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Abstract: It is acknowledged that dengue infection has a significant economic impact due to
healthcare costs and lost productivity. Research can provide insights into the economic burden of the
disease, guiding policymakers in their allocation of resources for prevention and control interventions.
In this work, we structured a novel mathematical model that describes the spread of dengue with the
effects of carriers, an index of memory and vaccination. To show the effect of treatment on the
dynamics of dengue, we have incorporated medication-related treatment into the system. The
proposed dynamics are represented by using fractional derivatives to capture the role of memory in
the control of the infection. We introduced the fundamental principles and notions of non-integer
derivatives for the analysis of the model; moreover, the existence and uniqueness results for the
solution of the system have been established with the help of mathematical skills. The theory of fixed
points has been utilized for the analysis and examination of the system. We have established
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Ulam-Hyers stability for the recommended system of dengue infection. Regarding the numerical
findings, a numerical method is presented to highlight the solution pathways for the system of dengue
infection. Several simulations have been performed to visualize the contribution of the input
parameters of the system to the prevention and control of the infection. The index of memory,
vaccination, and treatment are suggested to be attractive parameters which can reduce the level of
infection while the biting rate, asymptomatic carriers and transmission rate are critical as they can
increase the risk of the infection in society. Our findings not only provide information for the effective
management of the infection they also possess valuable insights that can improve public health.

Keywords: dengue infection; epidemic models; fractional calculus; asymptomatic carriers; numerical
solution; dynamical behavior

1. Introduction

Dengue fever, a renowned tropical disease provoked by dengue viruses and predominantly spread
by female Aedes aegypti mosquitoes, has become a global health concern, affecting public health and
economies in approximately 128 countries worldwide due to the impact of global warming [1].
Currently, dengue fever is widespread in the majority of sub-tropical and tropical regions across the
world. The spread of this disease has notably intensified within urban and semi-urban areas in recent
periods. Approximately 2.5 billion individuals globally are exposed to the potential threat posed by
dengue fever [2, 3]. Upon being bitten by an infective mosquito, an individual undergoes an
incubation period lasting around 4 to 7 days. Following this, the individual transitions into the acute
infection phase, which can range from 2 to 10 days. If female Aedes aegypti mosquitoes bite the
individual during this initial stage of illness, they might contract the virus, thus initiating a potential
new cycle of transmission. The infection presents a range of signs and symptoms, including
headache, vomiting, high fever, nausea, red eyes, bone pain, aches, severe weakness, muscle pain,
lower back pain, joint pain, rash, pain behind the eyes, and severe fatigue. Transmission of the virus
occurs when a mosquito becomes infected after feeding on the blood of an infected individual and
subsequently spreads the virus to others. Infected mosquitoes remain carriers throughout their entire
lifespan, with limited instances of vertical transmission of the dengue virus reported [4, 5]. The
increasing prevalence of dengue infections in recent decades has driven significant efforts toward the
development of dengue vaccines. While some countries have access to dengue infection vaccines [6],
fully effective vaccines have not yet been established. Researchers have introduced various control
strategies to prevent dengue fever, but further research is required to identify reliable and effective
strategies.

Mathematical models play a vital role in comprehending the transmission dynamics of infectious
diseases, aiding in the development of effective control interventions [7–10]. Through mathematical
analysis, researchers can identify key aspects of disease transmission and introduce novel control
interventions. Notably, Lourdes Esteva provided a fundamental modeling concept for dengue fever,
incorporating a variable human population and investigating system stability [11]. Additionally, other
studies [12] focused on structuring the transmission process for dengue and examining the
equilibrium stability in their proposed systems. Addressing the complexities of dengue infection, the
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researchers in [13,14] conceptualized the impact of vaccination and antibody-dependent enhancement
on disease transmission. In another article [15], the authors focused on utilizing mathematical
modeling while into account the complexities of serotype-specific clinical impacts and patient
infection history, highlighting the significance of accurate predictions for public health planning and
control strategies. In another article [16] the authors applied mathematical models to understand how
vaccination impacts the transmission dynamics of dengue in Johor, Malaysia. The study focused on
analyzing the effectiveness of vaccination strategies in controlling dengue spread, contributing insight
that will be valuable for public health interventions in the region, whereas the authors of [17] have
presented a mathematical model that explores the dynamics of dengue fever, considering both
scenarios with and without awareness in the host population. The model was constructed to
understand how awareness about the disease influences its spread. The study’s findings provide
insights into the potential impact of awareness campaigns on controlling dengue fever transmission.
Furthermore, considering the significant concern posed by frequent asymptomatic cases of
dengue [18], particularly in non-endemic regions, efforts have been made to incorporate them into the
models. The occurrence of reinfection with dengue also presents challenges for disease control.
In [19], the authors explored the unique challenges of dengue fever in the elderly, focusing on atypical
presentations and heightened risks of severe dengue and hospital-acquired infections, as well as
providing valuable insights for effective management in this demographic. The objective of this
research was to construct a holistic model that elucidates the transmission dynamics of dengue
infection, incorporating the impact of vaccination, treatment, index of memory, and the presence of
asymptomatic carriers.

Fractional calculus is vital in efforts to address real-world problems [20–24] because it provides a
more versatile and nuanced mathematical framework [25–29]. In various research disciplines and
engineering applications, many phenomena exhibit non-integer order behaviors that cannot be
accurately described by traditional calculus [30–33]. This mathematical approach finds successful
application across various scientific fields, providing robust models to represent a broad spectrum of
practical challenges in areas such as economics, physics, mathematics, control systems, and
biology [34–36]. In the theory of fractional calculus, the two-scale methodology provides a sound
explanation [37]. This innovative idea, recently developed, centers on the critical consideration of
scale when analyzing practical problems [38]. It has been reported that memory significantly
influences the transmission dynamics of mosquito-borne infections, particularly in the area of
retaining information about their preceding stages [39, 40]. The application of fractional operators
enhances the accuracy and precision of models of these phenomena. In this study, our choice was to
express the dynamics of dengue infection within a fractional framework, aiming to illustrate the
influence of memory on the propagation and management of dengue infection. We establish a
qualitative framework that is embedded in fractional calculus to investigate the dynamics of dengue
transmission. Our focus extends to exploring aspects such as vaccination, memory effects, treatment
and the presence of asymptotic carriers.

The summary of the article is given as follows:

• Section 2: Presents the essential concepts and outcomes of fractional calculus.
• Section 3: Formulates an epidemic model for the study of dengue transmission, considering

vaccination, index of memory, asymptotic fraction, and treatment to enhance realism.
• Section 4: It is dedicated to the investigation of the proposed model.
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• Section 5: Establishes necessary conditions for Ulam-Hyers stability.
• Section 6: Introduces a numerical approach to solving the model and examines dengue dynamics

with various input factors.
• Section 7: Provides the article’s conclusion and closing remarks.

2. Foundations of fractional calculus

This section outlines the essential terms and foundational principles of fractional theory that are
to be applied in the analysis of the proposed model. The significant advantage of fractional calculus
stems from its incorporation of the memory index, a pivotal factor shaping the transmission dynamics
of dengue infection. The researchers specifically focused on fractional systems due to their broad
applicability across various domains [30, 41]. Some of the basic definitions are given as follows:

Definition 2.1. ( [42]). Assume that f : R+ → R is a function whose fractional integral is of order
ξ > 0, as follows:

I
ξ
0+ f (s) =

1
Γ(ξ)

∫ s

0
(s − q)ξ−1 f (q)dq, ξ > 0, (2.1)

the function specified on the right side of the equation is defined for the real numbers in a pointwise
manner, denoted by R+. In this article, the symbol Γ(.) represents the gamma function.

Definition 2.2. ( [42]). The expression denoting the Caputo fractional derivative of the order ξ ∈
(m − 1,m) applied to a continuous function f can be stated as follows

CDξ
0+ f (s) = Im−ξ

0+ Dm f (s), D =
d

dq
, (2.2)

Specifically, for values where 0 < ξ < 1, we obtain the following result

CDξ
0+ f (s) =

1
Γ(1 − ξ)

∫ s

0

f ′(q)
(s − q)ξ

dq, m − 1 < m, m ∈ N. (2.3)

The above equation provides the function f which is differentiable in [0,+∞), with Γ representing the
function.

Theorem 2.1. ( [42]). If Re(ξ) > 0 and m equals [Re(ξ)] + 1, then

(Iξ0+
CDξ

0+ f )(s) = f (s) −
m∑

i=1

(Di
0+ f )(0+)

i!
si. (2.4)

3. Mathematical framework for model formulation

In this conceptual framework, we establish the interrelationships between female vectors, denoted
as Nh, and hosts, denoted as Nv, thereby elucidating the mechanism underlying the transmission
dynamics of dengue fever. The host population is divided into distinct classes: Sh for susceptible, Vh

for vaccinated, IAh for asymptomatic infections, Ih for infected individuals, and Rh for those who
have recovered. Meanwhile, the female mosquito population represented as Nv is categorized into
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susceptible Sv and infectious Iv compartments. We presume that the natural birth and death rates,
denoted by muh for the host population and muv for the vector population, are constant throughout
both populations. In this model, the incidence rates originating from the susceptible classes (Sh and
Vh) are given by ( bβ1

Nh
Iv) and (bβ2

Nh
Vh), respectively. Additionally, the incidence rate from susceptible

mosquitoes (Sv) to infectious mosquitoes (Iv) is represented by (bβ3
Nh

(Ih + IhA)), where b denotes the
mosquito biting rate. The asymptomatic fraction is symbolized by ψ, and the vaccination rate is given
by p. In addition to this, the rate of recovery is indicated by γh whereas the recovery through
treatment is denoted by η. Then, the dynamics of dengue can be described by the following system of
equations 

dS h
dt = µhNh −

β1bShIv
Nh
− pSh − µhSh,

dVh
dt = pSh −

β2bVhIv
Nh
− µhVh,

dIAh
dt = ψβ1bShIv

Nh
+ ψβ2bVhIv

Nh
− (µh + γh)IAh,

dIh
dt = (1 − ψ)β1bShIv

Nh
+ (1 − ψ)β2bVhIv

Nh
− (µh + η + γh)Ih,

dRh
dt = γhIAh + γhIh + ηIh − µhRh,

dS v
dt = µvNv −

β3bSv(Ih+IAh)
Nh

− µvSv,

dIv
dt =

β3bSv(Ih+IAh)
Nh

− µvIv,

(3.1)

with the following initial conditions

Sh(0) ≥ 0,Vh(0) ≥ 0,IAh(0) ≥ 0,Ih(0) ≥ 0,Rh(0) ≥ 0,Sv(0) ≥ 0,Iv(0) ≥ 0,

where β1, β2 and β3 denote the transmission probabilities with the condition that β1 ≥ β2. Furthermore,
we have

Nh = Sh +Vh + IAh + Ih + Rh, (3.2)

and
Nv = Sv + Iv. (3.3)

It is well-known that fractional calculus theory is rich in applications and produces more accurate
results for the dynamics of biological phenomena. The two-scale fractal theory for population
dynamics is a relatively new area of research that aims to understand the dynamics of population
growth in closed systems [43]. The two-scale fractal theory for population dynamics is based on the
idea that populations exhibit fractal patterns at different scales. The theory considers the effects of
nonlinear diffusion and fractional spatial diffusion on population growth. In this work, we structure
the dynamics of dengue in a fractional framework to obtain an understanding of the importance of
memory in the spread and control of the infection. Also, the transmission dynamics of dengue involve
an associative learning mechanism, where knowledge of previous stages is retained. Host population
memory, connected to individual awareness, reduces contact rates between vectors and hosts.
Meanwhile, mosquitoes draw from past experiences on human location, blood preference, color, and
defensive behaviors to choose suitable hosts. Integrating fractional-order systems into mathematical
models of dengue infection effectively captures and represents these intricate phenomena. Thus, we
represent our model (3.1) of dengue infection through the use of fractional derivatives with the effect
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of memory as follows:

CDξ
0+S h(t) = µhNh −

β1bShIv
Nh
− pSh − µhSh,

CDξ
0+Vh(t) = pSh −

β2bVhIv
Nh
− µhVh,

CDξ
0+ IAh(t) = ψβ1bShIv

Nh
+ ψβ2bVhIv

Nh
− (µh + γh)IAh,

CDξ
0+ Ih(t) = (1 − ψ)β1bShIv

Nh
+ (1 − ψ)β2bVhIv

Nh
− (µh + η + γh)Ih,

CDξ
0+Rh(t) = γhIAh + γhIh + ηIh − µhRh,

CDξ
0+S v(t) = µvNv −

β3bSv(Ih+IAh)
Nh

− µvSv,

CDξ
0+ Iv(t) =

β3bSv(Ih+IAh)
Nh

− µvIv,

(3.4)

where CDξ
0+ indicates the Caputo fractional derivative with order ξ. Here, we focused on a time-

fractional epidemic model which plays an important role in advancing our understanding of infectious
diseases, providing a more realistic framework for analysis and offering valuable insights into disease
dynamics. The spatial diffusion of biological populations is also an important research area in ecology
and population biology. The research on the spatial diffusion of biological populations has focused
on developing models that take into account nonlinear diffusion effects and fractional spatial diffusion.
These models have important implications for obtaining an understanding of the dynamics of biological
populations and predicting their spatial patterns [43,44]. In our future work, we will focus on fractional
space diffusion systems to investigate the dynamics of infectious diseases. The following theorem is
on the non-negativity and boundedness of the solutions of our proposed system, which can be easily
proved through analysis.

Theorem 3.1. The solutions of our fractional model (3.4) are non-negative and bounded for non-
negative initial values of state variables.

It is well-known that equilibrium points in epidemic models are essential for comprehending the
dynamics of infectious diseases, guiding the development of effective control measures, and predicting
the overall trajectory of an epidemic in a population. There are two meaningful equilibrium points in
an epidemic model, i.e., disease-free and endemic points. The disease-free equilibrium is crucial in
the assessment of the potential success of preventive and control measures. It represents a stable state
in which the infection has been eliminated, providing insights into conditions that promote disease
control. It is denoted by E0 and given by

E0 = (
µhNh

(p + µh)
,

pµhNh

µh(p + µh)
, 0, 0, 0,Nv, 0). (3.5)

On the other hand, the endemic equilibrium is necessary to obtain an understanding of the
persistent existence of the disease in a population. Analysis of this equilibrium helps to identify
factors that contribute to the sustained transmission of the infection and informs strategies for
long-term management and intervention. In this work, we focused on the solution behavior and
Ulam-Hyers stability of the system while other aspects of the system will be investigated in our future
work.
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4. Existence and uniqueness results

The existence and uniqueness of solutions govern fractional-order differential equation theory.
Many researchers have recently become interested in the theory; we refer to [45, 46] and the
references therein for some of the recent growth. We will utilize fixed point theorems to evaluate that
whether the solution of the suggested framework is real and unique. The proposed model (3.4) can be
reformulated as follows:

CDξ
0+S h(t) = Θ1(t,Sh,Vh,IAh,Ih,Rh,Sv,Iv),

CDξ
0+Vh(t) = Θ2(t, S h,Vh, IAh, Ih,Rh, S v, Iv),

CDξ
0+ IAh(t) = Θ3(t,Sh,Vh,IAh,Ih,Rh,Sv,Iv),

CDξ
0+ Ih(t) = Θ4(t,Sh,Vh,IAh,Ih,Rh,Sv,Iv),

CDξ
0+Rh(t) = Θ5(t,Sh,Vh,IAh,Ih,Rh,Sv,Iv),

CDξ
0+S v(t) = Θ6(t,Sh,Vh,IAh,Ih,Rh,Sv,Iv),

CDξ
0+ Iv(t) = Θ7(t,Sh,Vh,IAh,Ih,Rh,Sv,Iv),

(4.1)

where

Θ1(t,Sh,Vh,IAh,Ih,Rh,Sv,Iv) = µhNh −
β1bShIv

Nh
− pSh − µhSh,

Θ2(t,Sh,Vh,IAh,Ih,Rh,Sv,Iv) = pSh −
β2bVhIv

Nh
− µhVh,

Θ3(t,Sh,Vh,IAh,Ih,Rh,Sv,Iv) = ψβ1bShIv
Nh
+ ψβ2bVhIv

Nh
− (µh + γh)IAh,

Θ4(t,Sh,Vh,IAh,Ih,Rh,Sv,Iv) = (1 − ψ)β1bShIv
Nh
+ (1 − ψ)β2bVhIv

Nh
− (µh + η + γh)Ih,

Θ5(t,Sh,Vh,IAh,Ih,Rh,Sv,Iv) = γhIAh + γhIh + ηIh − µhRh,

Θ6(t,Sh,Vh,IAh,Ih,Rh,Sv,Iv) = µvNv −
β3bSv(Ih+IAh)

Nh
− µvSv,

Θ7(t,Sh,Vh,IAh,Ih,Rh,Sv,Iv) =
β3bSv(Ih+IAh)

Nh
− µvIv,

(4.2)

Therefore, model (3.4) can be summarized follows: CDξ
0+Ψ(t) = κ(t,Ψ(t)); t ∈ J = [0, a]. 0 < ξ ≤ 1.

Ψ(0) = Ψ0 ≥ 0,
(4.3)

under the following circumstances:
Ψ(t) = (Sh,Vh,IAh,Ih,Rh,Sv,Iv)T ,

Ψ(0) = (Sh,Vh,IAh,Ih,Rh,Sv,Iv)T ,

κ(t,Ψ(t)) =
(
Θ j(t,Sh,Vh,IAh,Ih,Rh,Sv,Iv)

)T
, j = 1, ..., 7,

(4.4)

where (.)T signifies the transposition technique. From the above mentioned Theorem 2.1, (4.3) is given
by

Ψ(t) = Ψ0 + I
ξ
0+κ(t,Ψ(t))
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= Ψ0 +
1
Γ(ξ)

∫ t

0
(t − q)ξ−1κ(q,Ψ(q))dq. (4.5)

Consider that F = G ([0, a];R), denoting the Banach space that comprises continuous function
mappings from [0, a] to R. This space is equipped with a norm given by

||Ψ|| = sup
t∈J
|Ψ(t)|, (4.6)

where
|Ψ(t)| = |Sh(t)| + |Vh(t)| + |VAh(t)| + |Ih(t)| + |Rh(t)| + |Sv(t)| + |Iv(t)|, (4.7)

and

Sh,Vh,IAh,Ih,Rh,Sv,Iv ∈ G ([0, a]) . (4.8)

Theorem 4.1. ( [47]). Consider M , θ to represent a closed, bounded, convex subset of a Banach
space B. Assume P1 and P2 to be two operators that satisfy the following relationships
1) If Ψ1,Ψ2 ∈ M, then P1Ψ1 + P2Ψ2 ∈ M:
2) P1 is smooth and compact.
3) P2 is a mapping of contractions.
Subsequently, the existence of an element denoted as U, belonging to the set M, is confirmed,
satisfying that U = P1U + P2U.

Theorem 4.2. Assuming that the continuity of the function κ : J × R7 → R, and that it satisfies
condition (A1), along with the additional assumption (A2) |κ(t,Ψ)| ≤ Φ(t) for all (t,Ψ) ∈ J × R7,
where Φ ∈ G ([0, a];R+), it can be inferred that the suggested model (3.4) exhibits at least one solution
under the condition that Lκ||Ψ1(t0) − Ψ2(t0)|| < 1.

Proof. Specifying that ||Φ||=supt∈J |Φ(t)| and ς ≥ ||Ψ0|| + ℧||Φ||, we assume that
Bς = (Ψ ∈ B : ||Ψ|| ≤ ς). Consider the operations P1, P2 on Bς, which are described as follows:
(P1Ψ)(t) = 1

Γ(ξ)

∫ t

0
(t − q)ξ−1κ(q,Ψ(q))dq, t ∈ J , and (P2Ψ)(t) = Ψ(t0), t ∈ J .

Thus, for any Ψ1,Ψ2 ∈ Bς, we have

∥(P1Ψ1)(t) + (P2Ψ2)(t)∥ ≤ ∥Ψ0∥ +
1
Γ(ξ)

∫ t

0
(t − q)ξ−1κ(q,Ψ1(q))dq

≤ ∥Ψ0∥ +℧||Φ||

≤ ς < ∞. (4.9)

Hence, P1Ψ1 + P2Ψ2 ∈ Bς.
Our next step is to prove that the operator P2 is contracted.
Considering any t ∈ J and Ψ1, Ψ2 ∈ Bς, then the obvious solution is given by

∥(P2Ψ1)(t) − (P2Ψ2)(t)∥ ≤ ∥Ψ1(t0) − Ψ2)(t0)∥ . (4.10)

Considering the continuity of the function κ, it can be deduced that the operator P1 also exhibits
continuity. Furthermore, for every t ∈ J and Ψ1 ∈ Bς, ∥P1Ψ∥ ≤ ℧ ∥Φ∥ < +∞.

This implies that P1 is evenly bounded. Lastly, we demonstrate that P1 is a compact operator. Define,

sup
(t,Ψ)∈J×Bς

|κ(t,Ψ(t))| = κ∗, (4.11)
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It follows that ∣∣∣(P1Ψ)(t2) − (P1Ψ)(t2)
∣∣∣ = 1

Γ(ξ)

∣∣∣∣∣∣
∫ t1

0
[(t2 − q)ξ−1

− (t1 − q)ξ−1]κ(q,Ψ(q))dq

+

∫ t2

t1
(t2 − q)ξ−1κ(q,Ψ(q))dq

∣∣∣∣∣∣
≤

κ∗

Γ(ξ)
[2(t2 − t1)ξ + (tξ2 − tξ1)]

→ 0, as t2 → t1. (4.12)

P1 is therefore equicontinuous on Bς, which makes it quite compact. The Arzela-Ascoli theorem shows
that P1 is compact on Bς. Model (3.4) has at least one solution since there are no contradictions in the
hypotheses of the theorem [48].

Theorem 4.3. Assuming that the function κ belongs to the set G([J ,R]), it assigns a bounded subset
of J × R7 to sets of R that are relatively compact. Additionally, let Lκ > 0 be a fixed constant,
satisfying the condition that (A1)|κ(t,Ψ1(t)) − κ(t,Ψ2(t))| ≤ Lκ|Ψ1(t) − Ψ2(t)| for all t ∈ J and any
Ψ1,Ψ2 ∈ G([J ,R]). Under these conditions, the integral equation (4.5) possesses a unique distinct
solution, corresponding to the model (3.4). This existence is guaranteed to exist provided that℧Lκ < 1,
where ℧ = aξ

Γ(ξ−1) .

Proof. The operator is denoted as P : E → E and formulated by using the following definition

(PΨ)(t) = Ψ0 +
1
Γ(ξ)

∫ t

0
(t − q)ξ−1κ(q,Ψ(q))dq. (4.13)

The well-defined nature of the operator P is obvious, and the fixed point of P corresponds to the
unique solution of model (3.4). To demonstrate this, consider the following approach, i.e., supt∈J

||κ(t, 0)|| = M1 and k ≥ ||Ψ0||+℧M1. Consequently, it is enough to prove that PHk ⊂ Hk, where the
set Hk = {Ψ ∈ E : ||Ψ|| ≤ k}, which possesses both closed and convex properties. For any given Ψ
belonging toHk, we obtain∣∣∣(PΨ)(t)

∣∣∣ ≤ ∣∣∣Ψ0

∣∣∣ + 1
Γ(ξ)

∫ t

0
(t − q)ξ−1

∣∣∣κ(q,Ψ(q))
∣∣∣dq

≤ Ψ0 +
1
Γ(ξ)

∫ t

0
(t − q)ξ−1[

∣∣∣κ(q,Ψ(q)) − κ(q, 0)
∣∣∣ + ∣∣∣κ(q, 0)

∣∣∣]dq

≤ Ψ0 +
(Lκk + M1)
Γ(ξ)

∫ t

0
(t − q)ξ−1dq

≤ Ψ0 +
(Lκk + M1)
Γ(ξ) + 1

bξ

≤ Ψ0 +℧(Lκk + M1)
≤ k. (4.14)

Consequently, the outcomes are derived. Moreover, considering any Ψ1,Ψ2 ∈ E, we obtain the
following ∣∣∣(PΨ1)(t) − (PΨ2)(t)

∣∣∣ ≤ 1
Γ(ξ)

∫ t

0
(t − q)ξ−1|κ(q,Ψ1(q)) − κ(q,Ψ2(q))|dq
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≤
Lκ

Γ(ξ)

∫ t

0
(t − q)ξ−1|Ψ1(q)) − Ψ2(q))|dq

≤ ℧Lκ|Ψ1(t)) − Ψ2(t))|. (4.15)

thus indicating that

∥(PΨ1)(t) − (PΨ2)(t)∥ ≤ ℧Lκ ∥Ψ1 − Ψ2)∥ . (4.16)

Consequently, based on the Banach contraction principle, we can conclude that the suggested model
(3.4) has a unique solution.

5. Stability analysis

We present the stability analysis within the Ulam-Hyers and generalized Ulam-Hyers framework
to assess the suggested model (3.4) in this section. Ulam-Hyers [49, 50] originally introduced the
concept of Ulam stability. The aforementioned stability has been investigated in various research
articles on classical fractional derivatives, such as in [51, 52]. To ensure the stability of the
approximated solutions, we chose to employ nonlinear functional analysis to examine both the
Ulam-Hyers stability and the generalized stability of the presented model (3.4). For this purpose, the
following definitions are necessary. Consider the following inequality, where ε represents a positive
real value ∣∣∣CDξ

0+Ψ̄(t) − κ(t, Ψ̄(t))
∣∣∣ ≤ ε, t ∈ J , (5.1)

whereas ε = max
(
εJ
)T , J = 1, ..., 7.

Definition 5.1. If Cκ > 0, the model (3.4) exhibits Ulam-Hyers stability. For any positive value ε, and
for a solution Ψ̄ belonging to the set E that fulfills condition (5.1), there exists a unique solution Ψ ∈ E
to (3.4).

|Ψ̄(t) − Ψ(t)| ≤ Cκε, t ∈ J , (5.2)

provides Cκ = max
(
CκJ

)T
.

Definition 5.2. Let ψκ : R+ → R+ be a continuous function with ψκ(0) = 0. Problem (3.4) is
considered to be generalized Ulam-Hyers stable if, for every solution Ψ̄ ∈ E of (5.1), then there exists
a solution Ψ ∈ E of (3.4) such that
|Ψ̄(t) − Ψ(t)| ≤ ψκε1, t ∈ J , where ψκ = max

(
ψκJ
)T
.

Remark 5.1. The expression Ψ̄ ∈ E meets the requirement of (5.1), if and only if a function g ∈ E
possesses the following properties:∣∣∣g(t)

∣∣∣ ≤ ε, g = max
(
g j

)T
, t ∈ J . (5.3)

CD
ξ
0+Ψ̄(t) = κ(t, Ψ̄(t)) + g(t), t ∈ J . (5.4)

Theorem 5.1. Assuming that Ψ̄ belongs to the set E and fulfills the inequality (5.1), then Ψ̄ effects the
integral inequality defined as follows in mathematical terms∣∣∣∣∣∣Ψ̄(t) − Ψ̄0 −

1
Γ(ξ)

∫ t

0
(t − q)ξ−1κ(q, Ψ̄(q))dq

∣∣∣∣∣∣ ≤ ℧ε. (5.5)
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Proof. Utilize (2) of Remark 5.1.
CD

ξ
0+Ψ̄(t) = κ(t, Ψ̄(t)) + g(t) and Theorem 2.1 gives

Ψ̄(t) = Ψ̄0 +
1
Γ(ξ)

∫ t

0
(t − q)ξ−1κ(q, Ψ̄(q))dq

+
1
Γ(ξ)

∫ t

0
(t − q)ξ−1g(q)dq. (5.6)

Utilize (1) from Remark 5.1 and (A2) from the following equation:∣∣∣∣∣∣Ψ̄(t) − Ψ̄0 −
1
Γ(ξ)

∫ t

0
(t − q)ξ−1κ(q, Ψ̄(q))dq

∣∣∣∣∣∣
≤

1
Γ(ξ)

∫ t

0
(t − q)ξ−1g(q)dq

≤ ℧ε. (5.7)

Hence, this is our required solution. □

Theorem 5.2. Consider a continuous mapping κ : J × R7 → R across the entire space of Ψ ∈ E, and
assume that the hypothesis (A1) holds with 1−℧Lκ > 0. Consequently, the problem (3.4) demonstrates
Ulam-Hyers stability as well as generalized Ulam-Hyers stability.

Proof. Assume that Ψ̄ ∈ E satisfies the condition of (5.1), and that Ψ ∈ E is the only single solution to
(3.4). As a result, for every ε > 0 and t ∈ J , in accordance with Lemma 5.1, we obtain

∣∣∣Ψ̄(t) − Ψ(t)
∣∣∣ = max

(t∈J)

∣∣∣∣∣∣Ψ̄(t) − Ψ0 −
1
Γ(ξ)

∫ t

0
(t − q)ξ−1κ(q,Ψ(q))dq

∣∣∣∣∣∣
≤ max

(t∈J)

∣∣∣∣∣∣Ψ̄(t) − Ψ̄0 −
1
Γ(ξ)

∫ t

0
(t − q)ξ−1κ(q, Ψ̄(q))dq

∣∣∣∣∣∣
+ max

(t∈J)

1
Γ(ξ)

∫ t

0
(t − q)ξ−1

∣∣∣∣κ(q, Ψ̄(q)) − κ(q,Ψ(q))
∣∣∣∣dq

≤

∣∣∣∣∣∣Ψ(t) − Ψ̄0 −
1
Γ(ξ)

∫ t

0
(t − q)ξ−1κ(q, Ψ̄(q))dq

∣∣∣∣∣∣
+

Lκ
Γ(ξ)

∫ t

0
(t − q)ξ−1

∣∣∣∣Ψ̄(q) − Ψ(q)
∣∣∣∣dq

≤ ℧ε +℧Lκ
∣∣∣∣Ψ̄(t) − Ψ(t)

∣∣∣∣. (5.8)

So, ∥∥∥Ψ̄ − Ψ∥∥∥ ≤ Cκε, (5.9)
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where,

Cκ =
℧

1 −℧Lκ
. (5.10)

So, we set ψκ(ε) = Cκ(ε) such that ψκ(0) = 0. Our analysis leads us to the perfect rephrasing that the
stated problem (3.4) exhibits both Ulam-Hyers stability and generalized Ulam-Hyers stability. □

6. Numerical findings and analysis

In our investigation, we analyzed the dynamic behavior of our system (3.4) for dengue infection
through numerical analysis. Employing assumed values for the state variables and input parameters,
we conducted simulations to replicate different scenarios. The core aim of these numerical
simulations was to illustrate the impact of input factors on the intricate dynamics of dengue, providing
valuable insights into the system’s behavior under various conditions. Through this approach, we seek
a comprehensive understanding of the interplay between key variables and the consequential patterns
that govern the progression of dengue infection. Based on our analysis, we will propose efficient
strategies for controlling dengue, aiming to decrease the prevalence of infection within society. In
order to demonstrate how the infection level fluctuates with the variation of different input parameters,
we depict the solution pathways of the asymptomatic hosts, infected hosts and infected vectors.

In the initial scenario illustrated in Figure 1, our focus was on showcasing the impact of varying
the index of memory on the infection levels within the population. This exploration was performed to
determine whether the fractional parameter could function as a viable control parameter. The findings
revealed the fractional parameter’s significance as an influential factor, serving as a valuable tool to
modulate the extent of infection within the community. The results indicated a noteworthy trend:
the infection level exhibited sensitivity to changes in the index of memory. Specifically, decreasing
the memory index correlated with a reduction in the infection level. This observation underscores
the potential effectiveness of interventions aimed at strategically managing the fractional parameter
to curtail the spread of infection. As a result, we advocate for proactive policymaking and targeted
actions to adjust the memory index, offering a promising avenue for infection control measures and
public health management.

In the second case illustrated in Figure 2, we explored the role of the transmission probability on
the populations of infected hosts and vectors. This investigation was undertaken to elucidate the
pivotal role of the transmission probability and its impact on the dynamics of the infection. The
results highlighted the critical nature of the transmission probability, showcasing its substantial
influence on the risk of infection. As this parameter was adjusted, we observed corresponding shifts
in the populations of both infected hosts and vectors. Higher transmission probabilities were
associated with a high risk of infection, emphasizing the need for careful consideration and strategic
management of this parameter in disease control efforts. In the same way, Figure 3 illustrated the
importance of the mosquito biting rate. Our observations indicate that these parameters hold
considerable significance, possessing the capacity to heighten the risk of infection within the
community.

In Figure 4, the impact of treatment on the infected classes is illustrated. Our observations indicate
that the treatment rate exerts a significant level of control over the prevalence of dengue infection within
the society, demonstrating its potential in efforts to mitigate the spread of the disease. Subsequently,
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Figure 1. Visual examination was performed to analyze the dynamic characteristics of the
recommended system (3.4) of dengue infection with the variation of the fractional parameter
ξ, i.e., ξ = 0.85, 0.90, 0.95, and 1.00.
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Figure 2. Depiction of the solution pathways for the recommended fractional system (3.4)
of dengue infection with variation of transmission probability β3, i.e., β3 = 0.52, 0.62, 0.72,
and β3 = 0.82.
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Figure 3. Depiction of the solution pathways for the recommended fractional system (3.4)
for dengue infection, considering varying biting rates, i.e., b values of 0.55, 0.60, 0.65, and
0.70.
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Figure 4. Temporal analysis of the impacted categories within our dengue infection
model (3.4) was conducted, considering varying treatment rates denoted as τ, i.e., τ =
0.225, 0.285, 0.345, and 0.405.

AIMS Bioengineering Volume 11, Issue 1, 44–65.



60

Time in days
0 10 20 30 40 50 60

A
s
y
m

p
to

m
a
ti
c
  
h
o
s
ts

0

50

100

150

200

250

300

ψ= 0.40
ψ=0.50
ψ= 0.60
ψ = 0.70

(a)

Time in days
0 10 20 30 40 50 60

In
fe

c
te

d
 h

o
s
ts

0

20

40

60

80

100

120

140

160

180

200

ψ= 0.40
ψ=0.50
ψ= 0.60
ψ = 0.70

(b)

Time in days
0 10 20 30 40 50 60

In
fe

c
te

d
 v

e
c
to

rs

200

250

300

350

400

450

ψ= 0.40
ψ=0.50
ψ= 0.60
ψ = 0.70

(c)

Figure 5. The infected categories of dengue infection in our model (3.4) were subjected to
time series analysis while altering the carrier fraction ψ across values of ψ = 0.40, 0.50, 0.60,
and 0.70.
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in the most recent scenario portrayed in Figure 5, we have elucidated the variation in the prevalence
of dengue infection with alterations in the carrier fraction. It is evident from the results that this factor
assumes a pivotal role, possessing the potential to escalate the risk of infection within both endemic
and non-endemic regions. It has been observed in these findings that the control of memory index can
control the infection level of both the populations in the community. Therefore, we conclude that this
parameter is attractive and should be used by the public health officials for the control of dengue.

We believe that getting vaccinated and receiving treatment are important for the control of dengue
infection. In addition to this, managing the infection effectively involves using things like bed nets and
insecticide sprays, along with adjusting the memory index on purpose.

7. Concluding remarks

The worldwide prevalence of dengue viral infection presents a substantial risk to public health,
carrying the potential for life-threatening outcomes. At present, devising successful approaches to
manage this viral malady is considered as a significant hurdle for policymakers, researchers, and
public health authorities. In this work, we analyzed the dynamics of dengue infection with the effect
of different control measures for public health. We presented the proposed dynamics of dengue from
the perspective of a fractional framework to capture the role of memory in the transmission of dengue
infection. The basic concepts and ideas of fractional theory have been introduced for the analysis of
our model. It has been shown that the solutions of the model are non-negative and bounded for
non-negative initial values. The existence and uniqueness of the proposed dengue model’s solution
were examined by using Banach’s and Schaefer’s frameworks, employing the fixed-point theorem.
Furthermore, we have established adequate conditions for Ulam-Hyers stability of our system of
dengue infection. To visualize the dynamical behavior of dengue infection, we performed different
simulations with variation of the input parameters of the system. We demonstrated the pivotal roles of
asymptomatic carriers, the biting rate, and the transmission probability as critical parameters that can
exacerbate the difficulty of controlling dengue infection. On the other hand, the index of memory,
vaccination, and treatment have the potential to effectively manage dengue infection. The results of
our study emphasize the noteworthy influence of memory on the behavior of dengue, indicating its
potential as a controlling factor for infection management. In our future work, we intend to explore
how the dynamics of dengue infection are affected by maturation and incubation delay.
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