nor does it impose 

additional parameters or additional constraints on the problem unlike the weighted function or the 

epsilon correction method (Miettinen [35]). For a problem that is posed as  

𝑚𝑖𝑛 𝐽 (𝑥, 𝑢) = (𝑥1, 𝑥2. . . . 𝑥𝑘) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  
𝑑𝑥

𝑑𝑡
= 𝐹(𝑥, 𝑢); ℎ(𝑥, 𝑢) ≤ 0; 𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝑈; 𝑢𝐿 ≤ 𝑢 ≤ 𝑢𝑈 

(5) 

The MNLMPC method first solves dynamic optimization problems independently, 

minimizing/maximizing each ix  individually.  The minimization/maximization of ix  will lead to 
*

ix . 

Then, the optimization problem that will be solved is  

𝑚𝑖𝑛 √ {𝑥𝑖 − 𝑥𝑖
∗}2 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  
𝑑𝑥

𝑑𝑡
= 𝐹(𝑥, 𝑢); ℎ(𝑥, 𝑢) ≤ 0; 𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝑈; 𝑢𝐿 ≤ 𝑢 ≤ 𝑢𝑈 

(6) 

3.1.1. The MOOC calculation 

It will provide the control values for various times. The first obtained control value is 

implemented and the remaining are discarded. This procedure is repeated until the implemented and 

the first obtained control value are the same. The optimization package in Python, Pyomo, Hart, et al. [36], 

is commonly used and is where the differential equations are automatically converted to a nonlinear 

program (Biegler [37]. The state-of-the-art solvers like IPOPT (interior point optimizer), Wachter and 

Biegler [38] and BARON (branch-and-reduce optimization navigator), Tawaralmani and Sahinidis [39] 

are normally used in conjunction with PYOMO (python optimization modeling objects)). 

The steps of the algorithm are as follows: 

1. Minimize/maximize ix  subject to the differential and algebraic equations that govern the 

process using PYOMO and Baron. This will lead to .  

2. Minimize 
* 2{ }i ix x−

 (multiobjective function) subject to the differential and algebraic 

equations that govern the process. This is the MOOC calculation and provides the control values for 

various times. If this calculation obtains a value of zero for the multiobjective function, then the Utopia 

point is obtained and the calculations are terminated. Otherwise, we proceed to step 3.  

3. Implement the first obtained control values and discard the remaining. 

4. Repeat steps 1 to 3 until there is an insignificant difference between the implemented and the 

first obtained value of the control variables. 

 

 

*

ix
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3.2. Effect of singularities (limit point and branch point) on MNLMPC 

Let the minimization be of the variable 1p  lead to the value 1M  and the minimization of function 2p  

lead to the value 2M . This is equivalent to minimizing 
2

1 1( )p M−  and 
2

2 2( )p M− . The subsequent 

multiobjective minimization will be of the function 
2 2

1 1 2 2( ) ( )p M p M− + − . 

The multiobjective optimal control problem is 

𝑚𝑖𝑛 ⬚(𝑝1 − 𝑀1)
2 + (𝑝2 − 𝑀2)

2 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  
𝑑𝑥

𝑑𝑡
= 𝐹(𝑥, 𝑢) 

(7) 

For all i,  

𝑑

𝑑𝑥𝑖
((𝑝1 − 𝑀1)

2 + (𝑝2 − 𝑀2)
2) = 2(𝑝1 − 𝑀1)

𝑑

𝑑𝑥𝑖
(𝑝1 − 𝑀1) + 2(𝑝2 − 𝑀2)

𝑑

𝑑𝑥𝑖
(𝑝2 − 𝑀2) (8) 

At the Utopia point both 1 1( )p M−  and 2 2( )p M−  are zero. Hence,  

𝑑

𝑑𝑥𝑖
((𝑝1 − 𝑀1)

2 + (𝑝2 − 𝑀2)
2) = 0 (9) 

Now let us look at the co-state equation 

𝑑

𝑑𝑡
(𝜆𝑖) = −

𝑑

𝑑𝑥𝑖
((𝑝1 − 𝑀1)

2 + (𝑝2 − 𝑀2)
2) − 𝑔𝑥𝜆𝑖 

𝜆𝑖(𝑡𝑓) = 0 
(10) 

The first term in this equation is 0 and hence 

𝑑

𝑑𝑡
(𝜆𝑖) = −𝑔𝑥𝜆𝑖 

𝜆𝑖(𝑡𝑓) = 0 
(11) 

If the set of ODE ( , )
dx

g x u
dt

=  has a limit or a branch point, xg  is singular.  

Hence there are two different vectors-values for [ ]i  where ( ) 0i

d

dt
   and ( ) 0i

d

dt
  . In 

between there is a vector [ ]i  where ( ) 0i

d

dt
 = . This coupled with the boundary condition ( ) 0i ft =  

will lead to [ ] 0i =  (The subscript f stands for final which will make the problem an unconstrained 

optimization problem and the one and only solution for the unconstrained problem is the Utopia solution).  

3.2.1. Pettigrew model 

The variables in this model are the following: 

(1) PKA 

(2) Ap-uch 

(3) cAMP 
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(4) C (Catalytic subunit) 

(5) R (Regulatory subunit) 

(6) RC PKA (holoenzyme) 

(7) REG (hypothetical protein) 

(8) PREG (phosphorylated REG) 

(9) mRNAREG REG mRNA (proteins) 

(10) RAF, MAPKK, ERK (proteins) 

(11) MAPKK (mitogen-activated protein kinases kinases) 

(12) ERK (extracellular signal-regulated kinases) 

(13) MAPKKp (phosphorylated MAPPK) 

(14) MAKKpp (phosphorylated MAPPKp) 

(15) ERKp (phosphorylated ERK) 

(16) PERK (fraction of CREB2 sites phosphorylated by ERK)  

(17) PPKA (fraction of available CREB1 sites phosphorylated by PKA) 

The model parameter values are 

Vsyn = 0.002, Kfpka = 105, Kkp-uch = 0.007, AP-uchbasal = 0.1, Kfdka = 0.00048,τ = 250, Kbaskpa = 12, 

Kreg = 0.00064, Ktranslation = 4, νrphos = 1, Krhos = 1.5, Vdreg = 0.16, Kdreg = 0.0015, ,Kdsm = 0.02, Vmreg = 0.00002, 

Kb, raf = 0.001, Kb, mapkk = 0.12, Kb, erk = 0.12, Raftot = 0.5, MAPKKtot = 0.5, ERKtot = 0.5, KMK = 0.08, 

ERKbasal = 0.0015, Kphos1 = 0.1, Kdephos1 = 1.5, PPhos = 0.1, Kphos2 = 0.005, Kdephos2 = 0.5, Kapsyn = 0.02, 

Kapsynbasal = 0.0009, Kpka = 0.2, Kerk = 0.004, Kdeg = 0.01. 

The model equations are 

𝑑[𝑐𝐴𝑀𝑃]

𝑑𝑡
= 3.6 ∗ [

5 − 𝐻𝑇

5 − 𝐻𝑇 + 14
] − 𝑐𝐴𝑀𝑃 − 0.06! [unknown template] (12) 

𝑑𝑅

𝑑𝑡
= 𝑉𝑠𝑦𝑛 + 𝑘𝑓𝑝𝑘𝑎[𝑅𝐶][𝑐𝐴𝑀𝑃]2 − 𝑘𝑏𝑝𝑘𝑎[𝑅][𝐶] − 

𝑘𝐴𝑝−𝑈𝑐ℎ𝑅([𝐴𝑝 − 𝑈𝑐ℎ] − [𝐴𝑝 − 𝑈𝑐ℎ𝑏𝑎𝑠𝑎𝑙]) − 𝑘𝑑𝑝𝑘𝑎𝑅
 

(13) 

𝑑𝐶

𝑑𝑡
= 𝑉𝑠𝑦𝑛 + 𝑘𝑓𝑝𝑘𝑎[𝑅𝐶][𝑐𝐴𝑀𝑃]2 − 𝑘𝑏𝑝𝑘𝑎[𝑅][𝐶] + 

𝑘𝐴𝑝−𝑈𝑐ℎ[𝑅𝐶]([𝐴𝑝 − 𝑈𝑐ℎ] − [𝐴𝑝 − 𝑈𝑐ℎ𝑏𝑎𝑠𝑎𝑙]) − 𝑘𝑑𝑝𝑘𝑎𝐶

 

(14) 

𝑑[𝑅𝐶]

𝑑𝑡
= −𝑘𝑓𝑝𝑘𝑎[𝑅𝐶][𝑐𝐴𝑀𝑃]2 + 𝑘𝑏𝑝𝑘𝑎[𝑅][𝐶] − 

𝑘𝐴𝑝−𝑈𝑐ℎ[𝑅𝐶]([𝐴𝑝 − 𝑈𝑐ℎ] − [𝐴𝑝 − 𝑈𝑐ℎ𝑏𝑎𝑠𝑎𝑙]) − 𝑘𝑑𝑝𝑘𝑎[𝑅𝐶]

 

(15) 

[𝑃𝐾𝐴]𝑎𝑐𝑡 = [𝐶] 𝑘𝑏𝑝𝑘𝑎 = (
𝑘𝑏𝑎𝑠𝑝𝑘𝑎

1 +
𝑝𝑅𝐸𝐺
𝑘𝑟𝑒𝑔

)

 

(16) 

𝑑[𝑅𝐸𝐺]

𝑑𝑡
= 𝑘𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛[𝑚𝑅𝑁𝐴𝑅𝐸𝐺][𝐸𝑅𝐾𝑎𝑐𝑡] − 𝜈𝑑𝑟𝑒𝑔(

𝑝𝑅𝐸𝐺

𝑅𝐸𝐺 + 𝐾𝑑𝑟𝑒𝑔
) − 𝑘𝑑𝑠𝑚[𝑅𝐸𝐺]

 

(17) 
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𝑑[𝑝𝑅𝐸𝐺]

𝑑𝑡
= 𝜈𝑟𝑝ℎ𝑜𝑠𝐸𝑅𝐾𝑎𝑐𝑡(

𝑅𝐸𝐺 − 𝑝𝑅𝐸𝐺

𝑅𝐸𝐺 − 𝑝𝑅𝐸𝐺 + 𝐾𝑟𝑝ℎ𝑜𝑠
) − 𝜈𝑑𝑟𝑒𝑔(

𝑝𝑅𝐸𝐺

𝑅𝐸𝐺 + 𝐾𝑑𝑟𝑒𝑔
) − 𝑘𝑑𝑠𝑚[𝑝𝑅𝐸𝐺]

 

(18) 

𝑑[𝑚𝑅𝑁𝐴𝑟𝑒𝑔]

𝑑𝑡
= 𝜈𝑚𝑅𝐸𝐺 − 𝜈𝑑𝑚𝑅𝐸𝐺[5 − 𝐻𝑇] +

𝑚𝑅𝑁𝐴𝑅𝐸𝐺

𝑚𝑅𝑁𝐴𝑅𝐸𝐺 + 𝐾𝑑𝑚𝑟𝑒𝑔
− (𝑚𝑅𝑁𝐴𝑅𝐸𝐺𝐾𝑑𝑚𝑟𝑒𝑔)

 

(19) 

𝑑[𝑅𝑎𝑓]

𝑑𝑡
= −𝑘𝑓−𝑟𝑎𝑓[5 − 𝐻𝑇][𝑅𝑎𝑓] + 𝑘𝑏−𝑟𝑎𝑓[5 − 𝐻𝑇][𝑅𝑎𝑓𝑡𝑜𝑡 − 𝑅𝑎𝑓]

 

(20) 

𝑑(𝑀𝐴𝑃𝐾𝐾)

𝑑𝑡
= −𝑘𝑓,𝑅𝑎𝑓[𝑅𝑎𝑓𝑡𝑜𝑡 − 𝑅𝑎𝑓][

𝑀𝐴𝑃𝐾𝐾

𝑀𝐴𝑃𝐾𝐾 + 𝐾𝑀𝑅
] + 𝑘𝑏,𝑀𝐴𝑃𝐾𝐾[

𝑀𝐴𝑃𝐾𝐾𝑝

𝑀𝐴𝑃𝐾𝐾𝑝 + 𝐾𝑀𝐾
]

 

(21) 

𝑑(𝑀𝐴𝑃𝐾𝐾𝑃𝑃)

𝑑𝑡
= −𝑘𝑓,𝑀𝐴𝑃𝐾𝐾[𝑅𝑎𝑓𝑡𝑜𝑡 − 𝑅𝑎𝑓][

𝑀𝐴𝑃𝐾𝐾𝑝

𝑀𝐴𝑃𝐾𝐾𝑝 + 𝐾𝑀𝑅
] 

−𝑘𝑏,𝑀𝐴𝑃𝐾𝐾[
𝑀𝐴𝑃𝐾𝐾𝑝𝑝

𝑀𝐴𝑃𝐾𝐾𝑝𝑝 + 𝐾𝑀𝐾
]

 

(22) 

𝑑(𝑃𝐸𝑅𝐾)

𝑑𝑡
= 𝑘𝑝ℎ𝑜𝑠,2𝐸𝑅𝐾𝑎𝑐𝑡(1 − 𝑃𝐸𝑅𝐾) − 𝑘𝑑𝑒𝑝ℎ𝑜𝑠,2𝑃ℎ𝑜𝑠𝑃𝐸𝑅𝐾

 

(23) 

𝑑(𝐴𝑝 − 𝑈𝑐ℎ)

𝑑𝑡
= 𝑘𝐴𝑝𝑆𝑦𝑛𝑀𝐴𝑃𝑃𝐾𝑝𝑝(

𝑃𝑝𝑘𝑎
2

𝑃𝑝𝑘𝑎
2 + 𝐾𝑝𝑘𝑎

2 )(
𝑃𝑒𝑟𝑘

2

𝑃𝑒𝑟𝑘
2 + 𝐾𝑒𝑟𝑘

2 ) + 𝑘𝐴𝑝𝑆𝑦𝑛𝑏𝑎𝑠𝑎𝑙 − 𝑘𝑑𝑒𝑔

 

(24) 

4. Results and discussion 

4.1. Full model bifurcation analysis and MNLMPC 

4.1.1. Bifurcation analysis 

The bifurcation analysis was performed using MATCONT and reveals the presence of 2 limit 

points as shown in Figure 1. Although these limit points are in an infeasible region with 5-HT having 

negative values, their presence results in the Utopia solution when the MNLMPC calculations are performed. 

 

Figure 1. Bifurcation diagram indicating limit points. 
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4.1.2. MNLMPC 

The full model represented by Eqs 12–24 were considered and C, MAPKK, RAF, ERK, REG and 

PREG are clubbed together as i i i i i iC REG PREG RAF ERK MAPKK+ + + + ++ . The maximization 

of this objective function yields a value of 41.918 and the minimization of iR  results in a value of 0. 

The MNLMPC calculations were performed by minimizing 

 and resulted in the utopia solution with the objective 

function value being 0 and the obtained control value of 5-HT of 1.242. The profiles are represented in 

Figures 2 and 3. 

 

Figure 2. (a) Full Model MNLMPC ht5 vs t; (b) Full Model MNLMPC c vs t; (c) Full 

Model MNLMPC r vs t; (d) Full Model MNLMPC erk vs t. 

i i i i i iC REG PREG RAF ERK MAPKK+ + + + +

（a） （b）

（c） （d）
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Figure 3. (a) Full Model MNLMPC mapkk vs t; (b) Full Model MNLMPC raf vs t; (c) 

Full Model MNLMPC reg vs t; (d) Full Model MNLMPC preg vs t. 

4.1.3. MNLMPC for model PKA activity after exposure to 5-HT and hydrolysis of PKA R-subunits 

by Ap-uch 

The Eqs 12–16 are considered. Here, iC  is maximized and yields a value of 10 and iR  is 

minimized to yield a value of 0. The MNLMPC calculations were performed by minimizing 

2 2( 10) ( 0)i iC R− + −   and yields the Utopia point with the objective function value of 0. 

Unfortunately, the 5-HT profiles exhibited spiked behavior (Figure 4a). This was remedied using a 

tanh activation factor 
(5 ) tanh(5 )HT HT



− −
 , and the spikes were considerably controlled (Figure 4b). 

Even with this correction, the utopia point was obtained and with the objective function value of 0. 

The C vs t profiles are shown in Figure 4c,d. The MNLMPC control value obtained was 0.73. All 

values are positive and there is no upper limit for the variables. 

（a） （b）

（c） （d）
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Figure 4. (a) Pka activity model MNLMPC ht5 vs t without taanh activation factor; (b) 

Pka activity model MNLMPC ht5 vs t with tanh activation factor; (c) Pka activity model 

MNLMPC c vs t without activation factor; (d) Pka activity model MNLMPC c vs t wit 

activation factor. 

4.1.4. MNLMPC for modeling REG and PREG dynamics 

The Eqs 17–19 are considered. Both iREG  and iPREG  are maximized yielding values of 10 

and 9.92 The MLMNPC calculations were performed minimizing 

2 2( 10) ( 9.92)i iREG PREG− + −  . Unfortunately, the 5-HT profiles exhibited spiked behavior 

(Figure 5a). This was remedied using the tanh activation factor 
(5 ) tanh(5 )HT HT



− −
 and the spikes 

were considerably controlled (Figure 5b). The MLMNPC calculations yields the Utopia point with the 

objective function value of 0 and the MNLMPC control value of 5-HT was 2.86. The REG vs t and 

the PREG vs t profiles are shown in Figure 5c,d. 

（b）

（c）

（d）

（a）
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Figure 5. (a) MNLMPC for modelling ht5 vs t without activation factor; (b) MNLMPC 

for modelling ht5 vs t with activation factor; (c) MNLMPC for modelling REG dynamics 

reg vs t with activation factor; (d) MNLMPC for modelling PREG dynamics with 

activation factor. 

4.1.5. MNLMPC for modeling the Raf/MEK/ERK pathway 

Eqs 22–24 are considered. ,i iMAPKK ERK   and ,iRAF  are maximized to yield values of 1, 1 

and 10 respectively. The MLMNPC calculations were performed minimizing

2 2 2( 1) ( 10) ( 1)i i iMAPKK ERK RAF− + − + −   . Unfortunately, the 5-HT profiles exhibited 

spiked behavior (Figure 6a). This was remedied using a tanh activation factor 
(5 ) tanh(5 )HT HT



− −
 

and the spikes were considerably controlled (Figure 6b). This yielded the Utopia point with the 

objective function value of 0, and the MNLMPC control value of 5-HT was 3.206. Figure 6c–e shows 

the ERK, MAPKK, and RAF profiles. 

The full model exhibits limit points and the presence of the limit points guarantees that the Utopia 

solution would be obtained in a MNLMPC calculation. Similar to the MNLMPC calculations for the 

full model that results in the Utopia point, the MNLMPC calculations for the partial models also result 

in the Utopia point. A comparison of Figures 2c and 3c show that the MNLMPC of the full model is 

better than that of the partial model as the value of C ( actPKA ) is higher when the MNLMPC of the 

full model is performed. The lower limit for these values is 0.  

（a） （b）

（c） （d）
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Figure 6. (a) MNLMPC for modelling the Raf/MEK/ERK pathway ht5 vs t no activation 

factor used; (b) MNLMPC for modelling the Raf/MEK/ERK pathway ht5 vs t with 

activation factor used; (c) MNLMPC for modelling the Raf/MEK/ERK pathway erk vs t; 

(d) MNLMPC for modelling the Raf/MEK/ERK pathway mapKK vs t; (e) MNLMPC for 

modelling the Raf/MEK/ERK pathway raf vs t. 

5. Conclusions 

Bifurcation analysis and nonlinear model predictive control was performed for the Pettigrew 

model. The bifurcation analysis revealed the existence of limit points (albeit in the infeasible region). 

The MNLMPC calculations (for both the partial and full models) resulted in the Utopia solution. An 

integration of the bifurcation analysis and MNLMPC revealed that the existence of the limit points 

was beneficial and enabled the MNLMPC calculations to result in the Utopia solution. 

Use of AI tools declaration 

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article. 

（a） （b）

（c） （d）

（e）



278 

AIMS Bioengineering  Volume 11, Issue 2, 266–280. 

Data availability statement 

All data used is presented in the paper. 

Conflict of interest  

The author, Dr. Lakshmi N Sridhar has no conflict of interest. 

References 

1. Smolen P, Baxter DA, Byrne JH (2000) Mathematical modelling of gene networks. Neuron 26: 

567–580. https://doi.org/10.1016/S0896-6273(00)81194-0 

2. Goldsmith JR, Byrne JH (1993) Bag cell extract inhibits tail-siphon withdrawal reflex, suppresses 

long-term but not short-term sensitization, and attenuates sensory-to-motor neuron synapses in 

Aplysia. J Neurosci 13: 1688–1700. https://doi.org/10.1523/JNEUROSCI.13-04-01688.1993 

3. Goldbeter A (2002) Computational approaches to cellular rhythms. Nature 420: 238–245. 

https://doi.org/10.1038/nature01259 

4. Kitano H (2002) Systems biology: A brief overview. Science 295: 1662–1664. 

https://doi.org/10.1126/science.1069492 

5. Song H, Smolen P, Av-Ron E, et al. (2006) Bifurcation and singularity analysis of a molecular 

network for the induction of long-term memory. Biophys J 90: 2309–2325. 

https://doi.org/10.1529/biophysj.105.074500 

6. Sridhar LN (2023) Multi objective nonlinear model predictive control of diabetes models 

considering the effects of insulin and exercise. Archives Clin Med Microbiol 2: 60–69. 

https://doi.org/10.33140/ACMMJ 

7. Pinsker H, Carew TJ, Hening W, et al. (1973) Long-term sensitization of a defensive withdrawal 

reflex in Aplysia californica. Science 182: 1039–1042. 

https://doi.org/10.1126/science.182.4116.1039 

8. Frost WN, Castelluci VF, Hawkins RD, et al. (1985) Monosynaptic connections made by the 

sensory neurons of the gill and siphon-withdrawal reflex in Aplysia participate in the storage of 

long-term memory for sensitization. Proc Natl Acad Sci 82: 8266–8269. 

https://doi.org/10.1073/pnas.82.23.8266 

9. Walters ET (1987) Site-specific sensitization of defensive reflexes in Aplysia: A simple model of 

long-term hyperalgesia. J Neurosci 7: 400–407. https://doi.org/10.1523/jneurosci.07-02-

00400.1987 

10. Walters ET (1987) Multiple sensory neuronal correlates of site-specific sensitization in Aplysia. 

J Neurosci 7: 408–417. https://doi.org/10.1523/jneurosci.07-02-00400.1987 

11. Castellucci VF, Blumenfeld H, Goelet P, et al. (1989) Inhibitor of protein synthesis blocks long-term 

behavioral sensitization in the isolated gill-withdrawal reflex of Aplysia. J Neurobiol 20: 1–9. 

https://doi.org/10.1002/neu.480200102 

12. Cleary LJ, Lee WL, Byrne JH (1998) Cellular correlates of long-term sensitization in Aplysia. J 

Neurosci 18: 5988–5998. https://doi.org/10.1101/lm.045450.117 

https://doi.org/10.1016/S0896-6273(00)81194-0
https://doi.org/10.1523/JNEUROSCI.13-04-01688.1993
https://doi.org/10.1038/nature01259
https://doi.org/10.1126/science.1069492
https://doi.org/10.1529/biophysj.105.074500
https://doi.org/10.33140/ACMMJ
https://doi.org/10.1126/science.182.4116.1039
https://doi.org/10.1073/pnas.82.23.8266
https://doi.org/10.1523/jneurosci.07-02-00400.1987
https://doi.org/10.1002/neu.480200102
https://doi.org/10.1101/lm.045450.117


279 

AIMS Bioengineering  Volume 11, Issue 2, 266–280. 

13. Wright WG, McCance EF, Carew TJ (1996) Developmental emergence of long-term memory for 

sensitization in Aplysia. Neurobiol Learn Mem 65: 261–268. 

https://doi.org/10.1006/Nlme.1996.0031 

14. Levenson J, Byrne JH, Eskin A (1999) Levels of serotonin in the hemolymph of Aplysia are 

modulated by light/dark cycles and sensitization training. J Neurosci 19: 8094–8103. 

https://doi.org/10.1523/JNEUROSCI.19-18-08094.1999 

15. Sutton MA, Ide J, Masters SE, et al. (2002) Interaction between amount and pattern of training in 

the induction of intermediate- and long-term memory for sensitization in Aplysia. Learn Mem 9: 

29–40. https://doi.org/10.1101/lm.44802 

16. Wainwright ML, Byrne JH, Cleary LJ (2004) Dissociation of morphological and physiological 

changes associated with long-term memory in Aplysia. J Neurophysiol 92: 2628–2632. 

https://doi.org/10.1152/jn.00335.2004 

17. Wainwright ML, Zhang H, Byrne JH, et al. (2002) Localized neuronal outgrowth induced by 

long-term sensitization training in Aplysia. J Neurosci 22: 4132–4141. 

https://doi.org/10.1523/JNEUROSCI.22-10-04132.2002 

18. Pettigrew D, Smolen P, Baxter DA, et al. (2005) Dynamic properties of regulatory motifs 

associated with induction of three temporal domains of memory in Aplysia. J Comput Neurosci 

18: 163–181. https://doi.org/10.1007/s10827-005-6557-0 

19. Song H, Smolen P, Av-Ron E, et al. (2006) Bifurcation and singularity analysis of a molecular 

network for the induction of long-term memory. Biophys J 90: 2309–2325 

https://doi.org/10.1529/biophysj.105.074500 

20. Dhooge A, Govearts W, Kuznetsov AY (2003) MATCONT: A MATLAB package for numerical 

bifurcation analysis of ODEs. ACM T Math Software 29: 141–164. 

https://doi.org/10.1145/779359.779362 

21. Dhooge A, Govaerts W, Kuznetsov YA, et al. (2003) CL_MATCONT: A continuation toolbox in 

Matlab. Proceedings of the 2003 ACM Symposium on Applied Computing 161–166. 

https://doi.org/10.1145/952532.952567 

22. KuznetsovYA (1998) Elements of Applied Bifurcation Theory, New York: Springer. 

23. KuznetsovYA (2009) Five Lectures on Numerical Bifurcation Analysis, Utrecht University NL. 

24. Govaerts WJF (2000) Numerical Methods for Bifurcations of Dynamical Equilibria, Society for 

Industrial and Applied Mathematics. 

25. Flores-Tlacuahuac A, Morales P, Riveral-Toledo M. Multiobjective nonlinear model predictive 

control of a class of chemical reactors. Ind Eng Chem Res 51: 5891–5899. 

https://doi.org/10.1021/ie201742e 

26. Sridhar LN (2021) Single and multiobjective optimal control of epidemic models involving 

vaccination and treatment. J Biostat Epidemiol 7: 25–35. https://doi.org/10.18502/jbe.v7i1.6292 

27. Sridhar LN (2023) Bifurcation analysis and optimal control of the Crowley Martin phytoplankton-

zooplankton model that considers the impact of nanoparticles. Explo Mater Sci Res 5: 54–60. 

https://dx.doi.org/10.47204/EMSR.5.1.2023.054-060 

28. Sridhar LN (2020) Multiobjective nonlinear model predictive control of pharmaceutical batch 

crystallizers. Drug Dev Ind Pharm 46: 2089–2097. 

https://doi.org/10.1080/03639045.2020.1847135 

https://doi.org/10.1006/Nlme.1996.0031
https://doi.org/10.1523/JNEUROSCI.19-18-08094.1999
https://doi.org/10.1101/lm.44802
https://doi.org/10.1152/jn.00335.2004
https://doi.org/10.1523/JNEUROSCI.22-10-04132.2002
https://doi.org/10.1007/s10827-005-6557-0
https://doi.org/10.1529/biophysj.105.074500
https://doi.org/10.1145/779359.779362
https://doi.org/10.1145/952532.952567
https://doi.org/10.1021/ie201742e
https://doi.org/10.18502/jbe.v7i1.6292
https://dx.doi.org/10.47204/EMSR.5.1.2023.054-060
https://doi.org/10.1080/03639045.2020.1847135


280 

AIMS Bioengineering  Volume 11, Issue 2, 266–280. 

29. Sridhar LN (2019) Multiobjective optimization and nonlinear model predictive control of the 

continuous fermentation process involving Saccharomyces Cerevisiae. Biofuels 13: 249–264. 

https://doi.org/10.1080/17597269.2019.1674000 

30. Sridhar LN (2022) Single and multiobjective optimal control of the wastewater treatment process. 

Trans Indian Natl Acad Eng 7: 1339–1346. https://doi.org/10.1007/s41403-022-00368-6 

31. Younis A, Dong Z (2023) Adaptive surrogate assisted multi-objective optimization approach for 

highly nonlinear and complex engineering design problems. Appl Soft Comput 150: 111065. 

https://doi.org/10.1016/j.asoc.2023.111065 

32. Younis A, Dong Z (2022) High-fidelity surrogate based multi-objective optimization algorithm. 

Algorithms 15: 279. https://doi.org/10.3390/a15080279 

33. Younis A, Dong Z (2010) Trends, features, and tests of common and recently introduced global 

optimization methods. Eng Optimiz 42: 691–718. https://doi.org/10.1080/03052150903386674 

34. Safari A, Younis A, Wang G, et al. (2015) Development of a metamodel-assisted sampling 

approach to aerodynamic shape optimization problems. J Mech Sci Technol 29: 2013–2024. 

https://doi.org/10.1007/s12206-015-0422-5 

35. Miettinen K (1999) Nonlinear Multiobjective Optimization, Berlin: Springer Science & 

Business Media. 

36. Hart WE, Laird CD, Watson JP, et al. (2017) Pyomo–Optimization Modeling in Python, 2 Eds., 

Berlin: Springer. 

37. Biegler LT (2007) An overview of simultaneous strategies for dynamic optimization. Chem Eng 

Process 46: 1043–1053. https://doi.org/10.1016/j.cep.2006.06.021 

38. Wächter A, Biegler L (2006) On the implementation of an interior-point filter line-search 

algorithm for large-scale nonlinear programming. Math Program 106: 25–57. 

https://doi.org/10.1007/s10107-004-0559-y 

39. Tawarmalani M, Sahinidis NV (2005) A polyhedral branch-and-cut approach to global 

optimization. Math Program 103: 225–249. https://doi.org/10.1007/s10107-005-0581-8 

© 2024 the Author(s), licensee AIMS Press. This is an open access 

article distributed under the terms of the Creative Commons 

Attribution License (https://creativecommons.org/licenses/by/4.0). 

https://doi.org/10.1080/17597269.2019.1674000
https://doi.org/10.1007/s41403-022-00368-6
https://doi.org/10.1016/j.asoc.2023.111065
https://doi.org/10.3390/a15080279
https://doi.org/10.1080/03052150903386674
https://doi.org/10.1007/s12206-015-0422-5
https://doi.org/10.1016/j.cep.2006.06.021
https://doi.org/10.1007/s10107-004-0559-y
https://doi.org/10.1007/s10107-005-0581-8

