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Abstract: This study presented a new approach to seizure classification utilizing
electroencephalogram (EEG) data. We introduced the NeuroWave-Net, an innovative hybrid
model that seamlessly integrates convolutional neural networks (CNN) and long short-term
memory (LSTM) architectures. Unlike conventional methods, our model capitalized on CNN’s
proficiency in feature extraction and LSTM’s prowess in classifying seizure. The key strength of the
NeuroWave-Net lies in its ability to combine these distinct architectures, synergizing their capabilities
for enhanced accuracy in identifying seizure conditions within EEG data. Our proposed model
exhibited outstanding performance, achieving a classification accuracy of 99.48%. This study
contributed to the advancement of seizure classification models, providing a robust and streamlined
approach for accurate categorization within EEG datasets. NeuroWave-Net stands as a testament to
the potential of hybrid neural network architectures in neurological diagnostics.
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electroencephalography; C-LSTM: Contextual long short-term memory; BiLSTM: Bidirectional long
short-term memory; ReLU: Rectified linear unit; Conv1D: 1D convolution layer

1. Introduction

The term “seizure” finds its origins in ancient Greek, signifying the act of taking hold. According to
Fisher et al.[1], an epileptic seizure is a temporary manifestation of signs and symptoms attributed to
abnormal and excessive neuronal activity in the brain. To be classified as epileptic, an individual must
have experienced more than one epileptic seizure. Seizures possess a distinct and definable onset and
conclusion due to their transient nature. Specifically, a partial seizure is characterized by synchronous
neuronal activity originating from a single cerebral hemisphere. Over time, these partial seizures can
progress into generalized seizures, where neuronal discharge emerges from both cerebral hemispheres.
Both generalized seizures and a specific type of partial seizure referred to as partial complex seizures
can result in a loss of consciousness [2].

Seizures can manifest suddenly, placing the individual in a vulnerable state where they cannot
ensure their own safety. Depending on the circumstances, a generalized seizure could potentially be
life-threatening [3]. The associated constraints and unpredictability significantly impact daily life,
potentially leading to adverse psychological effects for the individual. Therefore, the development of
a real-time prediction device holds promise in mitigating anxiety and enabling proactive measures to
reach a safe environment before the onset of a seizure. A majority of models are being developed
based on brain signals obtained through electroencephalography (EEG) [4]. However, the validation
of EEG data containing seizures necessitates clinical authentication by a neurologist, incurring
substantial expenses. Consequently, there is a scarcity of openly accessible data in this critical
domain. Nonetheless, in the past decade, there has been a notable increase in the availability of open
source datasets [5]. These datasets have played a pivotal role in advancing seizure prediction research
within the scientific community, serving as a standardized benchmark for evaluating algorithmic
performance [6]. EEG, a medical apparatus, quantifies the relative potential difference between two
electrodes positioned on the scalp, typically measured in micro-volts (µV). When clusters of neurons
discharge synchronously, they generate electrical fields at the mesoscopic to microscopic scales,
detectable by electrodes situated across different regions of the scalp [7]. The mesoscopic scale
encompasses an area sufficient to span patches of the cortex, while the macroscopic scale can
encompass entire cortical regions. However, activities occurring at the microscopic level, including
the firing of individual neurons, produce weak electrical fields that fall below the detection threshold
of EEG [8]. This limitation arises from the inherent characteristics of electrical fields, which diminish
in strength exponentially with increasing distance. It is crucial to emphasize that comparing raw
voltage data for different patients is discouraged by neurologists due to inherent physiological
variations among patients [9]. Factors such as scalp thickness and procedural disparities in electrode
placement contribute to this diversity, underscoring the necessity for standardized approaches in EEG
analysis for accurate and meaningful comparisons in research and clinical practice. EEG is an
electrophysiological technique used to monitor and record the electrical activity within the brain. The
brain is divided into four main lobes: the frontal lobe, parietal lobe, temporal lobe, and occipital lobe
[10]. These lobes perform distinct functions and emit various rhythmic waves during different actions.
Figure 1 illustrates the visualization of the brain lobes.
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Figure 1. (a) The brain comprises distinct regions known as lobes, namely the frontal
lobe, parietal lobe, occipital lobe, and temporal lobe, each with its unique functions and
characteristics. (b) The 10-20 EEG placement for collecting brain signal data from human
brain.

While numerous studies have explored epilepsy seizure prediction using a variety of machine
learning techniques and deep learning models, a prevalent challenge has been the limitations in model
performance, particularly with the reliance on shallow machine learning models. For instance, in the
work by Zhao et al. [11] on the Bonn dataset, a convolutional neural networks (CNN) model was
applied, achieving a commendable 96.97% accuracy. Conversely, Nishad et al. [12] tackled the same
dataset using an random forest (RF) model, surpassing previous results with an impressive 99%
accuracy. Another research study [13] also achieved 99% accuracy in detecting epilepsy from EEG
signals by leveraging the eigenvalues of the Hankel matrix. Additionally, study [14] focused on
feature optimization through the particle swarm optimization (PSO) algorithm, applying an support
vector machine (SVM) model to the Bonn dataset and achieving a noteworthy 99% in model
performance. Despite these advancements, the overarching limitation persists, as most studies
continue to rely on shallow models.

In our research, we recognize and address these limitations by introducing hybrid deep learning
models. By integrating the strengths of both deep learning architectures and leveraging innovative
techniques, our study aims to significantly enhance predictive accuracy in epilepsy seizure prediction.
The main contributions of this study:

• We utilized the Bonn dataset, a comprehensive repository of brain signal data. This dataset, known
for its relevance and richness in neurological information, served as the foundational resource for
our study.
• Our study systematically assesses the performance of 1D CNN and 2D CNN models on the signal

dataset, providing valuable insights into the effectiveness of each approach.
• We introduce the NeuroWave-Net, a novel model that combines CNN and long short-term

memory (LSTM) architectures with careful hyperparameter tuning. This hybrid model is
designed to optimize performance in analyzing complex datasets.
• Our contribution extends to providing a detailed examination of the proposed NeuroWave-Net,

offering mathematical expressions and pseudocode. This comprehensive analysis facilitates a
deeper understanding of the model and its potential applications.

AIMS Bioengineering Volume 11, Issue 1, 85–109.



88

• To gauge the effectiveness of our proposed model, we conduct a comparative analysis against
published works in the field. This benchmarking exercise helps highlight the strengths and
contributions of our NeuroWave-Net in the context of existing research.

In the methodology section, we present the proposed model of this study. The subsequent
experimental exploration section details the outcomes of the model’s performance. The comparison
section discusses the novelty of our approach and compares it with various published papers.

2. Literature review

In this work [15], the epileptic condition is classified using transfer learning. via the use of two
distinct datasets for benchmarking, namely the iNeuro EEG and CHB-MIT (Children’s Hospital
Boston (CHB) and the Massachusetts Institute of Technology (MIT)) databases. There are several
types of seizures in the dataset. They obtained accuracy of 96.7% and 87.87% for the five state
epileptic classification using CHB-MIT and iNeuro EEG datasets, respectively, by using deep neural
network (DNN) models. The primary aim was to furnish accurate evaluation of intracranial
electroencephalography (iEEG) data in order to facilitate surgical intervention or aid in the treatment
of drug-resistant epilepsy. In the research [16], the effectiveness of the proposed model was validated
using two publicly available benchmark iEEG datasets. In addition, a comprehensive, nonpublic
clinical stereo EEG database was utilized to provide additional validation. The provided sources failed
to furnish specific details regarding the datasets’ titles or sizes. On the Bern-Barcelona database, the
performance evaluation of the proposed multibranch deep learning fusion model yielded noteworthy
results with respect to sensitivity (97.78%), accuracy (97.60%), and specificity (97.42%). The
outcomes of this study surpass the capabilities of presently accessible cutting-edge methodologies.
Furthermore, when implemented on a clinical dataset, the research demonstrated an intra-subject
accuracy of 92.53% and a cross-subject accuracy of 88.03%. The results suggest that the proposed
approach is an effective and robust method for determining the source of (iEEG) data.

The study detailed in this research aimed to pinpoint individuals affected by epileptic seizures and
brain tumors through an analysis of brain signals, as elucidated in this study [17]. The primary thrust
of this investigation revolved around the automated extraction of features to enhance classification
performance. Utilizing the five-class dataset, the researchers deployed the convolutional long
short-term memory (C-LSTM) model to gauge the model’s efficacy. Impressively, the C-LSTM model
exhibited a high accuracy level of 98.80%, showcasing its capability in effectively categorizing the
subjects. What’s noteworthy is its remarkable ability to deliver predictions within 0.006 seconds, with
a detection time as swift as one second. These findings underscore the robustness and swiftness of the
C-LSTM model in accurate and rapid assessments of brain signal data for identifying epileptic
seizures and brain tumors. In the present study [18] the short-time Fourier transform (STFT) was
leveraged to optimize the processing of EEG signal data, significantly enhancing the model’s
efficiency. The study initially involved the application of STFT to analyze time series data, paving the
way for a meticulous focus on feature extraction techniques. Subsequently, the dataset was classified
using both CNN and Bidirectional LSTM (Bi-LSTM) models. The findings demonstrated the
Bi-LSTM model’s superior performance, achieving an accuracy rate of 97.2%, showcasing its efficacy
in accurately categorizing the EEG data. In comparison, the CNN model, while proficient, attained an
accuracy level of 93.9%. Furthermore, the author proposed a hardware architecture specifically
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tailored for the STFT model, boasting an impressively low maximum error rate of merely 0.13
percent. These results underscore the potential of the Bi-LSTM model and the significance of STFT in
refining EEG data analysis.

In article [19] the exploration delved into employing transfer learning techniques for the
classification of brain signal data derived from EEG readings. Utilizing a dataset with brain signal
durations of 5 minutes, the researchers orchestrated a combined model involving DenseNet and
LSTM. Their findings showcased impressive outcomes, achieving specificities of 93.28% and
93.65%, along with a sensitivity rate of 92.92%. Notably, this performance notably surpassed prior
research, underscoring the robustness and effectiveness of the hybrid model in predicting seizures.

In research [20] the primary emphasis centered on EEG data analysis for the classification of
epilepsy. The approach revolved around a hybrid model amalgamating CNNs and LSTM. This
LSTM-CNN model achieved a noteworthy accuracy rate of 98%. Moreover, the model exhibited a
high specificity of 99.56% alongside a recall rate of 92.02%. These results accentuate the efficacy and
potential of the LSTM-CNN hybrid model in accurately categorizing epilepsy within EEG datasets.

The study [21] aimed to improve automatic epileptic seizure detection accuracy by introducing a
new random forest model with grid search optimization. It categorized EEG data into three groups:
healthy subjects, seizure-free intervals, and seizure activity. The dataset included both simulated and
real clinical EEG data. The results showed high accuracy (96.7%) in classifying these categories.
However, noisy EEG signals may have an impact on the model’s performance.

Another study [22] presents a time-frequency representation (TFR) method based on improved
eigenvalue decomposition of the Hankel matrix and Hilbert transform (IEVDHM–HT). The proposed
TFR method was evaluated using synthetic signals and real epileptic seizure EEG signals. The EEG
dataset was obtained from the publicly available database at the University of Bonn, Germany. The
study achieved 100% accuracy in classifying epileptic seizures and seizure-free EEG signals using
least-square support vector machines (LS-SVM) with radial basis function kernels. Common TFR
challenges, such as sensitivity to noise and parameter tuning, may affect IEVDHM–HT.

Another study [23] introduced an automated method to classify epileptic EEG signals using
iterative filtering (IF), demonstrating better accuracy than the empirical mode decomposition (EMD).
The authors also utilized EEG data from both healthy individuals and epileptic patients from the
University of Bonn. The model achieved up to 99.5% accuracy in identifying normal, seizure, and
seizure-free states with a random forest classifier.

A study [24] focused on classifying epileptic EEG signals using signal transforms and CNNs.
They employed the Bern-Barcelona EEG and epileptic seizure recognition datasets and used Fourier,
wavelet, and EMD transforms for input generation. The findings showed high accuracy, up to 98.9%
for certain signal types and up to 99.5% for finding seizures.

3. Methods

In this study, we harnessed an EEG dataset as the foundational resource for developing a model.
Initially, a CNN model was employed for individual classification purposes. However, our innovation,
termed NeuroWave-Net, introduces a novel approach by amalgamating CNN and LSTM into a
cohesive hybrid model. The crux of our proposed system lies in leveraging the strengths of CNN for
feature extraction while harnessing LSTM’s capabilities for the actual classification of seizure
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diseases. This combined model, NeuroWave-Net, brings together the two different architectures to
make the model work better and be more accurate at finding seizure conditions in EEG data. The
whole method and process is shown in Figure 2, which is a flowchart that shows how CNN-based
feature extraction and the LSTM-driven classification process are combined. This comprehensive
framework ensures a robust and streamlined approach to accurately categorizing seizures within the
EEG dataset.

Figure 2. The working process of the proposed model of this study.

3.1. Model architecture

In the architecture of our proposed model, named NeuroWave-Net, we initiate with the
incorporation of a foundational convolutional layer featuring 64 filters. The kernel size is set to 3, and
the rectified linear unit (ReLU) activation function is applied to introduce nonlinearity. Subsequently,
a max-pooling layer is introduced to down-sample the spatial dimensions of the convolutional output.

Following this, additional 1D convolutional layers (Conv1D) are implemented, progressively
increasing the number of filters to 128, 512, and 1024. Each of these layers contributes to the
extraction of hierarchical features from the input data. Within the dense layer, 256 filters are
employed to further enhance the model’s ability to capture intricate patterns and relationships in the
data. A pivotal inclusion in the model architecture is the LSTM layer, strategically positioned to
capture temporal dependencies in the sequential data. The LSTM layer introduces memory
mechanisms that prove instrumental in understanding the context of the input sequence.

The model culminates in a final dense layer, readying the extracted features for classification. This
dense layer serves as the output layer, shaping the model’s ability to categorize input data effectively.
The comprehensive architecture, carefully orchestrated with convolutional, pooling, dense, and LSTM
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layers, embodies the essence of the NeuroWave-Net, ensuring a robust framework for the accurate
classification of seizure diseases within EEG data. The pseudocode of the proposed model is shown in
Algorithm 1, and all used parameter values and descriptions are shown in Table 1.

Algorithm 1. Pseudocode for the proposed Neurowave-Net architecture system.

Data preprocessing

1. Load EEG signal dataset D and convert labels to binary.
2. Remove unnecessary columns and split the dataset (Dtrain 75%, Dtest 25%).

Model initialization
1. Initialize a sequential model with input shape (T,C), where T is the time steps (178) and C is

the number of channels (1).

Model architecture
1. Input layer EEG signal with shape (T,C).
2. Add Conv1D layer with F1 filters, kernel size K1, ReLU activation (ReLU), and padding

‘same’.
3. Add MaxPooling1D layer (P1, S 1).
4. Add Dropout layer (D1).
5. Add Conv1D layer with F2, K2, ReLU activation, and padding ‘same’.
6. Add Conv1D layer with F3, K3, ReLU activation, and padding ‘same’.
7. Add Conv1D layer with F4, K4, ReLU activation, and padding ‘same’.
8. Add Dense layer with N1 neurons, ReLU activation.
9. Add Dropout layer (D2).

10. Add LSTM layer with U1 units, return sequences=True.
11. Add LSTM layer with U2 units.

Final layers

1. Add Dense (N2, ReLU).
2. Add Dense (N3, ReLU).
3. Add Dense (N4, ReLU).
4. Add Dropout layer (D3).
5. Add Dense (N3, ReLU).

Model compilation

1. Compile the model using binary cross-entropy loss, Adam optimizer (α), and accuracy,
precision, F1, recall metric.

The proposed deep learning model is designed for sequence data, with a focus on time series
analysis or sequence classification. It begins with a CNN layer to extract hierarchical features,
followed by MaxPooling for dimensionality reduction. The model then employs a series of Conv1D
layers with increasing filters for sophisticated feature extraction. Dense layers with ReLU activation
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Table 1. Parameter details with value and details.

Parameter Value Details
D - EEG signal dataset
Dtrain 75% Training dataset
Dtest 25% Testing dataset
T 178 Time steps
C 1 Number of channels
F1, F2, F3, F4 64, 128, 512, 1024 Number of filters in Conv1D layers
K1, K2, K3, K4 3 Kernel size in Conv1D layers
D1, D2, D3 0.2 Dropout rate
N1, N2, N3, N4 256, 256, 128, 64 Number of neurons in Dense layers
U1, U2 64, 64 Number of units in LSTM layers
P1 2 Pool size in MaxPooling1D layer
S 1 2 Stride in MaxPooling1D layer
α 0.001 Learning rate

contribute to further feature processing. To capture temporal dependencies, LSTM layers are
incorporated, enhancing the model’s ability to understand sequential patterns. Dropout is utilized for
regularization, preventing overfitting. The model concludes with densely connected layers,
progressively reducing the number of neurons. The final layer features a single neuron with a sigmoid
activation, suitable for binary classification tasks. The model is compiled using binary cross-entropy
loss, an Adam optimizer with a learning rate of 0.001, and accuracy as the evaluation metric. This
combination of convolutional and recurrent layers, along with strategic dropout, aims to create a
robust model for effective sequence analysis and classification. The proposed model architecture of
this study is shown layer-wise in Figure 3.
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Figure 3. The model architecture of 1D CNN-LSTM model.

3.2. Dataset

This study utilizes EEG data sourced from a dataset [25] curated by researchers at Bonn University
in Germany. These EEG signals are noninvasive and captured using a 12-bit analog-to-digital
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converter from a 128-channel amplifier device. Each dataset comprises 100 individual EEG signals,
each containing 4097 sample points. The duration of each signal is 23.6 seconds, with a sampling rate
of 173.61 hertz. In this investigation, the five distinct collections of EEG signals within the dataset are
denoted as sets A, B, C, D, and E.

Sets ‘A’ and ‘B’ consist of recordings from healthy subjects with open and closed eyes, respectively.
The remaining three sets feature the waveforms of epileptic subjects. Sets ‘C’ and ‘D’ encompass
interictal signals recorded during periods without seizures. Specifically, set ‘C’ includes EEG signals
obtained from outside the epileptogenic zone, while set ‘D’ is composed of EEG signals recorded
within the epileptogenic zone. Set ‘E’ captures authentic seizure waveforms. For analytical purposes,
all five sets are included in our investigation. Each set represents a distinct class, and within each class,
there are 100 samples, each containing 4097 data points.

3.3. 1D CNN

1D CNN is a variation of 2D CNN, which is commonly used for image processing. 1D CNN is
designed to work with one-dimensional data such as sound waves, time-series data from sensors, or
even text when formatted as a sequence [26]. The convolution operation is the core concept of 1D CNN.
The convolution layers can be followed by max-pooling layers and lastly the fully connected layers.
Convolution layers use a one-dimensional convolution operation. In the convolution operation, an M-
sized input vector d passes through an N-sized filter or kernel vector k [27]. This procedure involves
the kernel sliding across the input vector, doing element-wise multiplication on the input it covers at
the position, and finally adding the products of these operations. This operation is performed across the
entire length of the input vector and captures all the important patterns from the data. This convolution
produces another one-dimensional vector, r. The length of output vector r is (M-N+1) if zero-padding
is not used. The input vector and filter lengths determine this output length. The mathematical equation
of the convolution operation is:

r( j) = f

N−1∑
i=0

k(i) · d( j − i) + b

 , j = 0, 1, . . . ,M − 1, (3.1)

where, b is the bias and f is the nonlinear function. Bias helps the neural network better fit the data
by allowing the activation function to be shifted and the nonlinear functions help the neural network
to capture more complex features. The max-pooling layers are used to reduce the spatial dimensions
of the feature maps resulting in a down-sampled version that retains the most significant features [28].
This layer is important for reducing time and complexity. The max-pooling layers are used to reduce
the spatial dimensions of the input feature maps. This leads to a reduced computational complexity and
training time for the network as well as a down-sampled version of the feature maps that keep the most
important features. The equation of max-pooling can be written by:

p = max (w(n × 1, s), v) , (3.2)

where, the operation max is used to generate the output vector p from the input vector v using the kernel
window function w with size n×1 and stride s. After the convolution layer and max-pooling layer, the
fully connected layer takes the flattened feature maps and connects it to a set of neurons. These neurons
interpret the features extracted by the convolution layers and make predictions based on them, which
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are refined throughout the training process. Neurons in this layer connect to all activations from the
previous layer and it uses ReLU to introduce nonlinearity. The last fully connected layer usually has
the same number of output classes as input classes [29]. It uses an activation function like softmax for
multi-class classification or sigmoid for binary classification. Back-propagation changes the network’s
weights to improve training predictions after calculating the loss from the output [30]. During training
the loss function is used to measure the difference between the predicted probabilities and the actual
labels. The cross-entropy loss function is:

E = −
Q∑

k=1

yk log(ŷk), (3.3)

where, E is the cross-entropy loss for the given inputs and model predictions, Q is the total number of
possible classes, yk is the true label for the kth class, and ŷk is the predicted probability that the input
belongs to the kth class. Figure 4 represents a basic architecture of 1D CNN. Here the input EEG signal
passes through the 1D CNN layer, followed by one max-pooling layer and a fully connected layer.

.

.

.

.

.

. .
.
. .
.
. .
.
.

.

.

.

EEG Signal 1D Convolutional
Layer

1D Max-pooling
Layer

Fully
Connected Layer

Filter 1

Filter 2

Filter 3

Figure 4. Model architecture of 1D-CNN model.

3.4. LSTM

LSTM networks are a type of necurrent neural network (RNN) that can learn long-term
dependencies. LSTMs have a separate memory cell that can store information over extended time
intervals [31]. It has three gates that control the flow of information. The purpose of a memory cell is
to store and discard information based on the input. There are three gates that control the flow of
information. The forget gate is responsible for which information will be discarded. The input gate
adds information to the memory cell [32]. The output gate determines the next hidden state, which
contains information based on the updated cell state. Given the input vector at time t as zt, the
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previous hidden state as ηt−1, and the previous cell state and new cell state as δt−1 and γt, respectively ,
the LSTM gate updates are as follows:

αt = σ(Vαzt + Vηαηt−1 + dα) (forget gate output) (3.4)
βt = σ(Vβzt + Vηβηt−1 + dβ) (input gate output) (3.5)
γt = tanh(Vγzt + Vηγηt−1 + dγ) (cell input activation) (3.6)
δt = αt ⊙ δt−1 + βt ⊙ γt (cell state update) (3.7)
θt = σ(Vθzt + Vηθηt−1 + dθ) (output gate output) (3.8)
ηt = θt ⊙ tanh(δt) (hidden state output) (3.9)

Where, αt, βt, and θt are the outputs of the forget, input, and output gates, respectively; γt

represents the candidate cell state; δt is the new cell state; ηt is the new hidden state; V terms are the
weight matrices; d terms are the biases; σ and tanh are the sigmoid and hyperbolic tangent activation
functions, respectively; and ⊙ represents element-wise multiplication. The LSTM can capture
long-term dependencies in sequential data because of its complex combination of gates and
activations, which control information flow.

3.5. 1D CNN-LSTM

Our proposed model is a combination of 1D CNN and LSTM. It can handle sequence data that needs
patterns to be extracted along with the sequence. The primary function of the 1D CNN is to identify and
extract local patterns or features in the sequence data by applying filters across the EEG brain signal
data. We used 1D CNNs followed by max-pooling in our proposed model to minimize the spatial
dimensions, making it computationally effective for the deeper layers of the network. The purpose of
LSTM is to capture temporal dependencies. LSTMs are capable of remembering information over long
sequences [33].

The 1D CNN layers first extract the patterns within the data, reducing dimensionality and
highlighting important features. After the data has been processed, the LSTM layers analyze it within
the context of its sequence, taking into account both the extracted features and the temporal
dependencies.

4. Experimental exploration

4.1. Evaluation metrices

To evaluate the performance of our proposed model, we employed a set of evaluation metrics like
accuracy, precision, recall, and F1-score.

Accuracy is a fundamental metric. It measures the proportion of total predictions that were correct.
It is useful where classes are well balanced. Accuracy (A) can be defined as,

A =
T P + T N

T P + T N + FP + FN
, (4.1)

where T P stands for properly anticipated positive observations, T N for correctly predicted negative
observations, FP for mistakenly forecasted positive observations, and FN for wrongly predicted
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negative observations. The goal of combining recurrent and convolutional layers with selective
dropout is to build a strong model that can effectively analyze and classify sequences.

Precision measures the correctness achieved in the positive class. It is defined as the ratio of
correctly predicted positive observations to the total predicted positive observations. In mathematical
terms, precision (P) is :

P =
T P

T P + FP
, (4.2)

where, T P represents the count of instances correctly identified as positive and FP represents the count
of instances wrongly identified as positive.

Recall, also referred to as sensitivity, quantifies the percentage of actual positives that the model
correctly identifies. The formula for Recall (R) is:

R =
T P

T P + FN
, (4.3)

where T P represents the count of instances correctly identified as positive and FN represents the count
of positive instances that the model incorrectly classified as negative.

The F1-Score is the harmonic mean of precision and recall. It provides a more robust measure than
examining either precision or recall alone. It is particularly beneficial when dealing with imbalanced
datasets. The formula for the F1-score(F1) is given by:

F1 = 2 ×
Precision × Recall
Precision + Recall

, (4.4)

4.2. Dataset analysis

Within our dataset, we encounter a classification challenge involving five distinct classes. Notably,
one of these classes pertains to individuals affected by seizures, while the remaining four classes
consist of subjects unaffected by seizure conditions. To vividly illustrate the composition of these five
classes, we have visualized the data in Figure 5, providing a comprehensive and visually accessible
representation of the diverse categories present in our dataset. This visualization serves as a crucial
first step in understanding the distribution and interplay of seizure and non-seizure instances within
the dataset, setting the stage for further analyses and model development.

Figure 5. The visualization of brain signal based on different classes.
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In our dataset, we undertook a binary classification approach, categorizing instances into two
distinct classes: one representing seizure patients and the other encompassing non-seizure
participants. To achieve this, we designated the seizure patient data as one class and amalgamated the
data from other participants into the non-seizure class. The resulting distribution of this binary
classification is visually presented in Figure 6.

(a)

(b)

(c)

Figure 6. The visualization of brain signal of (a) epileptic patients (b) non-epileptic patients
(c) epileptic and non-epileptic patients.
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4.3. Model performance

4.3.1. 1D CNN

We applied a 1D-CNN model to classify our dataset, and the training accuracy curve reveals
interesting patterns. Initially, the accuracy demonstrates a noticeable increase, peaking around 40
epochs. However, a noteworthy observation is that after approximately 65 epochs, the training
accuracy plateaus, suggesting a potential saturation of learning. The test accuracy curve, in contrast to
the training accuracy, exhibits a consistent flatline after the initial rise. This divergence between the
training and test accuracy indicates a potential overfitting scenario, where the model performs
exceptionally well on the training data but struggles to generalize effectively to unseen data. The
overall training loss for this model is impressively low, measuring at 0.0217. This indicates that the
model has successfully minimized the error during the training process. However, the discrepancy
between the training and test accuracy curves prompts further investigation into the model’s
generalization capabilities. Despite the observed plateau in test accuracy, the model demonstrates a
commendable overall accuracy rate of 94.29%. Figure 7 visually represents the model’s performance,
showcasing its accuracy and loss trends over the epochs.

(a) (b)

Figure 7. 1D CNN model performance per epochs in seizure detection (a) accuracy (b) model
loss.

In an effort to enhance the performance of our 1D-CNN model, we incorporated an additional
dropout layer. However, intriguingly, the observed outcome did not reflect a significant improvement
in model performance. The accuracy remained consistent at 94.29%, mirroring the previous model’s
behavior, while the model loss exhibited an increase. The addition of a dropout layer typically serves as
a regularization technique to mitigate overfitting by introducing randomness during training. Despite
this intended purpose, the lack of substantial improvement in accuracy suggests that the model might
not be exhibiting signs of overfitting that can be effectively addressed by dropout regularization. Figure
8 visually encapsulates the performance dynamics of the extended 1D-CNN model, showcasing the
accuracy and loss trends over the epochs. The divergence between accuracy and loss trends prompts a
nuanced evaluation of the dropout layer’s impact on the model’s learning dynamics.
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(a) (b)

Figure 8. 1D CNN model performance per epochs in seizure detection (a) accuracy (b) model
loss.

4.3.2. 2D CNN

We have implemented the 2D-CNN model to assess its performance in comparison to the 1D-
CNN model. However, the 2D-CNN model did not exhibit the same level of effectiveness, yielding an
accuracy of 98.12%. The performance of this model is visually represented in Figure 9. Further details
on the comparative analysis and insights from this evaluation are elaborated in the subsequent sections.
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Figure 9. Model performance with comparison of accuracy and validation of 2D CNN
model.

The evaluation process involved the integration of two distinct convolution layers to gauge their
impact on model performance. The convolution units, namely 32, 64, 128, 256, and 512, were
employed randomly in both layers. This approach was adopted to conduct experimental analyses,
aiming to understand how varying CNN model configurations could enhance dataset performance.
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Remarkably, the training accuracy of this model demonstrated commendable results on the dataset,
coupled with minimal loss. The training accuracy of this model is shown to Figure 10 and the loss of
training value is shown to Figure 11. However, the testing model’s performance resembled that of the
1D-CNN model. Notably, for the first convolution layer, the model achieved a performance with 32
units, while the second convolution layer utilized 128 units. The accuracy of this model, considering
different convolution values, was documented at 98.79%. A visual representation of the model’s
performance based on diverse convolutions values is depicted in Figure 12. The subsequent sections
provide detailed insights into the experimental analyses and their implications. The loss of this test
model is shown to Figure 13.
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4.4. NeuroWave-Net (proposed model)

Our developed model, named NeuroWave-Net, is a fusion of 1D-LSTM-CNN architecture, and
its application to our dataset has yielded remarkable results. The model has demonstrated exceptional
performance, boasting an impressive overall accuracy of 99.48%. This places NeuroWave-Net at the
forefront in terms of effectiveness when compared to other models previously analyzed. Upon closer
examination of its performance curve, a noteworthy observation is that the testing accuracy experiences
a discernible improvement after the 20th epoch. This indicates a period of refinement where the model
fine-tunes its parameters to better align with the intricacies of the dataset. An intriguing aspect is the
stability achieved in accuracy post the 80th epoch, suggesting robust generalization and consistent
predictive capability. Figure 14 illustrates the accuracy trend, showcasing the model’s evolution over
epochs. The upward trajectory followed by a stable plateau after a certain point further emphasizes
its ability to learn and adapt over time. It also captures the loss curve, which not only substantiates
the model’s accuracy but also underscores its efficiency. The consistently low loss values signify the
model’s adeptness in minimizing errors during the training process.

(a) (b)

Figure 14. 1D CNN-LSTM model performance per epochs in seizure detection (a) accuracy
(b) model loss.

4.4.1. Ablation study of proposed model

The proposed model has demonstrated its highest accuracy at 99.48% when employing a learning
rate of 0.0001, with identical precision, recall, and F1 values. Subsequently, an ablation study was
conducted, reinforcing the optimal performance of the model with these parameters. Our exploration
extended to testing the model with various optimizers, including Adam, RMSprop (Root Mean Square
Propagation), Adagrad, SGD (stochastic gradient descent), and Adadelta. Notably, the Adam optimizer
yielded the most robust performance. Further experimentation involved assessing the model at different
epochs, specifically 80 and 100 epochs. Notably, the model achieved its peak accuracy at 100 epochs,
highlighting the significance of an extended training duration. This observation underscores that our
model requires a sufficient number of epochs to converge effectively, with lower epoch counts resulting
in suboptimal accuracy. Table 2 provides a comprehensive overview of the model’s overall performance
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across these varied configurations, consolidating the results of our meticulous testing and optimization
efforts.

Table 2. Ablation study of proposed 1D LSTM-CNN model.

Optimizer Learning Rate Epoch Accuracy Precision Recall F1 Loss Time (s)

Adam

0.00001 100 96.07% 99.86% 92.26% 95.91% 0.1336 685.75
0.0001 100 99.48% 99.48% 99.48% 99.48% 0.0238 666.25
0.001 100 99.26% 98.75% 99.75% 99.20% 0.0281 686.07

0.00001 80 96.98% 99.27% 94.65% 96.91% 0.0946 543.87
0.0001 80 99.11% 99.04% 99.17% 99.11% 0.0353 566.51
0.001 80 99.37% 99.01% 99.01% 99.37% 0.0293 523.45

RMSprop

0.00001 100 97.15% 97.15% 95.22% 97.10% 0.0799 690.47
0.0001 100 99.24% 99.17% 99.30% 99.24% 0.0327 685.52
0.001 100 99.04% 98.58% 99.52% 99.05% 0.0576 688.97

0.00001 80 93.78% 99.51% 88.00% 93.40% 0.1913 566.29
0.0001 80 99.26% 99.56% 98.96% 99.26% 0.0363 565.40
0.001 80 99.11% 98.66% 99.57% 99.11% 0.0394 506.02

Adagrad

0.00001 100 88.28% 86.10% 91.30% 88.63% 0.6591 565.26
0.0001 100 93.22% 98.54% 87.74% 92.82% 0.2212 646.98
0.001 100 97.43% 99.37% 95.48% 97.38% 0.0736 696.80

0.00001 80 85.24% 83.62% 87.65% 85.59% 0.6633 565.28
0.0001 80 93.02% 97.23% 88.57% 92.70% 0.2323 565.30
0.001 80 94.85% 99.66% 90.00% 94.59% 0.1502 565.33

SGD

0.00001 100 68.83% 62.48% 94.26% 75.15% 0.6707 745.99
0.0001 100 92.41% 96.04% 88.48% 92.10% 0.4171 641.75
0.001 100 94.35% 99.04% 89.57% 94.06% 0.1510 745.80

0.00001 80 87.24% 91.80% 81.78% 86.50% 0.6691 513.58
0.0001 80 92.57% 93.55% 91.43% 92.48% 0.4202 565.24
0.001 80 96.70% 98.12% 95.22% 96.65% 0.0892 565.70

Adadelta

0.00001 100 57.72% 58.29% 96.30% 72.62% 0.6737 746.19
0.0001 100 90.26% 94.61% 85.39% 89.76% 0.5800 806.64
0.001 100 92.50% 99.05% 85.83% 91.96% 0.1993 702.47

0.00001 80 58.28% 54.62% 97.96% 70.13% 0.6756 626.37
0.0001 80 91.30% 94.39% 87.83% 90.99% 0.5647 565.62
0.001 80 92.28% 97.88% 86.43% 91.80% 0.2035 626.72

In our study, we employed various classifiers to comprehensively evaluate model performance.
Notably, the application of the GRU (Gated Recurrent Unit) model yielded an accuracy of 94.09%.
Subsequently, the CNN model demonstrated exceptional performance with an accuracy rate of
99.33%. The proposed model, in particular, showcased remarkable efficacy when compared to other
models considered in the study. Following our exploration of neural network architectures, we
transitioned to traditional machine learning models. However, the performance of these models was
not as robust. The logistic regression model, for instance, achieved an accuracy of 64.30%, indicating
a comparatively lower performance. In stark contrast, our proposed model continued to exhibit
superior accuracy, reaching an impressive 99.48%. These results underscore the efficacy of our
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proposed model, highlighting its substantial advantages over both neural network and traditional
machine learning counterparts in the context of the studied task. In the Table 3 the comparison of
model performances is shown between different classifiers.

Table 3. Comparing the proposed model with other machine learning models.

Model Accuracy Precision Recall F1 Loss Time (s)
GRU 94.09% 94.36% 94.36% 94.07% 0.2138 59.13
CNN 99.33% 98.88% 99.78% 99.33% 0.0469 624.32
DNN 93.11% 94.20% 91.87% 93.02% 0.2116 143.32
Logistic Regression 64.85% 65.85% 65.85% 64.29% 0.6726 2.07
Linear SVC 64.30% 65.39% 64.30% 63.66% 0.9528 10.17
Decision Tree 92.35% 92.35% 92.35% 92.35% 2.7581 3.33
Random Forest 97.54% 97.57% 97.54% 97.54% 0.1086 17.20
Gradient Boosting 95.33% 95.34% 95.33% 95.33% 0.1365 55.09
MLP 98.43% 98.44% 98.43% 98.43% 0.0898 16.8
NeuroWave-Net (Proposed) 99.48% 99.48% 99.48% 99.48% 0.0238 666.25

5. Discussion

Numerous studies have delved into the intricate domain of seizure prediction, employing a
spectrum of machine learning and deep learning techniques. Notably, the contemporary preference for
EEG datasets underscores a collective shift toward leveraging brain signal data over other forms of
neuroimaging. A case in point is the study conducted by Zhao et al. [11], which, intriguingly,
utilized a dataset akin to ours. While their application of a CNN model resulted in a commendable
accuracy of 96.97%, there remains substantial room for elevating model performance. The work by
Nishad et al. [12] in 2020 showcased a distinct approach, achieving an impressive accuracy of 99%
through the utilization of an RF model. Equally groundbreaking is the study by Hemachandira
et al. [14], emphasizing a paradigm shift toward feature optimization. Their hybrid model, integrating
SVM, yielded an accuracy of 98%, signifying a revolutionary stride in the landscape of brain signal
data analysis. This underscores a collective industry focus on feature grouping and optimization
strategies, demonstrating their efficacy in achieving superior outcomes. This study [34] presents
MP-SeizNet (A multi-path CNN Bi-LSTM Network), a novel deep learning network for seizure-type
classification, utilizing both CNN and Bi-LSTM with attention. Assessed on the Temple University
Hospital EEG Seizure Corpus, the model attains notable F1-scores of 87.6% for patient data and
98.1% for seizure data.

Building upon these advancements, our study introduces a novel 1D CNN-LSTM hybrid model.
The strategic amalgamation of CNN for robust feature extraction and LSTM for precise classification
culminated in a noteworthy accuracy of 99.48%. This achievement not only surpasses the benchmarks
set by prior works but also underscores the effectiveness of our proposed approach in the context of
seizure prediction.

The implications of our model extend into practical healthcare integration. With seamless
adaptability into healthcare systems, our model emerges as a potent diagnostic tool for seizure
diseases, contributing significantly to the realm of e-healthcare. Its global applicability positions it as
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a valuable asset for the classification of seizure diseases from human brain signals, symbolizing a
substantial advancement in the landscape of neurohealth diagnostics. Our work marks a significant
advancement in seizure classification models, showcasing the potential of deep learning techniques.
The envisioned expansion of our dataset and the integration of federated learning in future iterations
represents crucial steps toward realizing a transformative impact in the field of real-time seizure
diagnosis. The comparison of our model’s performance to that of previously published research is
presented in Table 4.

Table 4. Comparison of our model performance with existing study.

Study Year Classification Approach Accuracy (%)
[11] 2020 CNN 96.97
[12] 2020 RF 99.00
[35] 2021 KST-Adaboost 98.50
[36] 2022 FNR 96.67
[14] 2022 PSO-SVM 98.00
[34] 2023 MP-SeizNet 87.6
Proposed Model - NeuroWave-Net 99.48

6. Conclusions

Our research endeavors culminate in a groundbreaking outcome with the introduction of a 1D
CNN-LSTM model, poised to revolutionize the landscape of seizure detection. In response to the
common health concern of seizures, our innovative model achieves an exceptional accuracy rate of
99.48%. This robust performance signifies a significant leap forward compared to conventional
machine learning models, emphasizing the potential of advanced neural network architectures in the
realm of neurology. By delving into the intricacies of brain signal data, our NeuroWave-Net model
not only enhances accuracy but also showcases the adaptability of cutting-edge technologies in
addressing critical healthcare challenges. This outcome is a testament to the potency of bridging
artificial intelligence (AI) and medical research to create tools that can significantly impact patient
care. To address this limitation and fortify the generalizability of our model, future endeavors will
focus on data expansion through collaborations with various hospitals. This strategic approach not
only ensures a more diverse dataset but also enhances the robustness of our model across different
patient populations.

In the future, the integration of our model into the medical workflow will stand out as a crucial
milestone. We envision seamlessly incorporating our 1D CNN-LSTM model into clinical practices,
ensuring its accessibility and usability by healthcare professionals. This integration will involve close
collaboration with medical institutions, the development of user-friendly interfaces, and adherence to
regulatory standards. Moreover, our ongoing exploration of federated learning holds promise for
creating a brain computer interface app capable of rapid seizure detection. By sharing knowledge
across multiple healthcare facilities, we aspire to develop a tool that transcends geographical
boundaries and becomes an invaluable asset in clinical settings. In essence, our research not only
addresses current challenges but also sets the stage for a future where advanced AI models seamlessly
integrate into medical workflows, enhancing patient outcomes and advancing the field of neurology.

AIMS Bioengineering Volume 11, Issue 1, 85–109.



106

Funding statement

This research was funded by Taif University, Saudi Arabia, project number (TU-DSPP-2024-04).

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

The authors extend their appreciation to Taif University, Saudi Arabia, for supporting this work
through project number (TU-DSPP-2024-04). Also we extend our sincere gratitude to the ICT
Division, Ministry of Post, Telecommunication, and Information Technology, Government of
Bangladesh for their support, enabling the research conducted under the ICT fellowship program.

Conflict of interest

The authors have no conflict of interest.

References

1. Fisher RS, van Emde Boas W, Blume W, et al. (2005) Response: Definitions proposed by the
international league against epilepsy (ILAE) and the international bureau for epilepsy (IBE).
Epilepsia 46: 1701–1702. https://doi.org/10.1111/j.1528-1167.2005.00273_4.x

2. Juan E, Górska U, Kozma C, et al. (2005) Distinct signatures of loss of consciousness
in focal impaired awareness versus tonic-clonic seizures. Brain 146: 109–123.
https://doi.org/10.1093/brain/awac291

3. Schwartz PJ, Ackerman MJ, Antzelevitch C, et al. (2020) Inherited cardiac arrhythmias. Nat Rev
Dis Primers 6: 58. https://doi.org/10.1038/s41572-020-0188-7

4. Lemoine É, Toffa D, Pelletier-Mc DG, et al. (2023) Machine-learning for the prediction
of one-year seizure recurrence based on routine electroencephalography. Sci Rep 13: 12650.
https://doi.org/10.1038/s41598-023-39799-8

5. McKee JL, Kaufman MC, Gonzalez AK, et al. (2023) Leveraging electronic medical
record-embedded standardised electroencephalogram reporting to develop neonatal seizure
prediction models: A retrospective cohort study. Lancet Digit Health 5: e217–e226.
https://doi.org/10.1016/S2589-7500(23)00004-3

6. Pinto MF, Batista J, Leal A, et al. (2023) The goal of explaining black boxes in
eeg seizure prediction is not to explain models’ decisions. Epilepsia Open 8: 285–297.
https://doi.org/10.1002/epi4.12748

7. Khare SK, Khan AM, Bajaj V, et al. (2023) Introduction to smart healthcare and the role of
cognitive sensors. In: Sinha GR, Bajaj V, Cognitive Sensors, UK: IOP Publishing Bristol, 1–21.

AIMS Bioengineering Volume 11, Issue 1, 85–109.

http://dx.doi.org/https://doi.org/10.1111/j.1528-1167.2005.00273_4.x
http://dx.doi.org/https://doi.org/10.1093/brain/awac291
http://dx.doi.org/https://doi.org/10.1038/s41572-020-0188-7
http://dx.doi.org/https://doi.org/10.1038/s41598-023-39799-8
http://dx.doi.org/https://doi.org/10.1016/S2589-7500(23)00004-3
http://dx.doi.org/https://doi.org/10.1002/epi4.12748


107

8. Hernandez-Pavon JC, Veniero D, Bergmann TO, et al. (2023) TMS combined with EEG:
Recommendations and open issues for data collection and analysis. Brain Stimul 6: 567–593.
https://doi.org/10.1016/j.brs.2023.02.009

9. Chiarion G, Sparacino L, Antonacci Y, et al. (2023) Connectivity analysis in EEG
data: A tutorial review of the state of the art and emerging trends. Bioeng 10: 372.
https://doi.org/10.3390/bioengineering10030372

10. López-Arango G, Deguire F, Agbogba K, et al. (2023) Impact of macrocephaly, as an isolated trait,
on EEG signal as measured by spectral power and multiscale entropy during the first year of life.
Dev Neurosci 45: 210–222. https://doi.org/10.1159/000529722

11. Zhao W, Zhao WB, Wang WF, et al. (2020) A novel deep neural network for
robust detection of seizures using eeg signals. Comput Math Method M 2020: 9689821.
https://doi.org/10.1155/2020/9689821

12. Nishad A, Pachori RB (2020) Classification of epileptic electroencephalogram signals
using tunable-Q wavelet transform based filter-bank. J Amb Intel Hum Comp 15: 877–891.
https://doi.org/10.1007/s12652-020-01722-8

13. Nithya K, Sharma S, Sharma RR (2023) Eigenvalues of hankel matrix based epilepsy detection
using EEG signals. In 2023 2nd International Conference on Paradigm Shifts in Communications
Embedded Systems, Machine Learning and Signal Processing (PCEMS), New York: IEEE, 1–6.

14. Hemachandira VS, Viswanathan R (2022) A framework on performance analysis of mathematical
model-based classifiers in detection of epileptic seizure from EEG signals with efficient feature
selection. J Healthc Eng 2022: 7654666. https://doi.org/10.1155/2022/7654666

15. Cao JW, Hu DH, Wang YM, et al. (2021) Epileptic classification with deep-
transfer-learning-based feature fusion algorithm. IEEE T Cogn Dev Syst 14: 684–695.
https://doi.org/10.1109/TCDS.2021.3064228

16. Wang YP, Dai Y, Liu ZM, et al. (2021) Computer-aided intracranial EEG signal identification
method based on a multi-branch deep learning fusion model and clinical validation. Brain Sci 11:
615. https://doi.org/10.3390/brainsci11050615

17. Liu Y, Huang YX, Zhang XX, et al. (2020) Deep C-LSTM neural network for epileptic
seizure and tumor detection using high-dimension EEG signals. IEEE Access 8: 37495–37504.
https://doi.org/10.1109/ACCESS.2020.2976156

18. Beeraka SM, Kumar A, Sameer M, et al. (2022) Accuracy enhancement of epileptic seizure
detection: A deep learning approach with hardware realization of STFT. Circ Syst Signal Pr 41:
461–484. https://doi.org/10.1007/s00034-021-01789-4

19. Ryu S, Joe I (2021) A hybrid DenseNET-LSTM model for epileptic seizure prediction. Appl Sci
11: 7661. https://doi.org/10.3390/app11167661

20. Srivastava A, Singh A, Tiwari AK (2022) An efficient hybrid approach for the
prediction of epilepsy using CNN with LSTM. Int J Artif Intell Soft Comput 7: 179–193.
https://doi.org/10.1504/IJAISC.2022.126336

AIMS Bioengineering Volume 11, Issue 1, 85–109.

http://dx.doi.org/https://doi.org/10.1016/j.brs.2023.02.009
http://dx.doi.org/https://doi.org/10.3390/bioengineering10030372
http://dx.doi.org/https://doi.org/10.1159/000529722
http://dx.doi.org/https://doi.org/10.1155/2020/9689821
http://dx.doi.org/https://doi.org/10.1007/s12652-020-01722-8
http://dx.doi.org/https://doi.org/10.1155/2022/7654666
http://dx.doi.org/https://doi.org/10.1109/TCDS.2021.3064228
http://dx.doi.org/https://doi.org/10.3390/brainsci11050615
http://dx.doi.org/https://doi.org/10.1109/ACCESS.2020.2976156
http://dx.doi.org/https://doi.org/10.1007/s00034-021-01789-4
http://dx.doi.org/https://doi.org/10.3390/app11167661
http://dx.doi.org/https://doi.org/10.1504/IJAISC.2022.126336


108

21. Wang XH, Gong GH, Li N (2019) Detection analysis of epileptic EEG using a novel
random forest model combined with grid search optimization. Front Hum Neurosci 13: 52.
https://doi.org/10.3389/fnhum.2019.00052

22. Sharma RR, Pachori RB (2018) Time–frequency representation using IEVDHM-HT with
application to classification of epileptic EEG signals. Iet Sci Meas Technol 12: 72–82.
https://doi.org/10.1049/iet-smt.2017.0058

23. Sharma RR, Varshney P, Pachori RB et al. (2018) Automated system for
epileptic EEG detection using iterative filtering. IEEE Sensors Letters 2: 1–4.
https://doi.org/10.1109/LSENS.2018.2882622

24. San-Segundo R, Gil-Martin M, D’Haro-Enríquez LF, et al. (2019) Classification of epileptic eeg
recordings using signal transforms and convolutional neural networks. Comput Biol Med 109: 148–
158. https://doi.org/10.1016/j.compbiomed.2019.04.031

25. Andrzejak RG, Lehnertz K, Mormann F, et al. (2001) Indications of nonlinear deterministic and
finite-dimensional structures in time series of brain electrical activity: Dependence on recording
region and brain state. Phy Rev E 64: 061907. https://doi.org/10.1103/PhysRevE.64.061907

26. Ahmed AA, Ali W, Abdullah TA, et al. (2023) Classifying cardiac arrhythmia from ECG signal
using 1D CNN deep learning model. Mathematics 11: 562. https://doi.org/10.3390/math11030562

27. Xiong QS, Kong QZ, Xiong HB, et al. (2024) Physics-informed deep 1D CNN compiled
in extended state space fusion for seismic response modeling. Comput Struct 291: 107215.
https://doi.org/10.1016/j.compstruc.2023.107215

28. Moussavou Boussougou MK, Park DJ (2023) Attention-based 1D CNN-BILSTM hybrid model
enhanced with fasttext word embedding for korean voice phishing detection. Mathematics 11:
3217. https://doi.org/10.3390/math11143217

29. Phukan N, Manikandan MS, Pachori RB (2023) Afibri-net: A lightweight convolution
neural network based atrial fibrillation detector. IEEE T Circuits-1 70: 4962–4974.
https://doi.org/10.1109/TCSI.2023.3303936

30. Hassan W, Joolee JB, Jeon S (2023) Establishing haptic texture attribute space and predicting haptic
attributes from image features using 1D-CNN. Sci Rep 13:11684. https://doi.org/10.1038/s41598-
023-38929-6

31. Iyer A, Das SS, Teotia R (2023) CNN and LSTM based ensemble learning for
human emotion recognition using EEG recordings. Multimed Tools Appl 82: 4883–4896.
https://doi.org/10.1007/s11042-022-12310-7

32. Li DK (2023) Multivariate time series prediction based on quantum enhanced LSTM models, In:
Second International Conference on Electronic Information Technology (EIT 2023), USA: SPIE,
12719: 491–497. https://doi.org/10.1117/12.2685468

33. Mohammed AYA, Yaw CT, Koh SP, et al. (2023) Detection of corona faults in
switchgear by using 1D-CNN, LSTM, and 1D-CNN-LSTM methods. Sensors 23: 3108.
https://doi.org/10.3390/s23063108

34. Albaqami H, Hassan GM, Datta A (2023) MP-seiznet: A multi-path cnn BI-LSTM

AIMS Bioengineering Volume 11, Issue 1, 85–109.

http://dx.doi.org/https://doi.org/10.3389/fnhum.2019.00052
http://dx.doi.org/https://doi.org/10.1049/iet-smt.2017.0058
http://dx.doi.org/https://doi.org/10.1109/LSENS.2018.2882622
http://dx.doi.org/https://doi.org/10.1016/j.compbiomed.2019.04.031
http://dx.doi.org/https://doi.org/10.1103/PhysRevE.64.061907
http://dx.doi.org/ https://doi.org/10.3390/math11030562
http://dx.doi.org/https://doi.org/10.1016/j.compstruc.2023.107215
http://dx.doi.org/https://doi.org/10.3390/math11143217
http://dx.doi.org/https://doi.org/10.1109/TCSI.2023.3303936
http://dx.doi.org/https://doi.org/10.1038/s41598-023-38929-6
http://dx.doi.org/https://doi.org/10.1038/s41598-023-38929-6
http://dx.doi.org/https://doi.org/10.1007/s11042-022-12310-7
http://dx.doi.org/https://doi.org/10.1117/12.2685468
http://dx.doi.org/https://doi.org/10.3390/s23063108


109

network for seizure-type classification using EEG. Biomed Signal Proces 84: 104780.
https://doi.org/10.1016/j.bspc.2023.104780

35. Shoeibi A, Ghassemi N, Alizadehsani R, et al. (2021) A comprehensive comparison of handcrafted
features and convolutional autoencoders for epileptic seizures detection in EEG signals. Expert
Syst Appl 163: 113788. https://doi.org/10.1016/j.eswa.2020.113788

36. Qureshi MB, Afzaal M, Qureshi MS, et al. (2022) Fuzzy-based automatic
epileptic seizure detection framework. Comput Mater Contin 7: 5601–5630.
https://doi.org/10.32604/cmc.2022.020348

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Bioengineering Volume 11, Issue 1, 85–109.

http://dx.doi.org/https://doi.org/10.1016/j.bspc.2023.104780
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2020.113788
http://dx.doi.org/https://doi.org/10.32604/cmc.2022.020348
http://creativecommons.org/licenses/by/4.0

	Introduction
	Literature review
	Methods
	Model architecture
	Dataset
	1D CNN
	LSTM
	1D CNN-LSTM

	Experimental exploration
	Evaluation metrices
	Dataset analysis
	Model performance
	1D CNN
	2D CNN

	NeuroWave-Net (proposed model)
	Ablation study of proposed model


	Discussion
	Conclusions

