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Abstract: Artificial intelligence (AI) has played a major role in recent developments in healthcare, 

particularly in cancer diagnosis. This review investigated the dynamic role of AI in the detection of 

cancer and provides insights into the fundamental contributions of AI in the revolutionization of cancer 

detection methodologies, focusing on the role of AI in radiology and medical imaging and highlighting 

AI’s advancements in enhancing accuracy and efficiency in identifying cancerous lesions. Furthermore, 

it explained the indispensable role of pathology and histopathology in cancer diagnosis, emphasizing 

AI’s potential to augment traditional methods and improve diagnostic precision. Genomics and 

personalized medicine were explored as integral components of cancer detection, illustrating how AI 

facilitates tailored treatment strategies by analyzing vast genomic datasets. Additionally, the discussion 

encompassed clinical decision support systems, explaining their utility in aiding healthcare 

professionals with evidence-based insights for more informed decision-making in cancer detection and 

management. Finally, the review addressed the challenges and future directions in the integration of 

AI into cancer detection practices, highlighting the need for continued research and development to 

overcome existing limitations and realize the full potential of AI-driven solutions in combating cancer. 
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1. Introduction 

As per the report of the World Health Organization (WHO), approximately 10 million people 

globally were affected by cancer in 2020 [1,2]. Breast cancer accounted for 2.26 million cases, lung 

cancer for 2.21 million, rectum and colon cancer for 1.93 million, skin cancer for 1.20 million, and 

stomach cancer for 1.09 million [2]. In India, nearly 2.7 million people are affected by cancer and 

every year, 13.9 one hundred thousand new cancer patients are identified [2]. Overall, according to 

cancer statistics in India (2020), 8.5 one hundred thousand deaths are caused by the cancer. Figure 1 

shows the distribution of cancer-related deaths in both male and female populations for the year 2021. 

Among various cancer types, lung and bronchus cancer reflect a significant proportion of cases. The 

data underscores the critical impact of cancer on public health, highlighting the urgency of targeted 

interventions and research efforts. 

The incidence and complexity of cancer pose a serious threat to world health, necessitating novel 

strategies for earlier identification and better management. A new age in healthcare has begun with the 

introduction of AI, which has shown promising results in cancer detection, diagnosis, and therapy. 

This review paper explores various domains in which AI may be helpful in the identification of cancer, 

emphasizing its benefits for early diagnosis, precise treatment, and patient-centered care. A key 

element determining treatment success and patients’ survival rates is early cancer identification. 

Traditional diagnostic techniques frequently rely on the arbitrary interpretation of pathology and 

radiology scans by individuals. However, AI systems have shown impressive results in improving the 

diagnosis procedure. Deep learning (DL) methods allow AI models to precisely recognize tiny 

irregularities and medical imaging patterns that aid in early detection and lower false negatives [3]. 

These advancements have the potential to impact cancer management and patient prognosis 

significantly. Additionally, AI-driven risk prediction models have emerged as valuable tools for 

identifying individuals at high risk of developing specific cancers. Through the analysis of diverse 

datasets that encompass genetic, lifestyle, and clinical information, AI algorithms can stratify 

individuals based on their susceptibility to certain malignancies. This stratification enables the tailoring 

of personalized screening protocols and preventive interventions, contributing to improved early 

detection rates [4,5]. Precision medicine, another paradigm-shifting concept, relies on the 

understanding of individual patient’s unique genetic and molecular profiles to guide treatment 

decisions. AI’s capability to process large-scale genomic datasets has fueled the discovery of novel 

biomarkers and genetic mutations associated with cancer susceptibility and progression [6,7]. These 

insights empower oncologists to design personalized treatment regimens, thereby increasing the 
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likelihood of therapeutic success and minimizing adverse effects. In addition to diagnostics and 

precision medicine, AI technologies have revolutionized treatment planning and monitoring. Real-time 

analysis of patient data, coupled with machine learning (ML) algorithms, empowers healthcare 

professionals to dynamically adjust treatment strategies based on evolving patient responses [8,9]. 

Such capabilities promote a patient-centric approach to cancer care, optimizing treatment efficacy and 

enhancing the quality of life for individuals undergoing therapy. However, the integration of AI into 

cancer detection is not devoid of challenges. Data privacy concerns, the need for robust validation, and 

the potential biases in algorithmic decision-making warrant careful consideration [10,11]. 

Collaboration between clinicians, data scientists, and regulatory bodies is essential to ensure a 

responsible and ethical development of AI technologies in oncology [12,13]. 

This review article comprehensively explores the multifaceted applications of AI in cancer 

detection, encompassing radiology, pathology, genomics, and clinical decision support systems. By 

examining the current state of the field, addressing challenges, and envisioning future directions, the 

study aims to elucidate the transformative impact of AI on reshaping the landscape of cancer detection 

and care, ultimately contributing to improved patient outcomes. 

 

Figure 1. Comparative analysis of cancer mortality in male and female populations for 2021 [2]. 

2. Overview of the role of artificial intelligence in cancer detection 

The role of AI in cancer detection is becoming increasingly significant due to its potential to 

enhance accuracy and efficiency in the assessment of risk and early diagnosis [2,5–8]. AI tools, 

particularly ML and DL, are revolutionizing the field of oncology by assisting medical professionals 

in identifying cancerous tissues and anomalies with improved precision [3]. The AI algorithms, 

particularly spatial algorithms, leverage data from various cancer diagnostic techniques such as 

magnetic resonance imaging (MRI), computed tomography (CT) scans, and blood tests, enabling 

quicker and more accurate cancer diagnoses compared to traditional methods. Beyond diagnosis, AI 



150 

AIMS Bioengineering  Volume 11, Issue 2, 147–172. 

is employed for treatment planning and patient monitoring, thereby contributing to improved patient 

outcomes. In the realm of cancer detection, AI’s subfield of ML focuses on using data and algorithms 

to learn and predict events with minimal human involvement. This capability finds applications in 

various domains including medical diagnostics, speech recognition, email screening, and more. ML 

algorithms such as random forest, K-nearest neighbors (KNN), and support vector machine (SVM) 

can expedite and enhance cancer identification. For example, the random forest method has 

demonstrated its ability to identify early-stage breast cancer by utilizing imaging data effectively [6]. 

As AI continues to evolve, it holds the promise of further transforming cancer detection and diagnosis, 

optimizing the utilization of medical data to provide timely and accurate insights that benefit both 

patients and medical professionals [14,15]. Figure 2 illustrates the sequential steps required for the 

preparation of a predictive ML model. These steps are crucial to ensure optimal model performance 

and the accurate generalization of predictions to new data. 

2.1. Defining the problem 

The initial step involves precisely articulating the problem that ML is going to address. 

Understanding the core business or research objective and the specific predictions or classifications is 

an essential step. 

2.2. Data collection and preprocessing 

Data serves as the foundation of any ML model. Relevant data should be collected to address the 

identified problem. The data must be clean, organized, and reflective of real-world scenarios. Data 

preprocessing tasks, including cleaning, normalization, and feature extraction may be necessary. 

2.3. Splitting the data 

Dividing the dataset into distinct subsets is crucial. The data is typically divided into training, 

validation, and test sets. The validation set assists in fine-tuning hyperparameters, the test set evaluates 

the final model’s performance on previously unseen data, and the training set is used to train the model. 

2.4. Choosing an algorithm 

Selecting an appropriate ML algorithm depends on the problem type (classification, regression, 

clustering, etc.) and the characteristics of the dataset. Common algorithms such as decision trees, 

random forests, support vector machines, and neural networks can be considered. 

2.5. Building the model 

Once the algorithm is chosen, it is time to implement it using a suitable ML library like scikit-learn, 

TensorFlow, or PyTorch. This involves configuring hyperparameters that control the learning process 

and training the model on the training data. 
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2.6. Validating and tuning 

Validation and tuning are essential steps to refine the model’s performance. Minor adjustments 

to hyperparameters can be made using the validation set. This process, known as hyperparameter 

tuning, helps determine the optimal configuration of settings to enhance the model’s efficacy. 

The steps outlined above provide a comprehensive framework for preparing a cancer detection 

model using ML. By following these steps, one can systematically approach the development of a 

predictive model that aims to detect cancer with accuracy and reliability. From defining the problem 

and data collection to selecting an appropriate algorithm and fine-tuning the model, each step 

contributes to creating a robust and effective cancer detection solution. 

 

Figure 2. Schematic representation of machine learning model structure. 

One common approach is using an ML algorithm to identify patterns indicative of cancer. For 

example, convolutional neural networks (CNNs) can analyze medical images like X-rays and MRI, 

while decision tree or SVM can process the genetic data. These algorithms can help doctors make more 

accurate diagnoses [14,16]. Random forest is an effective algorithm for cancer detection because it can 

capture complex relationships in the data, handle noise, and reduce the risk of overfitting [15,16]. 

Parameter tuning and feature selection are crucial in optimizing the algorithm's performance for 

specific datasets and cancer types. 

DL, as opposed to ML, processes enormous volumes of unstructured data using multi-layered 

structures known as neural networks (NN). Deep learning is a subfield of ML that involves employing 

complex algorithms and deep NN to train a model. Applications for DL are utilized in image 

colorization, self-driving automobiles, and robotics. Deep learning assists in making therapeutic 

decisions and greatly improves the precision with which malignant tumors in the human body are 

detected. GAN (generative adversarial network) is a deep learning model used to improve breast cancer 

identifications by generating synthetic mammographic images for screening purposes. This method 

helps to address the limitations of data scarcity and improves the robustness of detection algorithms [14–16]. 

For example, Rezaei et al. developed a hierarchical GAN method with an ensemble CNN for accurate 

nodule detection in lung cancer diagnosis with a 30% improvement in detection rate [17]. Similarly, 



152 

AIMS Bioengineering  Volume 11, Issue 2, 147–172. 

Alruily et al. introduced a hybrid approach as shown in Figure 3 for augmentation and segmentation 

of breast ultrasound images using GAN to identify blocks and modified Net 3+, showing efficient 

results in both augmentation and segmentation steps [14–16,18]. 

 

Figure 3. Schematics of the methodology block diagram. 

The conventional use of technology in diagnosis includes X-rays, MRIs, CT scans, Position Emission 

Tomography (PET) scans, ultrasounds, and biopsies that are then subjected to microscopic examination. 

Techniques such as cryo-electron microscopy, Infinium assay, robotic surgery, CRISPR (clustered 

regularly interspaced short palindromic repeats), cryoablation, and radiofrequency ablation contemporary 

tools are used for treatment [14–16,19]. Table 1 shows the list of medical devices equipped with AI 

technology that have been approved by the US Food and Drug Administration (FDA) for use in cancer 

radiology-related applications. 

Table 1. Year-wise summary of medical devices equipped with AI technology that have 

been approved by the US FDA for use in cancer radiology-related applications [20]. 

Serial number Year of approval Name of the device Description of the device and its role 

1.  

 

 

2015 

 

 

 

ClearRead CT (Riverain 

Technologies LLC.) 

Providing support for reviewing chest multi-

slice CT scans and identifying potential nodules 

that require a radiologist’s attention. 

2. Transpara (ScreenPoint 

Medical BV) 

Aiding physicians in the interpretation of 

screening mammograms, aiding in the 

identification of suspicious areas indicative of 

breast cancer. 

 Continued on next page 
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Serial number Year of approval Name of the device Description of the device and its role 

3.  

 

2016 

 

 

 

SmartTarget (SmartTarget 

Ltd.) 

Participating in image-guided intervention and 

diagnostic procedures related to the prostate 

gland. 

4. LungQ (Thirona Corp.) Aiding in diagnosing and documenting 

abnormalities in pulmonary tissue images, 

specifically extracted from CT thoracic datasets. 

5.  

 

 

2017 

 

 

 

 

AmCAD-US (AmCad 

BioMed Corporation) 

A software designed to visualize and quantify 

ultrasound image data along with corresponding 

backscattered signals. 

6. QuantX (Quantitative 

Insights) 

An AI-enhanced diagnostic system designed to 

assist in achieving accurate diagnoses of breast 

cancer. 

7. Veye Chest (Aidence BV) Assistance in the detection of pulmonary 

nodules from CT scans. 

8.  

 

 

 

Arterys Oncology DL 

(Arterys) 

An AI-powered, cloud-based medical imaging 

software designed to automatically measure and 

track lesions and nodules in both MRI and CT 

scans. 

9.  

 

 

 

QVCAD (QView Medical 

Inc.) 

An assistance tool aimed at detecting 

mammography-occult lesions in areas that were 

not initially identified as having suspicious 

findings. 

10.  

 

 

HealthMammo (Zebra 

Medical Vision Inc.) 

Processing and analyzing mammograms to 

identify suspected lesions indicative of breast 

cancer. 

11.  

2018 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Arterys Oncology DL 

(Arterys Inc.) 

Assisting in the oncological workflow by aiding 

users in confirming the presence or absence of 

lesions. This application supports anatomical 

datasets such as CT or MRI scans. 

12. AmCAD-UT (AmCad 

BioMed Corporation) 

Providing support in the analysis of thyroid 

ultrasound images. 

13. Mia -Mammography 

Intelligent Assessment 

(KheironMedical 

Technologies Ltd.) 

Offering assistance in the detection of breast 

cancer through the analysis of mammograms. 

14. Arterys MICA (Arterys) A platform powered by AI for the analysis of 

medical images, including MRI and CT scans. 

15. SubtlePET (Subtle 

Medical) 

An AI-driven technology that enables medical 

centers to provide quicker and safer patient 

scanning experiences, simultaneously improving 

exam throughput and provider profitability. 

Continued on next page 
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Serial number Year of approval Name of the device Description of the device and its role 

16.  

 

carriage (CureMetrix) A software utilizing AI for the triage of 

mammography cases. 

17.  

 

 

Deep Learning Image 

Reconstruction (GE 

Medical Systems) 

 

18.  

 

 

 

Auto Lung Nodule 

Detection (Samsung 

Electronics Co. Ltd. (parent 

company: Samsung Group) 

Breast cancer detection for diagnostic support 

from mammograms. 

19.  

 

JPC-01K (JLK Inspection 

Inc.) 

Offering diagnostic support through the 

detection of prostate cancer using MRI. 

20.  

 

 

 

syngo.Breast Care 

(Siemens Healthcare 

GmbH (parent company: 

Siemens AG)) 

Providing interpretation and reporting services 

to offer diagnostic support using mammograms. 

21.  

2019 

 

 

Aquilion ONE (TSX-

305A/6) V8.9 with AiCE 

(Canon MedicalSystems 

Corporation) 

A device capable of capturing and displaying 

cross-sectional volumes of the entire body, 

including the head, with the unique ability to 

image whole organs within a single rotation. 

22.  

 

 

 

ProFound AI for Digital 

Breast Tomosynthesis 

(iCAD Inc.) 

A software device for computer-assisted 

detection and diagnosis (CAD) designed to aid 

in the interpretation of digital breast 

tomosynthesis (DBT) exams. 

23.  

 

 

 

RayCare 2.3 (RaySearch 

Laboratories) 

An oncology information system is utilized to 

facilitate workflows, scheduling, and the 

management of clinical information for 

oncology care and post-treatment monitoring. 

24.  

 

Breast-SlimView (Hera-MI 

SAS) 

Providing diagnostic support by detecting breast 

cancer through the analysis of mammograms. 

25.  

 

Vara (Merantix Healthcare 

GmbH) 

Assistance in breast cancer screening and triage 

through the analysis of mammograms. 

26.  

 

 

 

ProFound AI Software 

V2.1 (iCAD) 

A Computer aided design (CAD) software 

device was developed to be used simultaneously 

by interpreting physicians during the assessment 

of DBT images. 

Continued on next page 
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Serial number Year of approval Name of the device Description of the device and its role 

27.  

 

 

 

2019 

 

 

Transpara (ScreenPoint 

Medical) 

A device designed to assist physicians 

concurrently while interpreting screening 

mammograms from compatible Full Field 

Digital Mammography (FFDM) systems. Its 

purpose is to help identify regions that appear 

suspicious for breast cancer and evaluate the 

likelihood of malignancy. 

28.  

 

 

QyScore software 

(Qynapse SAS) 

Automating the process of labeling, visualizing, 

and quantifying the volumes of segmentable 

brain structures and lesions from MRI images. 

29.  

 

 

JBD-01K (JLK Inspection 

Inc.) 

Providing diagnostic support through the 

detection of breast cancer using mammograms. 

30.  

 

 

 

 

 

 

 

 

2020 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

InferRead CT Lung 

(Beijing Infervision 

Technology Co. Ltd.) 

A tool designed for lung cancer screening and 

management through the analysis of CT scans. 

31. b-box (X-rays GmbH) Evaluating the quality of mammography images 

and determining breast density using 

mammograms. 

32. densitasAI (Densitas Inc.) Offering support for the assessment of breast 

density using mammograms. 

33. Broncholab (Fluidda Inc) Aiding in diagnosing and documenting 

abnormalities in pulmonary tissue images 

obtained from CT thoracic datasets. 

34. Syngo.CT Lung CAD 

(Siemens Medical Solutions 

Inc. (parent company: 

Siemens AG)) 

Aiding in the detection of solid pulmonary 

nodules while reviewing multi-detector 

computed tomography (CT) exams of the chest. 

35. Genius AI Detection 

(Hologic, Inc.) 

A software device designed to detect potential 

abnormalities in breast tomosynthesis images. 

36. MammoScreen (Therapixel 

SA) 

Assisting in the identification of findings on 

screening FFDM acquired with compatible 

mammography systems and evaluating the level 

of suspicion associated with them. 

37. Visage Breast Density 

(Visage Imaging) 

The software application is designed to be 

utilized alongside compatible full-field digital 

mammography systems, supporting radiologists 

in evaluating breast tissue composition. 

38.  

 

 

Imagio Breast Imaging 

System (Seno Medical 

Instruments, Inc.) 

Enables an enhanced classification of breast 

masses in comparison to using ultrasound alone, 

incorporating AI-based software 

Continued on next page 
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3. Role of radiology and medical imaging in cancer detection 

Mainly, there are six imaging modalities available to treat human cancer: X-ray, PET, optical 

imaging, single-photon emission computed tomography (SPECT), Ultrasound (US), and MRI. Table 2 

discusses the methods that play an important role in the detection of the infected part or organ where 

cancer cells are located. The use of AI has emerged as a transformative force in radiology and medical 

imaging, reshaping how medical professionals interpret and analyze complex imaging data. AI-driven 

Serial number Year of approval Name of the device Description of the device and its role 

39. 

 

 

 

 

Vivo Software Application

 (DiA Imaging 

Analysis Ltd.) 

It provides an objective automated AI-based 

ejection fraction analysis. 

  

 

 

 

 

2021 

 

 

 

Vivo Software Application

 (DiA Imaging 

Analysis Ltd.) 

It provides an objective automated AI-based 

ejection fraction analysis. 

 

40. 

 

 

Vantage Galan 3T, MRT-

3020, V6.0 with AiCE 

Reconstruction Processing 

Unit for MR Canon 

Medical Systems 

Corporation 

Advanced intelligent Clear IQ Engine (AiCE) 

MRI deep learning reconstruction has been used 

for the construction of MR images. 

41.  

 

 

 

 

GI Genius Cosmo Artificial 

Intelligence - AI Ltd 

It helps physicians detect colorectal polyps of 

various sizes, shapes, and morphologies. 

42. Chest-CAD Imagen 

Technologies, Inc 

The average clinician missed the spot or showed 

a misinterpretation rate of 47%. This helps to 

identify the spot by using AI. 

43.  

 

 

 

 

Precise Image (Philips 

Medical Systems 

Nederland, B.V.) 

AI-powered reconstruction algorithm designed 

for the low radiation dose, which helps to 

improve the image appearance that closely 

resembles filtered back projection (FBP) at a 

higher dose.  

44.  

 

 

2022 

 

Contour ProtegeAI MIM 

Software Inc. 

It uses the machine learning algorithms for 

processing of CT images. 

45. Deep Learning Image 

Reconstruction GE 

Medical Systems 

It uses the deep learning imaging reconstruction 

algorithm trained to eliminate image noise by 

leveraging MRI raw data. 

46.  

 

 

 

 

 

 

 

Ingenia, Ingenia CX, 

Ingenia Elition, Ingenia 

Ambition, MR 5300 and 

MR 7700 MR Systems 

Philips Medical Systems 

Nederland B.V. 

It enables physicians to obtain cross-sectional 

and spectroscopic images. 

47. Brainomix 360 Triage ICH 

Brainomix Limited 

It is a notification tool that provides real-time 

alerts to clinicians. 
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algorithms offer the potential to enhance accuracy, efficiency, and diagnostic capabilities across a 

range of imaging modalities. In diagnostic radiology, AI aids in detecting and characterizing anomalies, 

from subtle lesions to intricate patterns, by leveraging DL techniques that learn from vast datasets. For 

instance, AI-powered systems have demonstrated remarkable performance in detecting abnormalities 

in chest X-rays, aiding in the early diagnosis of conditions like pneumonia and lung cancer. Recently, 

Google Health has developed a deep learning model that can distinguish between normal and abnormal 

chest radiographs across multiple datasets, including tuberculosis and COVID-19 cases [21]. 

Additionally, AI assists in the triage and prioritization of cases, optimizing workflow and improving 

patient care [22–25]. In medical imaging, AI holds potential in advanced modalities such as MRI 

and CT [26]. Zou et al. developed a new framework for dynamic reconstruction of MRI images. This 

framework splits the under-sample k-space measurements into two sub-datasets and uses them as 

inputs for two neural networks that pose the same structure but different weights [27]. Similarly, 

Artesani et al. explored the use of AI to revolutionize PET imaging. The study focuses on enhancing 

image quality, denoising, attenuation map generation, and quantification using deep learning 

techniques. Applications include cancer diagnosis and therapy, neurology, and cardiology [28]. AI 

algorithms are employed to enhance image quality, reduce artifacts, and expedite image reconstruction. 

Moreover, AI-driven image segmentation aids in the precise delineation of anatomical structures and 

assists in treatment planning, particularly in radiation therapy and surgical interventions. While the 

integration of AI in radiology offers transformative benefits, it also raises considerations related to 

algorithm robustness, clinical validation, and ethical implications, necessitating close collaboration 

between radiologists, data scientists, and regulatory bodies to harness AI’s potential effectively [29,30]. 

AI integration into radiology and medical imaging has the potential to revolutionize clinical practice, 

enhancing diagnostic accuracy, optimizing workflows, and ultimately improving patient outcomes. 

However, continued research, validation, and responsible implementation remain essential for 

unlocking AI’s full potential in this field. 

Table 2. Methods involved in the detection of cancer. 

Imaging 

method 

Application Advantages Disadvantages References 

X-ray X-rays are commonly used 

to detect tumors, bone 

abnormalities, and other 

abnormalities in the body. 

They are often used in 

combination with other 

imaging techniques to 

provide a more 

comprehensive view. 

High sensitivity and specificity for 

detecting metabolic changes in 

cancer cells. 

Provides quantitative data on 

tracer uptake, aiding in 

treatment response assessment. 

Can be combined with 

computed tomography 

(PET/CT) for precise 

anatomical localization. 

Widely used for staging, 

restaging, and monitoring 

therapy response. 

Limited spatial resolution 

compared to other imaging 

modalities. 

Requires the use of a cyclotron 

for on-site production of short-

lived radionuclides. 

Radiation exposure to patients 

and healthcare professionals 

due to the use of radionuclides. 

Malik et 

al., 2023 

and 

Miwa et 

al., 2017 

[31,32] 

   Continued on next page 
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Imaging 

method 

Application Advantages Disadvantages References 

MRI 

 

MRI uses a strong 

magnetic field and radio 

waves to produce images of 

the body’s internal 

structure. MRI is valuable 

for imaging soft tissues and 

can provide information 

about the extent and 

location of tumors. 

 

Excellent soft tissue contrast, 

allowing for detailed 

anatomical visualization. 

No ionizing radiation, making 

it safer for repeated imaging. 

Can provide functional 

information through 

techniques like diffusion-

weighted imaging (DWI) and 

dynamic contrast-enhanced 

MRI (DCE-MRI). 

Suitable for imaging various 

parts of the body. 

Relatively long imaging times 

can be challenging for some 

patients. 

Expensive equipment and 

higher operational costs. 

Limited availability in some 

regions. 

Aisen et 

al., 1986 

and 

Siegel, 

2001 

[33,34] 

Ultrasou

nd 

Ultrasound uses high-

frequency sound waves to 

create images of internal 

structures. It is commonly 

used to assess the size and 

characteristics of tumors, 

guide biopsies, and monitor 

treatment responses. 

Real-time imaging with no 

ionizing radiation exposure. 

Non-invasive and widely 

available. 

Relatively low cost compared 

to other imaging modalities. 

Suitable for guiding biopsies 

and minimally invasive 

procedures. 

Limited penetration through 

bone and air-filled structures. 

Limited ability to visualize soft 

tissues in deep body regions. 

Operator-dependent and 

potential for variability in 

image quality. 

Fischero

va et al., 

2011 

[35] 

PET PET scans involve 

injecting a small amount of 

radioactive material into 

the body, which 

accumulates in areas with 

high metabolic activity 

(such as cancer cells). The 

PET scanner detects the 

radiation emitted by the 

material and produces 

images that highlight these 

active areas. A PET scan is 

often combined with a CT 

scan (PET/CT) for more 

accurate localization. 

High sensitivity and specificity 

for detecting metabolic 

changes in cancer cells. 

Provides quantitative data on 

tracer uptake, aiding in 

treatment response assessment. 

Can be combined with 

computed tomography 

(PET/CT) for precise 

anatomical localization. 

Widely used for staging, 

restaging, and monitoring 

therapy response. 

Limited spatial resolution 

compared to other imaging 

modalities. 

Requires the use of a cyclotron 

for on-site production of short-

lived radionuclides. 

Radiation exposure to patients 

and healthcare professionals 

due to the use of radionuclides. 

Czernin 

et al., 

2002 

[36] 

   Continued on next page 
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Imaging 

method 

Application Advantages Disadvantages References 

SPECT SPECT is a nuclear 

medicine imaging 

technique that provides 

three-dimensional images 

of the distribution of 

radioactive substances in 

the patient's bloodstream. 

The radiotracer emits 

gamma rays, which are 

detected by a gamma 

camera as the patient is 

positioned within the 

SPECT scanner. SPECT is 

particularly useful for 

imaging internal organs 

and tissues, and it has 

applications in cancer 

detection and staging.  

Useful for functional imaging 

of specific organs and tissues. 

Provides valuable information 

on perfusion, blood flow, and 

receptor expression. 

Can be used with a variety of 

radiopharmaceuticals for 

different applications. 

Lower spatial resolution 

compared to PET or CT. 

Longer imaging acquisition 

times compared to PET. 

Limited sensitivity in detecting 

low-level tracer uptake. 

Keown 

et al., 

2020 

[37] 

Sentinel 

lymph 

node 

mapping 

In cancer staging, sentinel 

lymph nodes (the first 

lymph nodes to receive 

drainage from a tumor) are 

crucial indicators of cancer 

spread. Radioactive tracers 

are injected near the tumor, 

and nuclear imaging helps 

identify and biopsy these 

nodes, aiding in accurate 

staging. 

Minimally invasive technique 

for identifying sentinel lymph 

nodes. 

Helps avoid unnecessary 

lymph node dissection in 

certain cancers. 

Accurate staging of cancer 

spread through lymphatic 

pathways. 

May result in false negatives 

due to the possibility of 

missing metastatic nodes. 

In certain cases, sentinel nodes 

may not accurately represent 

the overall lymph node status. 

Manca et 

al., 2016 

and 

Petousis 

et al., 

2022 

[38,39] 

Mammo

graphy 

Mammography is a widely 

used technique for breast 

cancer detection and 

screening. It involves X-

ray imaging of the breast 

tissue to identify 

abnormalities such as 

masses or 

microcalcifications that 

may indicate the presence 

of cancer. 

Effective for detecting breast 

cancer at early stages, 

especially in older women. 

Wide availability and 

established screening 

programs. 

Relatively low radiation 

exposure. 

Can detect small calcifications 

associated with early breast 

cancers. 

Limited sensitivity in dense 

breast tissue, especially in 

younger women. 

Potential discomfort during 

compression for some patients. 

May result in false positives 

that require additional testing 

and anxiety. 

Pisano et 

al., 2006 

[40,41] 

Continued on next page 
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Imaging 

method 

Application Advantages Disadvantages References 

Thermog

raphy 

Thermography detects 

changes in skin 

temperature, and it has 

been explored as an 

adjunctive tool for breast 

cancer screening. Increased 

blood flow and metabolic 

activity in tumors can cause 

temperature differences, 

which thermography aims 

to visualize. 

Non-invasive and no ionizing 

radiation exposure. 

Can detect temperature 

changes associated with 

increased blood flow in some 

tumors. 

Can be used as an adjunctive 

tool for breast cancer detection. 

Limited sensitivity and 

specificity compared to other 

imaging modalities. 

Variability in results due to 

external factors like room 

temperature. 

Not widely accepted as a 

primary screening tool due to 

its limitations. 

Arora et 

al., 2008 

[42] 

Microsco

py 

Microscopy, including 

light microscopy and 

electron microscopy, is 

used for detailed 

examination of tissue 

samples obtained through 

biopsies. It provides 

insights into cellular and 

tissue morphology, helping 

pathologists identify 

cancerous changes and 

characterize tumors. 

Provides high-resolution 

imaging of tissue samples at 

the cellular and subcellular 

level. 

Can reveal detailed 

morphological and histological 

information. 

Important for diagnostic 

confirmation and 

understanding tumor 

characteristics. 

Invasive technique requiring 

tissue samples (biopsies). 

Limited to ex vivo analysis and 

may not capture dynamic 

processes. 

Labor-intensive and time-

consuming for comprehensive 

analysis. 

Kumar et 

al., 2014 

and 

Mills et 

al., 2006 

[43,44] 

Radionuc

lide bone 

scans 

Bone scans using 

radiolabeled 

bisphosphonates or 

phosphonates help detect 

metastatic bone disease. 

They can identify areas of 

increased bone turnover, 

indicating the presence of 

cancer metastases. 

Sensitive for detecting bone 

metastases and assessing 

overall skeletal health. 

Allows visualization of 

multiple skeletal sites in a 

single scan. 

Can provide early detection of 

bone metastases before they 

become symptomatic. 

Limited anatomical detail 

compared to CT or MRI. 

Cannot distinguish between 

active cancer lesions and non-

malignant conditions like 

arthritis. 

High sensitivity can lead to 

false-positive findings. 

Coleman 

et al., 

2001 

[45] 

Thyroid 

cancer 

imaging 

Radioactive iodine (iodine-

131) is used to diagnose 

and treat thyroid cancer. 

Thyroid cancer cells take 

up iodine, allowing for 

imaging and targeted 

treatment. 

Effective for imaging thyroid 

tissue and thyroid cancer 

metastases. 

Allows for targeted therapy 

using radioactive iodine-131. 

Limited application to thyroid 

and thyroid-related conditions. 

The long half-life of iodine-

131 requires special 

precautions for patient and 

public safety. 

Not suitable for cancers that do 

not take up iodine, such as 

some types of thyroid cancer. 

Jin et al., 

2018 and 

Brose et 

al., 2012 

[46,47] 

   Continued on next page 
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Imaging 

method 

Application Advantages Disadvantages References 

Peptide 

receptor 

radionucl

ide 

therapy 

(PRRT) 

PRRT involves targeting 

cancer cells that 

overexpress specific 

receptors with radiolabeled 

peptides. It is used for 

neuroendocrine tumors and 

some types of prostate 

cancer. 

Targets specific receptors on 

cancer cells, reducing damage 

to normal tissues. 

Can provide palliative 

treatment for certain types of 

neuroendocrine tumors. 

Offers a personalized approach 

to cancer treatment. 

Limited to tumors that express 

the specific receptors targeted 

by the radiolabeled peptides. 

Long imaging and treatment 

times due to the radioactive 

decay of the radionuclides. 

Potential side effects related to 

radiation exposure and peptide 

therapy. 

Strosber

g et al., 

2017 

[48] 

4. Pathology and histopathology for cancer detection 

In histopathology, the examination of tissue specimens for cancer diagnosis and grading has 

traditionally been a labor-intensive process (Figure 4). AI-driven algorithms have significantly 

expedited this process by automating tasks such as tumor segmentation, cell classification, and 

identification of histological features [5]. Table 3 represents the list of pathology tools used for the 

detection of cancer. DL models trained on extensive pathological image datasets have demonstrated 

comparable performance to expert pathologists in diagnosing various cancers, including breast, lung, 

and prostate cancers [5,49]. The integration of AI into pathology not only accelerates diagnosis but 

also enhances consistency and reduces inter-observer variability, thereby contributing to improved 

patient care [49]. 

Recent advancements in AI have led to the development of computer-aided CAD systems that 

assist pathologists in identifying subtle morphological patterns indicative of malignancy [5,49]. These 

AI systems can highlight regions of interest, such as potential tumor areas, for pathologists to review, 

enhancing their efficiency and accuracy. Moreover, AI-powered algorithms aid in predicting disease 

prognosis and guiding treatment decisions based on histopathological features [49]. By analyzing a 

multitude of data points within pathology slides, AI provides valuable insights into disease progression, 

enabling more informed and personalized therapeutic strategies. 
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Figure 4. Standard histological staining relies on laborious chemical-based tissue 

processing and labeling steps. Pre-trained deep neural networks enable the virtual 

histological staining of label-free samples as well as the transformation from one stain type 

to another, without requiring any additional chemical staining procedures. Reproduced 

from Ref. [5] with permission. 
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Table 3. List of pathology tools used for the detection of cancer. 

Tool/modality Description Limit of detection Applications Reference 

Histopathology Examination of 

tissues under a 

microscope to 

identify disease. 

Single cells Tissue analysis for 

various cancers. 

[50] 

Cytology Study of individual 

cells to detect 

abnormalities. 

Single cells Screening for 

cervical and other 

cancers. 

[51] 

Immunohistochemistry 

(IHC) 

Use of antibodies to 

detect specific 

antigens in cells of a 

tissue section. 

Protein expression 

levels 

Determining cancer 

subtypes and 

prognosis. 

[50] 

Molecular pathology Study of molecules 

within organs, 

tissues, or bodily 

fluids. 

Varies by assay Genetic mutations, 

gene expression. 

[52] 

Genetic testing Analysis of DNA, 

RNA, 

chromosomes, 

proteins, and certain 

metabolites. 

Single nucleotide 

changes 

Hereditary cancer 

syndromes, targeted 

therapy decisions. 

[52] 

Liquid biopsy A non-invasive test 

that detects cancer 

cells or their DNA 

in blood. 

Circulating tumor 

DNA 

Monitoring, early 

detection of cancer. 

[51] 

Tumor marker tests Blood tests can help 

to identify the 

presence of certain 

types of cancer. 

Varies by marker Prognosis, 

monitoring 

treatment response. 

[52] 

5. Genomics and personalized cancer medicine 

The field of cancer genomics has benefited immensely from AI-driven data analysis. Large-scale 

genomic datasets, encompassing information on genetic mutations, gene expression, and molecular 

pathways, have provided a wealth of information for understanding cancer biology and identifying 

potential therapeutic targets [53]. AI algorithms excel in identifying subtle genetic patterns associated 

with cancer predisposition, allowing for the identification of individuals at higher risk of developing 

specific cancers. Furthermore, AI-powered models enable the identification of biomarkers that predict 

treatment response and guide the selection of targeted therapies, leading to more effective and 

individualized treatment strategies [15,54–58]. As an example of AI’s impact on cancer genomics, 

researchers have employed ML algorithms to analyze genomics data and identify driver mutations in 

cancer genomes [59]. These driver mutations play a crucial role in the initiation and progression of 

cancer. AI’s ability to shift through vast genomic datasets has accelerated the identification of rare and 

previously unknown mutations that contribute to cancer development [60]. 



164 

AIMS Bioengineering  Volume 11, Issue 2, 147–172. 

Additionally, AI has been pivotal in deciphering complex gene expression patterns that 

characterize different cancer subtypes [61]. By categorizing patients based on the unique molecular 

signatures of their tumors, AI algorithms assist in tailoring treatment regimens that align with the 

genetic makeup of the tumor and the patient's predicted response [62]. Similarly, multi-omics is an 

integrative approach that examines the datasets of various “omic” layers, such as genomics, proteomics, 

and metabolomics, to gain a comprehensive understanding of biological processes and disease 

mechanisms. This approach is pivotal in personalized medicine as it allows for the analysis of how 

genes, proteins, and other molecules interact within a cell or organism, and how these interactions are 

altered in disease states [63,64]. Recently, multi-omics and AI have been used for the advancement of 

personalized medicine, detecting novel subtypes, and predicting treatment responses. Wang et al. 

introduced AI to analyze multi-omics data from breast cancer patients. They found novel cancer 

subtypes with distinct therapeutic exposure, opening a new way for targeted therapies based on an 

individual's specific cancer biology condition. The combined power of multi-omics and AI holds 

immense promise for revolutionizing healthcare towards a more personalized and effective approach. 

6. Clinical decision support systems in cancer detection 

AI-driven clinical decision support systems have gained prominence in guiding treatment 

planning and patient management. These systems utilize patient data, including clinical history, 

imaging results, and molecular profiles, to assist oncologists in making informed decisions about 

treatment options [65]. ML algorithms analyze patient-specific data to predict treatment responses, 

adverse effects, and disease progression, facilitating personalized and adaptive treatment plans [66,67]. 

Such real-time insights optimize therapeutic efficacy and minimize unnecessary interventions, 

ultimately enhancing patient quality of life. Moreover, AI’s potential is not limited to primary diagnosis; 

it extends to image-guided interventions. AI-powered image registration and fusion techniques 

enhance the precision of minimally invasive procedures, enabling accurate targeting of tumors and 

reducing the risk of complications [68]. For instance, AI-driven navigation systems enhance the 

accuracy of needle biopsies and radiofrequency ablations, improving the success rates of these 

procedures [9]. These innovations underscore AI’s role in bridging the gap between diagnostics and 

treatment, revolutionizing the continuum of cancer care. 

In addition to treatment decisions, AI aids in prognosis assessment. By analyzing multi-modal 

patient data, including imaging, clinical reports, and genomics, AI models can provide prognostic 

insights for cancer outcomes, helping clinicians understand disease trajectories and tailor follow-up 

strategies [69]. Furthermore, AI assists in the discovery of potential therapeutic targets by analyzing 

intricate interactions within molecular pathways and identifying druggable vulnerabilities in cancer 

cells [70]. Through integration with high-throughput technologies, AI expedites drug discovery and 

development, potentially leading to novel therapeutic agents with enhanced efficacy and reduced side 

effects [3].  

The AI-assisted clinical decision support system can enhance the performance of screening 

mammography images in the identification of cancer and non-cancerous cells. Dembrower et al. 

identified that when AI is combined with radiologists, an increase of 21% is observed in the number 

of examinations with abnormal interpretation [71]. The study noted that AI and human experts can 

perceive different image features as cancer cells. Hence, the combination of AI and radiologists can 

increase the sensitivity of the detection of cancer [71]. Fan et al. explored the use of AI in detecting 
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hematological cancers such as leukemia and lymphoma from digitalized images of peripheral blood 

films [72]. 

7. Challenges and future directions in the role of artificial intelligence in cancer detection 

While the potential of AI in cancer detection is substantial, a lot of challenges persist in AI-driven 

healthcare systems. Ethical considerations, data privacy concerns, and algorithm bias necessitate 

vigilant oversight and collaboration among healthcare professionals, data scientists, and regulatory 

bodies [73,74]. The security and confidentiality of patients are major and challenging issues in AI-driven 

healthcare systems. The frequency of unauthorized access and data breaches has shown a significant 

spike in recent decades and can hurt this ecosystem. The guidelines need to be established by the 

concerned authorities across the globe, which should also lead to accountability at each level. Also, 

ethical concerns regarding the application of AI tools pose a serious issue in front of society. The 

recommendations made by the AI tools need to be critically evaluated by clinical experts before 

implementation for the best interests of the patients [75]. 

The major challenge of AI in cancer diagnosis is the lack of standardization of algorithms with 

data analysis and collection. It is very difficult to compare the results across different studies, which 

hinders the development of reliable algorithms. The requirement for transparent and interpretable AI 

models presents another difficulty [76]. The algorithms exhibit bias that, many times, gets amplified 

by using AI tools, which is a serious challenge in AI-driven healthcare systems. The AI algorithm that 

gets trained on some specific population does not necessarily perform best for other populations 

present in some different regions [77]. There can be several levels at which AI algorithms can be 

improved, such as data collection and preparation methods, model development and validation, model 

deployment in a clinical environment, types of patients, and regions of the deployment [78]. There is 

a requirement for more studies that discuss this challenging issue and suggest some level at which the 

biases in models can be accepted. The data collection methods favoring certain types of populations 

may also lead to bias in the model. It must be ensured that the training dataset of the ML model has 

representation from all populations to reduce the disparities in the result. The validation of results 

obtained from the model must be thoroughly examined across diverse classes or populations to reduce 

the bias in the model outcome. 

For clinicians to trust AI models and use them in clinical decision-making, they must be able to 

explain how the models arrived at their diagnosis of cancer. The generalizability of AI algorithms 

across diverse patient populations and healthcare settings is crucial to ensure equitable access to AI-powered 

diagnostic tools [73,79]. Furthermore, efforts to enhance algorithm interpretability and address issues 

related to transparency and trust are imperative for widespread clinical adoption [80,81]. One major 

obstacle to AI research and algorithm development has been the absence of big, publicly available, 

well-annotated cancer datasets. Validation and reproducibility in cancer research are hampered by the 

absence of benchmarking datasets. Another difficulty is creating reliable algorithms that can manage 

complicated data [79]. The validation and reproducibility of AI-driven cancer research can be 

promoted by incorporating open data-sharing policies by various research facilities and institutions 

working across the globe on AI-based cancer detection. Collaborative research among doctors and the 

scientific community can lead to innovative solutions to the problem of cancer detection using AI tools. 

The domain of AI-based cancer detection faces several constraints such as regulatory compliance, 

inflexible healthcare systems, and difficulties in practical implementations. The absence of 
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frameworks for the standardization of cancer-related health data also presents a significant obstacle in 

the development of AI models [79].  

Despite several challenges and limitations, the use of AI in cancer detection has a bright future 

ahead. AI can, for instance, be used to evaluate vast volumes of data from many sources, such as 

imaging, proteomics, and genetic data, to find novel biomarkers for the diagnosis and treatment of 

cancer. AI is also capable of creating customized treatment programs according to a patient's individual 

genetic profile and medical background. Additionally, by lowering false positives and false negatives, 

AI can be used to increase the accuracy of cancer screening procedures like mammography and 

colonoscopy [82]. 

8. Conclusions 

AI in oncology has catalyzed a paradigm shift, guiding in a new era of cancer detection, diagnosis, 

and treatment. Its applications across various domains such as radiology, pathology, genomics, and 

clinical decision–support systems hold immense promise in reshaping patient care and outcomes. 

Beyond just augmenting human capabilities, AI is fundamentally modifying the healthcare landscape 

by enabling precise and efficient analysis of medical images, genetic intricacies, and treatment 

responses. These capabilities not only rationalize the diagnostic process but also revolutionize 

treatment strategies. AI-powered risk-prediction models and advanced imaging techniques enable 

clinicians to detect cancer at its earliest stages, significantly improving survival rates and patient 

prognosis. Moreover, the arrival of precision medicine driven by AI allows the customization of 

interventions based on individual genetic and molecular profiles, optimizing treatment efficacy while 

minimizing adverse effects and enhancing overall quality of life. However, to fully realize the potential 

of AI in clinical practice, several challenges must be addressed, including ensuring data privacy, 

mitigating biases in algorithmic decision-making, and maintaining transparency and accountability. 

As AI technologies continue to evolve, the implementation of explainable AI, robust validation 

protocols, and ethical guidelines will be pivotal in fostering responsible and widespread adoption of 

AI-powered solutions in oncology. 

Collaborative efforts among healthcare stakeholders, data scientists, and regulatory bodies are 

essential for advancing AI’s role in cancer detection and facilitating patient-centered care. In 

conclusion, the integration of AI in cancer detection represents a transformative moment in healthcare. 

By leveraging AI to enhance early diagnosis, tailor treatment strategies, and improve patient outcomes, 

we can redefine the approach to cancer care and move towards a future where timely interventions and 

personalized treatments are the standard of care. 
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