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Abstract: Lung cancer is a predominant cause of global cancer-related mortality, highlighting the
urgent need for enhanced diagnostic and therapeutic modalities. With the integration of artificial
intelligence (AI) into clinical practice, a new horizon in lung cancer care has emerged, characterized
by precision in both diagnosis and treatment. This review delves into AI’s transformative role in this
domain. We elucidate AI’s significant contributions to imaging, pathology, and genomic diagnostics,
underscoring its potential to revolutionize early detection and accurate categorization of the disease.
Shifting the focus to treatment, we spotlight AI’s synergistic role in tailoring patient-centric therapies,
predicting therapeutic outcomes, and propelling drug research and development. By harnessing the
combined prowess of AI and clinical expertise, there’s potential for a seismic shift in the lung cancer
care paradigm, promising more precise, individualized interventions, and ultimately, improved survival
rates for patients.
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1. Introduction

Nowadays, lung cancer remains at the forefront of global oncological challenges, contributing to a
staggering 18.4% of all cancer-related deaths, inflicting profound societal distress and substantial
economic consequences [1]. While cigarette smoking is implicated in nearly 85% of these cases [2],
other factors such as environmental pollutants, occupational hazards, and genetic susceptibilities
further accentuate the lung cancer landscape, especially among non-smokers. The increasing
incidence of lung cancer underscores the pressing need for advancements in early detection methods
and more effective therapeutic strategies. A pivotal factor determining the prognosis of lung cancer
patients is the stage at which the diagnosis is made. Regrettably, existing diagnostic protocols often
fall short, with symptoms predominantly surfacing during advanced stages, where metastasis has
already occurred, culminating in a bleak 5-year survival rate of a mere 4% [3, 4]. However, traditional
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diagnostic and treatment approaches face significant challenges in effectively addressing the
complexities and individual variances associated with lung cancer.

Transitioning to diagnostic modalities, CT imaging, despite its ubiquity in lung cancer diagnosis,
grapples with issues stemming from the intricate interpretation of voluminous data sets. Although
pathological examinations furnish insights into tumor attributes via tissue biopsies [5], their inherent
subjectivity coupled with inter-observer disparities erode their dependability. The domain of
molecular diagnostics, with its focus on biomarker identification through meticulous genetic and
molecular assessments [6] remains ensnared in the intricacies of data interpretation, necessitating
specialized acumen and substantial resources [7]. On the therapeutic front, while a suite of treatments
including surgery, chemotherapy, radiation therapy, targeted therapy, and immunotherapy are
routinely invoked [8], the heterogeneous nature of lung cancer introduces a myriad of challenges in
curating a holistic treatment regimen. Factors such as tumor subtypes, genetic aberrations, and
patient-specific attributes must be seamlessly integrated into the decision-making process.
Interestingly, current evidence remains inconclusive regarding the augmentation of survival rates via
induction, consolidation chemotherapy, or radiation dose escalation [9–11]. The nuances of
inter-patient variability in both therapeutic responses and potential toxicities further convolute the
treatment landscape. Therefore, the conventional armamentarium for lung cancer diagnosis and
treatment is fraught with challenges, from data interpretation bottlenecks and demanding clinical
workloads to the intricate art of clinical decision-making.

Recently, the rapid advancements in computer technology and statistical analysis have set the stage
for the transformative role of Artificial Intelligence (AI) in the realm of lung cancer
diagnosis [12–16]. Deep learning algorithms have emerged as a groundbreaking approach,
revolutionizing the accuracy and efficiency of lung cancer detection and staging through the precise
analysis of CT images [17–19]. Integration of AI with pathological images has enabled
unprecedented advancements in tumor grading and staging, unlocking invaluable insights for
treatment planning and prognostic assessment [20]. By harnessing the power of genomic analysis and
biomarker identification [21, 22], AI paves the way for the realization of precision medicine, tailoring
treatment strategies to the unique characteristics of individual patients [23, 24]. Moreover, AI acts as
an indispensable partner in clinical decision-making, empowering clinicians to navigate complex
treatment landscapes by offering reliable predictions of treatment response, potential side effects, and
prognosis across diverse therapeutic modalities, including medical treatment, surgery, and
radiotherapy [25–28]. Furthermore, a meticulous survey of recent literature from the last decade,
conducted on the Web of Science’s core collection with targeted keyword searches, yielded 918
pertinent articles. This wealth of research, represented in a comprehensive chord diagram (Figure 1),
underscores the global endeavors to merge AI’s prowess with clinical expertise. Hence, the seamless
integration of AI into future clinical workflows holds immense promise, propelling the field of lung
cancer care to new frontiers of innovation and improved patient outcomes.

This article provides a comprehensive overview of the development and applications of AI in lung
cancer diagnosis and treatment. We discuss recent advancements in AI research, specifically focusing
on its role in image recognition, staging, and prognostic prediction for lung cancer. Furthermore, we
will discuss the application of AI in precision medicine, leveraging genomic analysis and biomarker
identification to enable personalized treatment approaches. By providing valuable insights and guiding
future research directions, this review aims to contribute to the utilization of AI for improved lung
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cancer diagnosis and treatment. We also discuss the current challenges, opportunities, and the potential
integration of AI into clinical practice to achieve individualized care for lung cancer patients.

Figure 1. An overview of AI’s revolution in lung cancer diagnostics.

2. Evolution of AI in lung cancer

Over the past decade, the field of lung cancer care has witnessed a remarkable transformation
driven by the rapid evolution of artificial intelligence (AI) [29–31]. Figure 2 illustrates the significant
milestones in the field of AI applied to lung cancer diagnosis throughout history.

Figure 2. An overview of AI’s revolution in lung cancer diagnostics.

In the early stages, machine learning algorithms were applied in lung cancer diagnosis. Traditional
machine learning algorithms such as Support Vector Machines (SVM) and Random Forests were used
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for processing and analyzing lung imaging data, enabling tasks such as tumor detection and
classification [32, 33]. These algorithms relied on manual feature engineering, extracting and
selecting predefined features for lung cancer diagnosis [34]. With the evolution of machine learning,
researchers have used machine learning algorithms to identify unique radiomic features or genetic
biomarkers associated with specific subtypes of lung cancer. For example, a study published in
"Scientific Reports" in 2018 successfully differentiated between adenocarcinoma and squamous cell
carcinoma using radiomic features extracted from CT images [35].

Deep learning refers to a machine learning method that has evolved from artificial neural networks.
Around 2006, deep learning gained widespread attention with advancements in computing power and
the availability of large-scale datasets [36]. Subsequently, AI has achieved significant breakthroughs
in the field of lung cancer [37]. In 2015, deep learning techniques simplified the image analysis
pipeline and achieved better discriminative results in the computer-aided diagnosis (CAD) of lung
nodules, showing promise in improving prognosis for lung cancer [38]. In [39], lung nodule
classification was performed using CT images from SPIE-AAPM-LungX data, utilizing TensorFlow
and 3D convolutional neural network architecture, which had gained popularity for accurate
classification of lung cancer. Notably, in [40], a deep convolutional neural network was trained on
whole-slide images to accurately classify lung histopathology slides into adenocarcinoma (LUAD),
squamous cell carcinoma (LUSC), or normal lung tissue, achieving performance comparable to
pathologists. Moreover, commonly mutated genes in LUAD, suggesting that deep-learning models
can aid in cancer subtype detection and gene mutation prediction.

Approaching the 2020s, AI in lung cancer diagnosis has started to integrate diverse types of data,
such as genomics, clinical data, and pathology data [41–43]. By combining and jointly analyzing
these different data sources, AI can provide a more comprehensive evaluation of lung cancer risk and
prognosis, facilitating more accurate diagnosis and treatment decision support. For instance, Nair et
al. [44] developed radiogenomics models from CT and FDG PET-CT images to predict EGFR
mutations in non-small cell lung cancer (NSCLC), achieving promising accuracy in differentiating
EGFR mutant from wild type tumors. The imaging signatures hold potential for pretreatment
assessment and prognosis in precision therapy. Furthermore, to identify associations in non-small cell
lung cancer (NSCLC), Singal et al. [45] demonstrated the feasibility of combining electronic health
record (EHR)-derived clinical data with comprehensive genomic profiling (CGP), providing valuable
insights into driver mutations’ response to targeted therapy and tumor mutation burden’s impact on
immunotherapy response.

As reinforcement learning advances, AI applications in lung cancer are expanding to include
autonomous decision-making and treatment planning [46]. In [47], a reinforcement learning-based
approach was developed to optimize lung cancer detection in low-dose computed tomography
(LDCT) screening, reducing the false positive rate while maintaining a high true positive rate
compared to human experts. Considering patient-specific tumor features and daily fractionation, a
Deep Reinforcement Learning (DRL) controller was developed to optimize personalized radiation
therapy for lung cancer patients [48]. The DRL approach outperformed current clinical practice by
adapting to different reward functions and exploring various treatment strategies.

Through significant advancements in imaging analysis, pathology interpretation, and molecular
diagnostics, AI has emerged as a promising ally in revolutionizing lung cancer care.
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3. The role of AI in lung cancer diagnosis

In this section, we explore the clinical applications of AI in lung cancer diagnosis, mainly
including imaging and radiology, pathology, genomics, and molecular diagnostics [49]. Subsequently,
in the ensuing section, we elucidate the extensive clinical applications of AI in lung cancer treatment,
from personalized treatment [50]. This encompasses personalized treatment approaches,
prognostication of treatment response, anticipation of prognosis, as well as advancements in drug
discovery and development.

3.1. AI in imaging and radiology

The application of AI technology in the fields of imaging and radiology has opened up new
possibilities for the early diagnosis and treatment of lung cancer [50]. Different imaging modalities,
such as CT imaging, X-ray images, and MRI, are widely utilized in the clinical diagnosis of lung
cancer [51]. By combining AI algorithms with medical imaging, it becomes possible to more
accurately assess the nature, staging, and prognosis of tumors, providing patients with personalized
and precise treatment plans. The integration of advances in imaging and radiology with AI technology
holds great promise for the future development of lung cancer diagnosis and treatment [52]. Table 1
presents the AI applications in radiology and imaging for lung cancer diagnosis.

Table 1. AI applications in radiology and imaging for lung cancer diagnosis.
Year Ref. Modality Methods Results

2016 [55]

CT imaging

ConvNets-CAD sensitivity (94.4%)
2018 [57] A two-stage system

based on 3D CNNs sensitivity (91%)

2019 [56]
A novel automated
pulmonary nodule

detection framework
with 2D CNN

sensitivity (86.42%)

2019 [59] A deep learning algorithm AUC (94.4%)
2019 [60] DCNN sensitivity (89.3%)

specificity (83.3%)
2019 [61] DCNN accuracy (93.9%)

2018 [65]
X-ray

DenseNet-121
accuracy (74.43±6.01%)

specificity (74.96±9.85%)
sensitivity (74.68±15.33%)

2020 [67] Modified AlexNet (MAN)
with SVM and Softmax accuracy (97.27%)

2020 [68]
Patch-based

Multi-resolution
Convolutional Networks

FAUC (98.2%)
R-CPM (98.7%)

2018 [70]
MRI

K-means clustering
CNN

accuracy (98.85%)
sensitivity (98.32%)
precision (99.40%)
specificity (99.39%)

2019 [72] CNN accuracy (96.55%)

2023 [73]
RF

CNN
EBRNN

EBFNN accuracy (93%)
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3.1.1. CT imaging

CT imaging plays a crucial role in the diagnosis of lung cancer. Through CT scans, doctors can
obtain high-resolution images of the lung’s structure, aiding in the detection of abnormal nodules,
masses, or other lesions. Recently, the application of CT imaging in the diagnosis of lung cancer
has been significantly advanced through the utilization of multi-view convolutional neural networks
(ConvNets) and deep learning-based frameworks [53, 54].

A computer-aided detection (CAD) system was developed for pulmonary nodules by analyzing a
set of nodule candidates from CT images and extracting 2D image patches from different orientations,
utilizing multi-view convolutional neural networks (ConvNets). On 888 scans of the publicly
available LIDC-IDRI dataset, this CAD system achieved high detection sensitivities of 85.4% and
90.1% at 1 and 4 false positives per scan, respectively [55]. Also for achieving accurate detection of
pulmonary nodules in CT images, Xie et al. [56] proposed an automated framework for pulmonary
nodule detection based on 2D convolutional neural networks (CNN). The offered framework achieved
notable results with a sensitivity of 86.42% for nodule candidate detection on the LUNA16 dataset.
Additionally, the framework achieved sensitivities of 73.4% and 74.4% at 1/8 and 1/4 false positives
per scan, respectively, showing promising performance in false positive reduction. DeepMed, a
two-stage computer-aided detection system for automatic detection of pulmonary nodules, achieved
fast screening and generated candidate suspicious regions, utilizing a 3D fully convolutional network
in the first stage. The second stage consisted of an ensemble of 3D CNNs, achieving a high sensitivity
of 91% at a low false positive rate of 2 per scan on the LIDC dataset [57].

Accurate tumor detection is of vital necessity for Lung cancer’s effective diagnosis and
treatment [58]. Another research, based on the current and prior CT scans of patients, studied a deep
learning-based lung cancer risk prediction model, which demonstrated remarkable accuracy in
forecasting the likelihood of developing the disease. The model demonstrated exceptional
performance, achieving a 94.4% area under the curve on the National Lung Cancer Screening Trial
cases and yielding comparable results on an independent clinical validation set of 1,139 cases [59].
Recently, a deep convolutional neural network (DCNN) was developed to automate the classification
of malignant lung cells in microscopic images. The DCNN achieved a classification sensitivity of
89.3% and specificity of 83.3%, comparable to a cytopathologist. Utilizing data augmentation
techniques, a dataset of 60,000 image patches was generated to enhance the model’s
performance [60]. Figure 3A illustrates DCNN architecture for the classification of lung cytological
images. In a different study, DCNN is also employed to automate the classification of pulmonary
nodules in computed tomography (CT) images, as shown in Figure 3B. The advanced method
achieved a significant improvement in classification accuracy, distinguishing between benign and
malignant nodules with 66.7% accuracy for benign nodules and 93.9% accuracy for malignant
nodules [61].

AIMS Bioengineering Volume 10, Issue 3, 331–361.



337

Figure 3. (A) DCNN architecture for classification of lung cytological images. We
employed transfer learning on a pretrained VGG-16 model. The image specifies the types
and dimensions of each layer in the network [60], (B) Architecture of the GAN used for
nodule generation [61].
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3.1.2. X-ray

Similarly, X-ray images play a fundamental role in the initial assessment of lung health. With AI
applications, computer-aided diagnosis (CAD) systems can assist radiologists in pinpointing and
characterizing lung lesions, leading to more precise and timely diagnosis [62–64]. Ausawalaithong et
al. [65] utilized a 121-layer convolutional neural network (DenseNet-121) and transferred a learning
approach to analyze and classify chest X-ray images for the diagnosis of lung cancer. This model
achieved remarkable results with a mean accuracy of 74.43±6.01%, mean specificity of
74.96±9.85%, and mean sensitivity of 74.68±15.33%. CXR has relatively low sensitivity and
specificity in the diagnosis of lung cancer, thus it is often necessary to combine other imaging
examinations, such as CT scans, for further evaluation and confirmation of lung cancer [66].
Recently, both CT images and chest X-ray images were adopted to detect lung abnormalities and
improve classification accuracy based on a DL framework. Researchers applied chest X-ray images
(CXR) for initial deep learning (DL) classification and compared the performance with support vector
machines (SVM). The DL model, based on a modified AlexNet (MAN) architecture, achieved an
impressive classification accuracy of 92% in distinguishing between normal and pneumonia
classes [67]. A study proposed a deep learning-based lung nodule detection method that utilized chest
X-ray radiographs (CXR) to provide diagnostic support for early-stage lung cancer. They employed a
patch-based multi-resolution convolutional neural network and utilized four different fusion methods
for classification. It achieved a detection rate of over 99% for lung nodules when limiting the false
positives per image (FPs/image) to 0.2 [68].

3.1.3. Magnetic resonance imaging (MRI)

In recent years, MRI technology has played a more and more crucial role in lung cancer diagnosis
by providing high-resolution lung images, aiding in tumor detection and characterization [69].
Furthermore, the integration of artificial intelligence in MRI applications enhances diagnostic
accuracy and efficiency through automated analysis and image recognition, leading to improved
healthcare outcomes for patients. For example, to achieve the diagnosis of lung cancer using MRI
images, Rustam et al. [70] proposed a novel approach combining Convolutional Neural Network
(CNN) and Kernel K-Means clustering. The Anti-PD-1 Immunotherapy Lung dataset from The
Cancer Imaging Archive was utilized, containing 150 healthy lung images and 250 lung cancer
images. With 98.85% accuracy, 98.32% sensitivity, 99.40% precision, 99.39% specificity, and
98.86% F1-Score, these results shew immense efficiency and promise in MRI-based lung cancer
diagnosis. MRI was broadly known as a valuable tool for lung cancer screening [71]. Also, an
automated approach using MRI images was conducted to research and achieved high accuracy rates
of 96.28% (conventional image processing) and 96.55% (CNN-based classification) for lung cancer
detection. This finding suggested the potential of automated methods to assist in early diagnosis and
improve patient outcomes [72]. In addition, Wahengbam et al. [73] employed image preprocessing
and algebraic morphological operations to identify lung tumors, and utilized an Enhanced
Backpropagation Feedforward Neural Network (EBFNN) for benign and malignant classification.
Experimental results demonstrated that EBFNN outperformed other algorithms with an accuracy of
93%.
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3.2. AI in pathology

AI has been widely applied in the field of pathology, encompassing tasks such as tumor
classification and tumor microenvironment (TME) [74]. More researchers are devoted to it, aiming to
explore the applications and advancements of AI in these areas to enhance diagnostic accuracy and
prognostic assessment for lung cancer patients. Table 2 provides a comprehensive overview of the
deep learning models for lung cancer pathology analysis.

Table 2. Summary of deep learning models for lung cancer pathology analysis.

Topic Lung cancer subtype Task Model Accuracy Year Ref.

Lung cancer

classification

ADC Maglinant vs.

non-malignant classification

CNN 89.8% 2018 [77]

Not specified CNN 86.4% 2019 [78]

ADC
Hisotological subtype

classification
CNN 89.24% 2019 [80]

NSCLC
PD-L1 status

prediction
FCN N/A 2019 [79]

NSCLC
Transcriptomic subtype

classification
CNN N/A 2020 [81]

Micro-environment

analysis

ADC and SCC

Necrosis positive vs.

negative

classification

CNN N/A 2018 [83]

ADC Microvessel segmentation FCN N/A 2018 [84]

ADC

Tumor vs.

stromal cell vs.

lymphcyte classification

CNN 90.1% 2019 [85]

NSCLC
Tumor microenvironment

segmentation
CNN 85.21% 2022 [86]

AIMS Bioengineering Volume 10, Issue 3, 331–361.



340

3.2.1. Tumor classification

Tumor classification involves categorizing tumors into different types and subtypes. In the
diagnosis of lung cancer, different types of lung cancer may exhibit distinct biological characteristics
and clinical behaviors, making accurate classification essential for tailored treatments. Artificial
intelligence technology can aid pathologists in identifying and analyzing tissue sections, supporting
the determination of tumor classification, enhancing classification accuracy and consistency, and
providing more reliable evidence for personalized treatment decisions [75].

Actually, CNN was widely applied for accurate and automated classification of lung tumor
histopathology images [76]. For example, a deep convolutional neural network (CNN) was employed
to automatically identify tumor regions in lung cancer pathology images. The developed prognostic
model based on tumor region shape effectively predicted a high-risk group with a 2.25 hazard ratio
and 95% CI of 1.34–3.77, indicating worse survival compared to the low-risk group (p-value =
0.0022) after adjusting for age, gender, smoking status, and stage [77]. Figure 4A displays the flow
chart of the analysis process. Vsaric et al. [78] introduced a fully automated method for detecting
lung cancer in whole slide images of lung tissue samples. Employing convolutional neural networks
(CNN) with two architectures (VGG and ResNet), the approach performed classification on the image
patch level, offering a faster and more accurate alternative to traditional histopathological assessment.
In another study, Sha et al. [79] utilized deep learning to predict tumor programmed death-ligand 1
(PD-L1) status from hematoxylin and eosin (H and E) whole-slide images of non-small cell lung
cancer (NSCLC) samples, as shown in Figure 4B. The trained model accurately predicted PD-L1
status on the test cohort of H and E images (AUC = 0.80, P« 0.01), which suggested a correlation
between PD-L1 expression and the morphological features of the tumor microenvironment. Similarly,
a pipeline equipped with CNN was developed to assist pathologists in quantifying the percentages of
distinct histological tumor growth patterns in lung adenocarcinomas (LAC). The model’s accuracy
was significantly better in the Cedars-Sinai Medical Center set (88.5%) compared to the MIMW
(84.2%) and TCGA (84%) sets due to superior slide quality [80]. Figure 4C shows CNN trained with
an augmented set of images from the training slides. Utilizing a quantitative histopathology analytic
framework, major transcriptomic subtypes in both adenocarcinoma and squamous cell carcinoma (P <
0.01) can be successfully identified. Convolutional neural networks were built to classify
histopathology images with high AUCs (>0.935) in identifying tumor regions and recapitulating
expert pathologists’ diagnosis (AUCs > 0.877) [81].
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Figure 4. (A) Flow chart of analysis process. CNN, convolutional neural network; NLST, the
National Lung Screening Trial; TCGA, The Cancer Genome Atlas [77], (B) Model training:
matching areas on Immunohistochemistry and H and E slides were annotated [79], (C) CNN
trained with an augmented set of images from the training slides [80].
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3.2.2. Tumor microenvironment (TME)

The tumor microenvironment refers to the complex ecosystem of cells, blood vessels, immune
cells, and various molecules surrounding the tumor [82]. It plays a crucial role in tumor growth,
metastasis, and treatment responses. By leveraging artificial intelligence, efficient automated analysis
of cell types and spatial distribution in tumor tissue sections can be achieved. This helps researchers
gain deeper insights into the complexity of the tumor microenvironment, discover new treatment
targets, and predict patient outcomes, ultimately providing valuable information for personalized lung
cancer treatment.

Spatial infiltrate states in the TME could reflect particular tumor cell aberration states, as proved by
a recent study. The study highlighted the underutilized potential of digitized H&E-stained images [83]
of TCGA samples and presented TIL maps for 13 tumor types via a CNN. These maps revealed a
correlation with overall survival and associations with specific T-cell subpopulations derived from
molecular measures. In the same year, Yi et al. presented an automated microvessel detection
algorithm [84] using fully CNNs in H&E stained pathology images. The identified microvessel
features shew significant associations with patient clinical outcomes, providing insights into the tumor
microenvironment (TME). ConvPath, an automated cell type classification pipeline [85], was
presented for classification in lung cancer pathology images. The pipeline achieved an overall
classification accuracy of 92.9% in the training dataset and 90.1% in the independent testing dataset.
This approach offered valuable insights into the spatial organization of cells and their roles in tumor
progression and the tumor microenvironment (TME). Figure 5A presents the feature extraction step of
the ConvPath software. In the accurate classification of lung cancer tissue types, Rkaczkowski et
al. [86] introduced a deep neural network, ARA-CNN, using 23,199 image patches from H&E-stained
sections, which achieved per-class AUC ranging from 0.72 to 0.99. Figure 5B illustrates the annotated
26 of H&E tissue slides. The machine learning models utilizing the human-interpretable features
attained a c-index of 0.723 for survival prediction and achieved an AUC of up to 73.5% for PDGFRB
in the task of mutation classification, highlighting the potential of these features in predicting patient
outcomes and cancer gene mutations related to the tumor microenvironment (TME).

Figure 5. (A) Feature extraction step of the ConvPath software [85], (B) 26 of H&E tissue
slides were annotated by an expert pathologist in an active learning loop with ARA-CNN,
which resulted in the LubLung dataset and a trained tissue classification model [86].
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3.3. AI in genomics and molecular diagnostics

In the study of lung cancer, gene and molecular diagnostics are important tools used by pathologists
and clinical physicians to determine the patient’s lung cancer type, and to devise personalized treatment
plans [87, 88]. By analyzing the DNA, RNA, or protein levels of lung cancer patients, pathologists
can identify the molecular characteristics of the disease, guiding treatment decisions and monitoring
disease progression [89, 90].

3.3.1. Gene mutations and gene expression

In the field of lung cancer diagnosis, the integration of genetic mutation and gene expression data
has become increasingly important for understanding the disease and developing effective treatment
strategies [91,92]. Researchers have leveraged advanced machine learning techniques to analyze these
molecular features, enabling the identification of key genetic alterations and gene expression patterns
associated with different subtypes of lung cancer [93].

In 2019, a study introduced a novel approach using spectral-convolutional neural networks (CNNs)
to classify lung cancer by integrating protein interaction network data and gene expression profiles.
The method outperformed traditional machine learning techniques like SVM and Random Forest in
terms of accuracy, indicating its potential for enhancing gene expression-based lung cancer
classification [94]. Recently, some researchers conducted various machine-learning algorithms to
explore the gene expression profiles of lung adenocarcinoma (AC) and lung squamous cell cancer
(SCC). By using powerful feature selection methods and incremental feature selection, they identified
informative genes and constructed classification rules, shedding light on the transcriptomic
differences between these two lung cancer subtypes [93]. Later, Wiesweg et al. [95] discussed the use
of machine learning and context-sensitive feature selection on immune-related gene expression
profiles in stage IV non-small cell lung cancer (NSCLC) patients. The researchers developed
predictive models to identify patients with superior outcomes to PD-1/PD-L1 immunotherapy,
independently of PD-L1 expression, based on a 770-gene panel. This AI-driven approach allowed
precise prediction of response to immunotherapy in NSCLC by capturing the tumor immune context.
In the same year, Khalifa et al. [96] proposed an optimized deep learning approach using binary
particle swarm optimization with decision tree (BPSO-DT) and convolutional neural network (CNN)
to classify different types of lung cancer based on tumor RNA sequence (RNA-Seq) gene expression
data. The approach involved preprocessing the RNA-Seq data with BPSO-DT for feature selection
and converting it into 2D images. Data augmentation was employed to overcome overfitting, and a
deep CNN architecture was introduced for accurate classification of lung cancer types, achieving an
overall testing accuracy of 96.90%.

3.3.2. Molecular biomarkers and biological markers

Molecular biomarkers and biological markers have been indicated crucial in lung cancer diagnosis,
offering insights into the disease’s mechanisms and guiding personalized treatments. Through
advanced technologies and machine learning, distinct lung cancer subtypes can be identified, leading
to more precise and effective therapeutic approaches, and revolutionizing lung cancer diagnosis and
patient outcomes.

Early in 2019, the diagnostic potential of miRNAs in lung cancer was explored through a
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support-vector-machine (SVM) model based on plasma miRNA biomarkers, clinical symptoms, and
epidemiology data. The expressions of 10 plasma miRNAs were examined using SYBR Green-based
quantitative real-time PCR, and significant differences were observed between lung cancer and
control groups. The SVM model utilizing combined miRNA biomarkers showed promising accuracy
(96.34%) and may serve as a novel, noninvasive method for auxiliary lung cancer diagnosis, involving
the use of biomarkers and advanced machine learning techniques [97]. Then in 2020, Selvanambi et
al. [98] presented a novel approach to enhance early prediction of lung cancer through the utilization
of a higher-order recurrent neural network with the Levenberg-Marquardt model and glowworm
swarm optimization algorithm to manage multimodal disease information. The proposed method
demonstrated a significant improvement in accuracy (98%) compared to traditional optimized neural
networks, emphasizing its relevance in the context of biomarker research for early diagnosis and
prognosis of lung cancer. In 2022, Banaganapalli et al. [99] conducted a study to identify potential
blood-based molecular biomarkers for chronic obstructive pulmonary disease (COPD) by analyzing
dysregulated gene expression patterns in blood and lung tissues. Through computational analysis, 63
shared differentially expressed genes (DEGs) were identified between COPD and control samples.
Twelve COPD hub gene-network clusters related to protein degradation, inflammatory cytokine
production, airway remodeling, and immune cell activity were prioritized as potential blood-based
genetic biomarkers for COPD diagnosis and prognosis.

3.3.3. Genomics and transcriptomics

By integrating artificial intelligence technology, genomics and transcriptomics enable the
processing of vast amounts of biological data and employ machine learning algorithms to discover
potential lung cancer-related features, accelerating the diagnostic process, enhancing accuracy, and
providing more effective treatment options for patients [100].

Employing a Genomic Sequencing Classifier (GSC), Choi et al. [101] studied lung cancer
diagnosis based on next-generation sequencing technology and artificial intelligence algorithms. The
GSC effectively handles demographic shifts and interfering factors in gene expression, providing
consistent performance across multiple cohorts. It identifies key genes and clinical covariates related
to gene transcription, enabling accurate down- and up-classification of cancer risk in patients with
inconclusive bronchoscopy results. Figure 6 illustrates the module eigengenes correlation with
clinical factors. In 2021, a novel deep learning approach, Gene Transformer, used multi-head
self-attention for efficient lung cancer subtype classification based on gene expression data. Unlike
traditional algorithms, it identified relevant biomarkers without feature selection, resulting in
improved performance and accurate classification of cancer subtypes [102]. Then Oka et al. [103]
utilized long-read sequencing to comprehensively catalog aberrant splicing isoforms in non-small-cell
lung cancers, identifying novel isoforms and potential neoantigens. A total of 2021 novel splicing
isoforms were identified from 22 cell lines, some of which are validated by proteome analysis. The
research revealed that disruptions of NMD factors UPF1 and splicing factor SF3B1 increased the
proportion of aberrant transcripts, and certain isoforms had the potential to generate neoantigen
candidates. Recently, to identify the transcriptome as a major source of phenotypic variation, Martine
et el. [104] examined intratumor transcriptomic diversity in 354 non-small cell lung cancer tumors
using paired whole-exome and RNA sequencing data. They linked metastasis-seeding potential to
genomic and transcriptomic factors with machine learning, revealing the interplay between the
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genome and transcriptome in intratumor heterogeneity and lung cancer progression. Moreover,
allele-specific expression and ongoing APOBEC activity were discovered, emphasizing the role of
gene transcription in lung cancer biology.

Figure 6. Gene correlation analysis (WGCNA): module eigengenes (listed by row)
correlation with clinical factors (by column). Heatmap color is based on absolute Pearson
correlation. Legend for p-value significance: ’***’ 0 < p-value ≤ 0.001; ’**’ 0.001 < p-value
≤ 0.01; ’*’ 0.01 < p-value ≤ 0.05; ’.’ 0.05 < p-value ≤ 0.1; ’ ’ 0.1 < p-value ≤ 1. Number of
genes in each module is shown in parenthesis in row labels [101].

4. The role of AI in lung cancer treatment

4.1. AI in personalized treatment

Personalized treatment for lung cancer encompasses a range of modalities, including
chemotherapy, targeted therapy, and immunotherapy. However, achieving optimal drug selection in
this context is a complex task, considering the intricate interactions between the immune system,
tumor cells, and the tumor microenvironment, as well as the classification and staging of lung cancer.
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To address this challenge, AI-driven approaches have emerged as valuable tools in predicting drug
sensitivity and optimizing treatment decisions for individual patients [105–107]. For instance, He et
al. [108] presented a machine learning approach, named Kernelized Rank Learning (KRL), which
partially addresses the prediction of drug sensitivity based on patient-specific effects per cell line. In
non-small-cell lung cancer (NSCLC) patients, Luo et al. [109] introduced an efficient and
cost-effective collaborative filtering method with ensemble learning, aiding in the selection of suitable
compounds for personalized medicine. Moreover, researchers like Ciccolini et al. [110] have utilized
dense longitudinal data to explore the mechanisms underlying the response or resistance to
immunotherapy in lung cancer patients undergoing anti-PD1/PDL1 therapy, utilizing mathematical
modeling and mechanistic learning algorithms. AI has also demonstrated promise in predicting EGFR
mutation status in NSCLC patients through deep learning models based on 18F-FDG-PET/CT
scans [111]. This non-invasive and precise method, known as EGFR-DLS, facilitates personalized
treatment decisions, enabling the identification of NSCLC patients sensitive to EGFR-TKI or ICI
treatments. Furthermore, AI has contributed to the development of patient-specific targeted drug
screening frameworks, as proposed by Chang et al. [112], which analyze the effectiveness-to-cost
ratio of target drugs to optimize treatment efficacy and cost-effectiveness for lung cancer patients.
Additionally, Wang et al. [113] introduced a fully automated artificial intelligence system (FAIS) that
leverages CT images to predict EGFR genotype and prognosis for lung cancer patients undergoing
EGFR-TKI treatment. FAIS surpasses tumor-based deep learning models, providing a non-invasive
approach to identify EGFR mutations and high-risk patients for TKI resistance. Machine learning
classifiers were leveraged by Khorrami et al. [114] to extract radiomic texture features from baseline
CT scans of non-small cell lung cancer (NSCLC) patients, predicting chemotherapy response and
assessing their association with time to progression (TTP) and overall survival (OS). A pioneering
approach by Song et al. [115] artfully harnessed multi-omics data and machine learning to identify
predictive biomarkers for PD-1/PD-L1 inhibitors’ efficacy in Chinese NSCLC patients, optimizing
clinical responses among specific patient subgroups.

4.2. AI in predicting treatment response and prognosis

Predicting treatment response and prognosis is of paramount importance in lung cancer care, and AI
has significantly advanced our ability to achieve more accurate prognostic capabilities and personalized
treatment decisions for lung cancer patients.

In the realm of treatment response prediction, AI-driven approaches have demonstrated remarkable
potential. Yu et al. [116] harnessed AI-driven analysis of histopathology images, RNA sequencing,
and proteomics data to delve into the relationship between histopathology patterns and molecular
abnormalities in lung adenocarcinoma. Their study successfully predicted histology grade and
identified key pathways underlying tumor cell dedifferentiation. Similarly, a deep learning-based
autoencoding approach was employed by Lee et al. [117], resulting in a robust survival prediction
model showcasing significant differences in survival among patient subgroups in lung
adenocarcinoma (LUAD) prognostication. In 2020, She et al. [118] applied a deep learning survival
neural network, DeepSurv, to accurately predict lung cancer-specific survival in non-small cell lung
cancer (NSCLC) patients, providing individualized prognostic information and treatment
recommendations. Figure 7A shows the diagram of the study procedure. Furthermore, Wang et
al. [113] proposed a fully automated AI system (FAIS) using CT images to predict EGFR genotype
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and prognosis, presenting a valuable non-invasive auxiliary tool for personalized treatment decisions.
Figure 7B displays the Workflow of the proposed FAIS and study design. Additionally, AI-driven
quantitative image analysis and genomic biomarkers were utilized to predict cancer recurrence risk in
early-stage lung cancer patients, leading to improved prognosis assessment for stage I NSCLC after
surgery [119].

Figure 7. (A) Diagram of the Study Procedure [118], (B) Inference process of FAIS
in predicting EGFR genotype and PFS in patients after receiving EGFR-TKIs. Mining
associations between genetic activities and whole-lung features extracted by FAIS [113].

On the other hand, a distinct line of research has focused on prognostic survival prediction models
for lung cancer patients. Computational and integrative analysis methods, including genome-wide
relative significance (GWRS), genome-wide global significance (GWGS), and support vector
machine (SVM) analyses, were employed by Liu [120] to enhance prognostic predictions for lung
adenocarcinoma. Similarly, Malik [121] embarked on a multi-omics integration journey. The training
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process of the model involved iterative feedback loops with weighted sampling to balance class
distributions. After the initial model was developed, a rigorous validation process was undertaken
using a separate cohort of LUAD patients not included in the initial training set. This meticulous
methodology ensured the robustness and generalizability of the model. The resulting AI model,
tailored to lung adenocarcinoma (LUAD) survival, showcased an impressive accuracy of 92.9% in
classifying patients into distinct survival classes. Such advancements, which delve deep into the
technical underpinnings of the AI models and their meticulous development processes, exemplify the
potential of AI in paving the way for truly personalized treatments. Moreover, Wang et al. [122]
introduced a prognostic survival prediction model using CT radiomics features and machine learning,
achieving an accuracy of 88.7% and underscoring the potential of radiomics in predicting patient
survival outcomes. Furthermore, a multi-stage framework was proposed by Johnson et al. [123],
utilizing AI algorithms to predict the 5-year survivability of lung cancer patients, with Random
Forests (RF) and Adaptive Boosting (AdaBoost) models outperforming others.

4.3. AI in drug discovery and development

The realm of drug discovery and development has been witnessing the growing application of
diverse machine learning techniques, including naive Bayesian [124, 125], support vector
machines [126], and advanced deep neural networks [127]. Leveraging the wealth of data from
high-throughput screening, these methods achieve enhanced accuracy in predicting bioactivities
related to targets and molecular properties. For instance, Zhavoronkov et al. [128] introduced
GENTRL, a deep generative model based on AI, which rapidly identifies potent DDR1 kinase
inhibitors, holding promise for expediting drug discovery. In the context of structure-based drug
design, existing structural representations of target proteins, acquired through methods like X-ray
diffraction, NMR, or molecular simulation, play a vital role in designing and optimizing potential
drug candidates with precision and specificity [129–131]. Artificial intelligence (AI) algorithms, as
demonstrated by Trebeschi et al. [132], excel in identifying radiographic biomarkers linked to
immunotherapy response in melanoma and non-small-cell lung cancer (NSCLC) patients. These
noninvasive biomarkers hold the potential to predict immunotherapy response and facilitate patient
stratification for improved treatment outcomes. Additionally, Coundray et al. effectively employed
inception-v3 with TCGA histopathological images to extract morphological features associated with
gene mutation states, successfully predicting frequently mutated genes like EGFR, showcasing the
potential of noninvasive and cost-effective gene mutation prediction using image data.

As drug discovery efforts progress, virtual screening emerges as a key aspect of computer-aided
drug design, offering a cost-effective means to identify potential lead compounds. Researchers have
harnessed the power of AI algorithms to analyze and predict drug-receptor interactions, a crucial step
in identifying promising drug candidates. For instance, Wang et al. [133] utilized structure-based
virtual screening and molecular dynamics simulations to identify T1551, a potential protein arginine
methyltransferase 5 (PRMT5) inhibitor in non-small-cell lung cancer. Similarly, potential lung cancer
inhibitors targeting the Rab39a protein were identified through a structure-based drug discovery
approach, employing homology modeling and virtual screening techniques, as demonstrated by
Haredi et al. [134]. Furthermore, the use of advanced computational methods and molecular docking
allowed the design of a novel curcumin analogue, CUCM-36, as a selective inhibitor for EGFR
mutations in non-small cell lung cancer (NSCLC), showcasing the potential of AI in discovering
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promising anti-EGFR compounds for lung cancer treatment [135]. AI virtual screening, as utilized by
Udhwani et al. [136], highlighted another promising candidate for lung cancer therapy, identifying
potential inhibitors for PD-L1, a critical protein involved in lung cancer progression. Additionally,
Patel et al. utilized virtual screening techniques, including computer simulations and molecular
dynamics simulations, to identify potential novel allosteric inhibitors for overcoming drug resistance
caused by EGFR T790M/C797S mutations in lung cancer patients [137].

5. Future perspectives: potential and challenges

Unlike other studies that tend to focus solely on the technical implementation or clinical benefits of
machine learning in lung cancer care, this article embarks on a holistic exploration of AI’s application
across multiple disciplines within the domain, including imaging, radiology, pathology, and
genomics. These studies demonstrate the broad potential of AI in lung cancer diagnosis, which is
expected to have a positive impact on the future of lung cancer diagnosis and treatment. In the domain
of radiology and imaging, AI stands to redefine how lung cancer detection and evaluation are
performed. Deep learning frameworks, including convolutional neural networks, can now assimilate
multi-modal imaging data, such as CT scans and MRIs, rendering a detailed, precise assessment of
tumors. Specifically, AI augments the potential to delineate tumor boundaries, recognize early-stage
lesions, and even predict tumor growth trajectories based on imaging data. This approach reduces
interpretation time and expedites the identification of lung lesions, which results in timelier and more
accurate diagnoses. AI’s capabilities extend to pathology where it is poised to refine tumor
classification and provide a deeper understanding of the tumor microenvironment (TME). The
advancement of AI-powered algorithms not only improves the accuracy and efficiency of tumor
classification, but also assists pathologists in devising more personalized treatment strategies. At the
intersection of genomics and molecular diagnostics, AI shines as a key player in the fight against lung
cancer . Through machine learning techniques, AI can now pinpoint novel genetic mutations or
recognize specific gene expression patterns indicative of various lung cancer subtypes. AI aids in
converging genomics and transcriptomics data, revealing intricate details about intratumor
heterogeneity and potential tumor evolution pathways. In conclusion, as the field continues to evolve,
AI is expected to drive significant advancements in early detection, accurate diagnosis, and
personalized treatment of lung cancer, ultimately contributing to improved patient outcomes.

Indeed, addressing the potential obstacles and challenges in applying AI to lung cancer diagnosis
is a crucial aspect of understanding the broader implications of this field. Concerns surrounding data
privacy and security, technical interpretability, and clinical integration are particularly
noteworthy [138, 139]. As we continue to leverage AI’s potential in lung cancer diagnosis and
treatment, the issue of data privacy and security rises to the forefront [140]. The use of patient data is
essential to train AI algorithms, but this must be accomplished without compromising patient
confidentiality and privacy. Ensuring robust anonymization measures, along with ethical guidelines, is
essential to protect against unauthorized access or breaches. The interpretability, or lack thereof, of AI
technology, presents another considerable challenge [141]. ‘Black box’ algorithms, where the
decision-making process is not easily understandable by humans, can limit the clinical adoption of AI
due to the difficulty in ascertaining how these algorithms arrive at their decisions. Increasing
interpretability will build trust, improve collaboration between healthcare providers and AI systems,
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and enhance patient outcomes. Integration of AI into clinical workflows also presents difficulties.
Existing infrastructures may need significant modifications to accommodate AI. The need for AI
solutions to work with various medical systems and technologies, as well as training medical
professionals to work with AI, calls for attention [142]. Overcoming these challenges necessitates a
balanced consideration of the ethical, technical, and practical implications of AI’s transformative
potential in healthcare. However, it is equally essential to discuss the ethical and regulatory
considerations arising from these technical and practical challenges.

Ethical considerations and regulatory measures indeed play a significant role in the adoption and
integration of AI in the healthcare sector, including its application in lung cancer diagnosis and
treatment [143]. In terms of ethics, obtaining informed consent stands out as a priority [144]. As AI’s
role in patient care expands, it is essential to ensure transparency in data usage and obtain patients’
consent. Furthermore, the potential biases in AI, originating from unrepresentative or skewed
datasets, necessitate the use of diverse and representative data to guarantee fair healthcare outcomes.
Regulatory challenges predominantly center around the standardization of AI applications [145].
Given the current lack of universal standards for AI in healthcare, there is an urgent need to establish
stringent norms. These should guarantee the safety, reliability, and validity of AI tools, encompassing
aspects like algorithm development, clinical validation, post-market surveillance, and a clear
framework for accountability in the event of AI-related incidents. Lastly, legal frameworks may
require adjustments to accommodate AI’s expanding role, particularly concerning liability in case of
treatment failure or misdiagnosis. Addressing these ethical considerations and institutional measures
is a complex yet necessary task [146]. It requires a multidisciplinary approach, with active
collaboration between AI specialists, healthcare professionals, ethicists, and policymakers. Only with
the proper ethical and regulatory structures in place, can we ensure the safe and effective use of AI in
lung cancer diagnosis and treatment.

6. Conclusion

In conclusion, this article has provided a comprehensive survey of AI’s role in the advancement
of lung cancer diagnosis and treatment. We have delved into its various applications, including its
role in image recognition, staging, and prognostic prediction. We also explored the transformative
potential of AI in precision medicine, enhancing individualized treatment through the use of genomic
analysis and biomarker identification. Additionally, we have discussed the application of AI in diverse
clinical scenarios, spanning from imaging and radiology to pathology and molecular diagnostics. AI’s
impact also extends to the prognosis of treatment response and advancements in drug discovery and
development, marking its significant contribution to personalized lung cancer care. Yet, the journey
of integrating AI into the lung cancer care paradigm is not without its challenges. Data security,
algorithm transparency, and clinical integration issues stand out as significant hurdles. The future
prospects include refining AI algorithms for even greater accuracy, developing standardized protocols
for integrating AI into clinical practice, and ensuring that the technology remains patient-centered and
ethically grounded. We have emphasized the vital role of AI in lung cancer treatment and its substantial
potential to revolutionize patient care. As we navigate the complexities of this technological frontier,
we remain hopeful about the potential for AI to significantly improve patient outcomes and pave the
way towards truly personalized care.
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