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Abstract: Robust QRS detection is crucial for accurate diagnosis and monitoring of cardiovascular 

diseases. During the detection process, various types of noise and artifacts in the electrocardiogram 

(ECG) can degrade the accuracy of algorithm. Previous QRS detectors have employed various filtering 

methods to minimize the negative impact of noise. However, their performance still significantly 

deteriorates in large-noise environments. To further enhance the robustness of QRS detectors on noisy 

electrocardiograms (ECGs), we proposed a QRS detection algorithm based on an underdamped. This 

method utilizes the period nonlinearity-induced stochastic resonance to enhance QRS complexes while 

suppressing noise and non-QRS components in the ECG. In contrast to neural network-based 

algorithms, our proposed algorithm does not rely on large datasets or prior knowledge. Through testing 

on three widely used ECG datasets, we demonstrated that the proposed algorithm achieves state-of-

the-art detection performance. Furthermore, compared to traditional stochastic resonance-based 

method, our algorithm has increased noise robustness by 25% to 100% across various real-world 

environments. This enables the proposed method to maintain its optimal performance within a certain 

range even in the presence of additional injected noise, thus providing an excellent approach for robust 

QRS detection in noisy ECGs. 
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1. Introduction 

Electrocardiogram (ECG) is a recording of the cardiac electrical activity and is commonly used 

to assess cardiovascular function and health [1–3]. Besides cardiology, ECG is also instrumental in the 

diagnosis of other medical departments. For instance, changes in ECG can aid in determining the 

severity of fractures in orthopedic patients [4]. ECG is also indispensable for health monitoring of 

intensive care patients, newborns, and elderly patients [5–7]. ECG is also critical in diagnosing and 

predicting the prognosis of diabetic neuropathy [8]. As an essential metric of ECG evaluation, both 

standard and instantaneous heart rates can be obtained by counting the number of QRS complexes on 

the ECG within a specific time frame [9]. QRS complexes indicate the ventricular depolarization 

process, and their frequency should match the heartbeat frequency. Owing to the critical importance 

of a reliable clinical decision support system for patient diagnosis and monitoring [10,11], an algorithm 

that provides robust QRS detection results for the decision system is of utmost significance. However, 

the accurate automatic detection of QRS complexes is hampered by various forms of noise in practical 

applications. Based on existing reports [12–14], ECG information is primarily affected by three types 

of noise, namely, electrode motion artifacts, DC drift, and high-frequency noise. Factors such as 

movement of the body during measurement and external forces applied to the electrodes can cause 

some low-frequency components, ranging from 0 to 20 Hz, that form electrode motion artifacts [12,14]. 

In the frequency range of 20 to 50 Hz, the electrochemical activity of muscle cells in bones can cause 

high-frequency noise [12,14], while DC drift noise can be observed at low frequencies between 8 

and 50 Hz due to lead and body movement [13]. Although many QRS detectors utilizing various 

traditional filters have been proposed, they often struggle to demonstrate stable robustness against one 

or two of the aforementioned three types of noise [15–17]. This indicates that the traditional filters 

used in previous studies are not entirely successful in removing noise that overlaps with the QRS 

complex spectrum, posing significant challenges for accurate and automated heart rate detection from 

noisy ECG in real clinical environments [18]. 

Recently, a counterintuitive physical phenomenon called stochastic resonance (SR) has attracted 

the attention of scholars in the field of cardiac signal processing. The SR effect can transfer noise 

energy, which overlaps with the informative components in terms of spectral content, into the 

informative components themselves [19]. Therefore, it can suppress in-band noise without sacrificing 

the informative content of ECG signals. Liao et al. first applied overdamped SR to the processing of 

noisy weak magnetocardiogram and successfully observed all characteristic waveforms in the presence 

of time-varying noise [20]. In the field of electrocardiogram, Güngör et al. initially employed 

underdamped monostable SR (UMSR) for QRS complex detection [21]. Even in the environment with 

artificially injected noise, the detector based on UMSR robustly localized the QRS complexes. 

Subsequent studies have also demonstrated the hardware feasibility of the QRS detectors with an SR 

module [22]. In other fields, SR has also been extensively studied, such as signal enhancement [23–25], 

synchronization control [26–28], and noisy intelligent computing [29–32]. It is worth noting that 

noise robustness enhancement brought about by nonlinearity-induced SR with a small number of 

stable states is generally limited [33]. Particularly, in the case of monostable potentials, their lack of 
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potential barrier can result in high output fidelity at the expense of sacrificing output signal-to-noise 

ratio (SNR) [34]. In the context of QRS enhancement, the magnitude of the output amplitude is more 

important than the signal fidelity, as it directly determines the output SNR [20,22]. 

To further enhance the noise robustness, we propose an underdamped periodic SR (UPSR) 

module in this study to improve the performance of QRS detector under large noise environment. 

Compared to the traditional UMSR, the UPSR used in our proposed algorithm has infinite number of 

potential wells, which leads to a large noise margin for maintaining optimal performance. In 

comparison to neural network-based QRS detectors [35,36], the proposed method does not require a 

large amount of training data and complex network structures. By testing on three publicly available 

datasets, we demonstrate that our proposed method has superior performance and robustness in QRS 

complex detection compared to traditional methods. 

2. Materials and methods 

2.1. UPSR module in QRS detector 

 

Figure 1. (a) Automatic R peak detection process of the UPSR-based algorithm. (b) The 

potential shape of the UPSR with 𝑉0 = 1 and 𝑟 = −0.6, 0, 6. 

According to function difference, the entire process of our proposed method can be divided into 

two parts: the noise suppression part and the QRS localization part. Among them, the UPSR module 

serves as the core of the noise suppression part, and its mathematical expression is as follows: 

𝑉(𝑥)′ + 𝛾
𝑑𝑥(𝑡)

𝑑𝑡
+

𝑑2𝑥(𝑡)

𝑑𝑡2 = 𝑆(𝑡) + 𝐷 ∗ 𝜉(𝑡),      (1) 
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𝑉(𝑥) = 𝑉0(1 − 𝑟)2 1−𝑐𝑜𝑠𝑥

(1+𝑟2+2𝑟𝑐𝑜𝑠𝑥)
,       (2) 

where 𝑉(𝑥), 𝛾, and 𝑥(𝑡) are the nonlinear potential function, damping factor, and the trajectory of 

the UPSR output, respectively. 𝐷 is the standard deviation, also known as noise intensity, of the noise 

term 𝜉(𝑡) . 𝑉0  is a constant used to normalize the potential height according to the normalized 

amplitude of the input 𝑆(𝑡). Owing to the opposite direction of 𝑆(𝑡), 𝑉(𝑥)′ can be considered as the 

damping force provided by the periodic nonlinearity. The damping factor 𝛾  is used for tunning 

different damping effects for different parts of ECG. Specifically, 𝛾0 ∗ 10, where 𝛾0 is a constant, is 

set for the section outside the QRS complex, while 𝛾0/100 is set for the QRS complex. A larger value 

of 𝛾 is used to suppress disturbances outside the target effective information, thus preventing noise 

spikes from being falsely identified as QRS complexes. Conversely, a smaller value of 𝛾 is employed 

to reduce the damping effect of the UPSR module on QRS complexes, thereby reducing the occurrence 

of missed QRS complexes. Besides, the damping of the UPSR module can also be indirectly controlled 

by adjusting the shape of 𝑉(𝑥)  through the modification of 𝑟 , as illustrated in Figure 1b. By 

optimizing 𝑟, we can configure different damping effects for ECG signals from different patients and 

recording conditions. 

2.2. Morphological changes in ECG processing 

 

Figure 2. Morphological changes of ECG waveforms at the different stage of the UPSR-

based QRS detection algorithm. 
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Because the proposed QRS detection process is nonlinear, it inevitably causes changes in the 

morphology of the ECG. Figure 2 illustrates the morphological changes at different stages when 

applying the proposed algorithm to the ECG in the MIT-BIH Arrhythmia dataset. Firstly, as shown in 

Figure 2a,b, bandpass filters with cutoff frequencies of 0.05 and 100 Hz are used to remove out-of-

band information without affecting the ECG morphology primarily concentrated within the passband. 

Secondly, the SR module suppresses noise and information outside the QRS complex. During this 

process, some high-frequency baseline variations are introduced, as shown in Figure 2c. To eliminate 

these high-frequency variations, a high-pass filter with a cutoff frequency of 10 Hz is applied. Finally, 

by applying a threshold, we can locate the QRS complexes, as shown in Figure 2d. 

2.3. Numerical solver and optimizer 

The SR function requires the use of numerical methods to solve it due to its complex nature. The 

Runge-Kutta fourth-order algorithm is commonly employed for solving such functions because of its 

accuracy and stability [37]. For solving a Eq. (1), the solving process of Runge-Kutta fourth-order 

algorithm satisfies the following formula [38]: 

𝑤[𝑛 + 1] = 𝑤[𝑛] +
ℎ

6
(𝑧1 + 2𝑧3 + 2𝑧5 + 𝑧7),     (3) 

𝑥[𝑛 + 1] = 𝑥[𝑛] +
ℎ

6
(𝑧2 + 2𝑧4 + 2𝑧6 + 𝑧8),     (4) 

where 𝑤[𝑛]  and 𝑥[𝑛]  are discretized from 
𝑑𝑥(𝑡)

𝑑𝑡
  and 𝑥(𝑡) , respectively. ℎ , which can provide a 

balance between accuracy and computational efficiency, is the calculation step size of the numerical 

solver. For the coefficients 𝑧1~𝑧8 and the entire solution process, Algorithm 1 described the detailed 

information for them. 

 

Algorithm 1 

Input: Input signal after processed by bandpass filer 𝑩(𝒕), parameters for solving 

UPSR module 𝜼, 𝒉, 𝑽𝟎, 𝒓, 𝜸𝟎 

Output: 𝑥(𝑡) 

1: 𝒙(𝟏) ← 𝟎  # Setting initial value for the solution target 

2: 𝒘(𝟏) ← 𝟎 

3: 𝑩𝒑𝒑(𝒕) ← 𝒎𝒂𝒙(𝑩(𝒕)) − 𝒎𝒊𝒏 (𝑩(𝒕)) # Calculating peak-to-peak amplitude of 

the input 

4: for (𝒊 = 𝟏 to 𝒍𝒆𝒏𝒈𝒕𝒉(𝑩(𝒕)) − 𝟏)) do 

5:  if (𝜼𝒐𝒑𝒕𝑩(𝒕) ≥ 𝑩𝒑𝒑(𝒕)) then 

6:   𝜸 ← 𝜸𝟎/𝟏𝟎𝟎 # Setting a small damping factor if the 𝑩𝒑𝒑(𝒕) is relatively 

large 

7:  else 
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8:  𝜸 ← 𝜸𝟎 ∗ 𝟏𝟎 # Setting a large damping factor if the 𝑩𝒑𝒑(𝒕) is relatively small 

9:  end if 

10: 𝒛𝟏 ← 𝒘[𝒊] # The main calculation process of Runge-Kutta fourth-order 

algorithm is started 

11: 𝒛𝟐 ← −𝑽′(𝒙[𝒊]) − 𝜸𝒛𝟏 + 𝑩[𝒊] 

12: 𝒛𝟑 ← 𝒘[𝒊] + 𝒛𝟐 ∗ 𝒉/𝟐 

13: 𝒛𝟒 ← −𝑽′(𝒙[𝒊] + 𝒛𝟏 ∗ 𝒉/𝟐)  − 𝜸𝒛𝟑 + 𝑩[𝒊] 

14: 𝒛𝟓 ← 𝒘(𝒊) + 𝒛𝟒 ∗ 𝒉/𝟐  

15:  𝒛𝟔 ← −𝑽′(𝒙[𝒊] + 𝒛𝟑 ∗ 𝒉/𝟐)  − 𝜸𝒛𝟓 + 𝑩[𝒊 + 𝟏] 

16: 𝒛𝟕 ← 𝒘[𝒊] + 𝒛𝟔 ∗ 𝒉 

17: 𝒛𝟖 ← −𝑽′(𝒙[𝒊] + 𝒛𝟓 ∗ 𝒉) − 𝜸𝒛𝟕 + 𝑩[𝒊 + 𝟏] 

18: 𝒘[𝒏 + 𝟏] ← 𝒘[𝒏] + (𝒛𝟏 + 𝟐𝒛𝟑 + 𝟐𝒛𝟓 + 𝒛𝟕) ∗ 𝒉/𝟔  

19: 𝒙[𝒏 + 𝟏] ← 𝒙[𝒏] + (𝒛𝟐 + 𝟐𝒛𝟒 + 𝟐𝒛𝟔 + 𝒛𝟖) ∗ 𝒉/𝟔  

20: end for 

21: return 𝒙(𝒕) 

For the proposed QRS detector, the parameters to be optimized are concentrated in Algorithm 1 

(𝜂, ℎ, 𝑉0, 𝑟, 𝛾0). In our study, the parameter ranges for 𝜂, ℎ, 𝑉0, 𝑟, and 𝛾0 are set to (0, 10], (0, 10], 

(0, 10], (0, 100], and (0, 10], respectively. For such a multi-parameter nonlinear dynamic module, it 

is challenging to determine the optimal parameters through empirical methods. Therefore, we 

employed an open-source Ant Lion Optimizer (ALO) toolbox to automate the parameter 

optimization process [39]. This choice is motivated by the excellent performance of the ALO in 

optimizing the dynamics of SR-related systems [40,41]. In the ALO algorithm, antlions grow by 

capturing ants, representing the potential optimal solutions reached by the algorithm. The ants 

represent variables that can be altered through random search. They are initially normalized using the 

following equation: 

𝑋𝑗
𝑖 =

(𝑋𝑗
𝑖−𝑚𝑖𝑛𝑗)×(𝑑𝑗

𝑖 −𝑐𝑗
𝑖)

𝑚𝑎𝑥𝑗−𝑚𝑖𝑛𝑗
+ 𝑐𝑗

𝑖         (5) 

where 𝑚𝑎𝑥𝑗  and 𝑚𝑖𝑛𝑗  are the maximum and minimum of random walk for 𝑗 -th variable, 

respectively. 𝑖 represents 𝑖-th iteration. 𝑑 and 𝑐 are the upper and lower bound of random variable 

respectively, and they can be updated using information of antlion positions as follows: 

𝑐𝑗
𝑖 = 𝐴𝐿𝑗

𝑖 +
𝑐𝑖𝑇

10𝜔𝑖
          (6) 

𝑑𝑗
𝑖 = 𝐴𝐿𝑗

𝑖 +
𝑑𝑖𝑇

10𝜔𝑖
          (7) 

where 𝐴𝐿, 𝜔 and 𝑇 represent the antlion position, convergence constant and the maximum iteration, 

respectively. During the iteration, the right sides of the Eqs. (6) and (7) decrease gradually, leading to 

a closer distance between the antlion and ant. The antlion also updates its position to actively predate 

ants according to the average of random walk around each particular antlion and the antlion closest to 

the objective. 
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In the case of the QRS detector, a higher amplitude of QRS complexes indicates that they are 

more easily detectable. Therefore, the objective function of the optimizer is defined as follows: 

𝑂𝐹 = −20log (
𝑃𝑒𝑎𝑘−𝑡𝑜−𝑝𝑒𝑎𝑘 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑄𝑅𝑆 𝑐𝑜𝑚𝑝𝑙𝑒𝑥

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎 𝑛𝑜𝑖𝑠𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙
),     (8) 

where 𝑂𝐹 is the opposite of QRS complex SNR. The calculation of Eq. (8) involved 100 randomly 

chosen segments comprising the noise interval and QRS complex. Each segment for the QRS complex, 

centered around the identified R peak (referred to as 𝑄𝑅𝑆𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑), lasted for 100 ms. Additionally, 

100 one-second noise intervals are arbitrarily selected from the ECG section outside the QRS complex 

for calculating the standard deviation. 

2.4. QRS localization and evaluation 

After undergoing all filtering processes, the QRS localization module applies a detection 

threshold to perform binary conversion of the ECG. In this study, the threshold was set to a constant 

value of 0.1. Consequently, points above 0.1 and below 0.1 are transformed into 1 and 0, respectively. 

For each segment with a value of 1, the center is defined as the position of the QRS complex, denoted 

as 𝑄𝑅𝑆𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑. To verify the accuracy of QRS complex localization, the annotations in the dataset 

can be examined to determine the true positions of the QRS complexes, denoted as 𝑄𝑅𝑆𝑡𝑢𝑟𝑒 . 

According to ANSI/AAMI EC38, EC57, and previous studies [42–45], it is considered valid if the 

distance between 𝑄𝑅𝑆𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑  and 𝑄𝑅𝑆𝑡𝑢𝑟𝑒  is within 150 ms. Through the aforementioned 

comparison process, several basic statistical measures such as true positives (TP), true negatives (TN), 

false positives (FP), and false negatives (FN) can be obtained. Subsequently, following commonly 

used evaluation metrics can be calculated based on the acquired statistical information: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
,        (9) 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
,        (10) 

𝐹1-𝑠𝑐𝑜𝑟𝑒 =
2∗𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦∗𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑖𝑡𝑦

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦+𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑖𝑡𝑦
,      (11) 

2.5. Datasets 

As widely used test datasets for QRS detectors, MIT-BIH Arrythmia [12], European ST-T (EDB) [46], 

and MIT-BIH Noise Stress Test (NST) [47] datasets were selected for this study, and their detailed 

information is provided in Table 1. The MIT-BIH Arrythmia dataset is collected from patients with 

cardiac arrhythmia, while the EDB dataset is collected from patients with myocardial ischemia. The 

collection of the MIT-BIH NST dataset primarily serves for analyzing ECG acquisition challenges 

under different noise conditions. To demonstrate the superior performance and noise robustness of our 

proposed algorithm, the testing was divided into two categories. The first category involved testing 

directly on the original dataset without injecting additional noise. The second category involved 

subjecting the proposed algorithm to noise stress testing by injecting additional noise. The process of 

injecting additional noise satisfies the following formula: 
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𝐼𝑛𝑝𝑢𝑡𝐸𝐶𝐺(𝑡) = 𝑅𝑎𝑤𝐸𝐶𝐺(𝑡) + 𝐷 ∗ 𝜉(𝑡),       (12) 

where 𝑅𝑎𝑤𝐸𝐶𝐺(𝑡)  is the raw ECG signal in the dataset. 𝜉(𝑡)  is the real-word noise sequence 

recorded in the MIT/BIH NST dataset. The three previously mentioned types of noise, namely muscle 

artifact (MA), baseline wander (BW), and electrode motion (EM) artifacts, were individually recorded 

in the MIT/BIH NST dataset. In this study, we considered the individual injection of the 

aforementioned three types of noise as well as the combined injection of all types of noise, resulting 

in four different scenarios. 

Table 1. Information of three widely used benchmark ECG datasets. 

Datasets Recording 

number 

Sampling 

frequency (Hz) 

Recording length 

(min) 

Total heartbeat 

number 

MIT-BIH 

Arrhythmia  

48 360 30 109518 

EDB 90 250 120 790558 

MIT-BIH NST 12 360 30 25590 

3. Results and discussion 

3.1. Performance on ECG databases without injecting noise 

Table 2. Performance comparison among different QRS detection methods on MIT-BIH 

Arrhythmia database. 

Works QRS detection method Sensitivity 

(%) 

Predictivity 

(%) 

F1-score 

(%) 

Yakut, 2018 [15] Pan-Tompkins-based 99.83 99.83 99.83 

Burguera, 2019 [48] Smoothing and Peak-

valley detector 

99.57 99.37 99.47 

Jia, 2020 [35] Convolutional neural 

network 

99.89 99.90 99.90 

Peimankar, 2021 [36] Convolutional neural 

network and Long short-

term memory 

99.61 99.52 99.57 

Rahul, 2021 [49] Third power and adaptive 

thresholding 

99.82 99.85 99.84 

Pander, 2022 [42] Fuzzy c-median Clustering 99.82 99.88 99.85 

Güngör, 2022 [21] UMSR 99.95 99.96 99.96 

This work UPSR 99.95 99.96 99.96 

 

 

 

 

 



291 

AIMS Bioengineering  Volume 10, Issue 3, 283–299. 

Table 3. Performance comparison among different QRS detection methods on EDB 

database. 

Works QRS detection method Sensitivity 

(%) 

Predictivity 

(%) 

F1-score 

(%) 

Burguera, 2019 [48] Smoothing and Peak-

valley detector 

99.88 99.98 99.93 

Xiong, 2021 [50] Energy Segmentation 99.77 99.65 99.71 

Rahul, 2021 [49] Third power and adaptive 

thresholding 

99.71 99.80 99.76 

Pander, 2022 [42] Fuzzy c-median Clustering 99.67 99.86 99.76 

Güngör, 2022 [21] UMSR 99.93 99.97 99.95 

This work UPBSR 99.93 99.97 99.95 

Table 4. Performance comparison among different QRS detection methods on MIT-BIH 

NST database. 

Works QRS detection method Sensitivity 

(%) 

Predictivity 

(%) 

F1-score 

(%) 

Khamis, 2016 [51] Smoothing and Peak-

valley detector 

93.14 86.23 89.55 

Jia, 2020 [35] Convolutional neural 

network 

99.25 96.31 94.63 

Rahul, 2021 [49] Third power and adaptive 

thresholding 

97.58 96.04 96.80 

Pander, 2022 [42] Fuzzy c-median Clustering 95.27 94.70 94.98 

Güngör, 2022 [21] UMSR 98.65 99.11 98.87 

This work UPSR 98.65 99.11 99.87 

Even without injecting noise, the selected databases for ECG contain noise contamination from 

the acquisition process. Therefore, we compared the performance of the proposed algorithm with other 

state-of-the-art QRS detectors without injecting additional noise. Tables 2–4 respectively present the 

comparative results of different QRS detectors on datasets MIT-BIH Arrhythmia, EDB, and MIT-BIH 

NST. It is clear that both algorithms based on the SR effect outperform the other algorithms. This can 

be attributed to the SR-induced suppression of in-band noise. Additionally, the performance based on 

UMSR and UPSR shows no significant difference. This is because the SR-induced gain increases 

within a certain range with an increase in noise intensity, while the noise intensity in the original 

databases is relatively weak, resulting in a relatively weak SR effect. 

3.2. Performance on MIT-BIH Arrhythmia database with injecting noise 

Owing to the superior noise robustness of the UMSR-based QRS detector that has been 

demonstrated in previous studies compared to traditional algorithms such as Elgendi and Pan-
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Tomkins [21], we selected it as the comparative baseline for noise robustness testing in this work. 

Taking the MIT-BIH Arrhythmia dataset as an example, Figure 3a illustrates the sensitivity variation 

of the UMSR-based and UPSR-based QRS detectors when MA noise is injected. When the MA noise 

intensity 𝐷 is relatively low, both SR modules achieve a sensitivity of 99.95% for the QRS detector. 

As 𝐷 increases, the sensitivity of the UMSR-based QRS detector starts to decrease at 𝐷 > 0.1, while 

the sensitivity of the UPSR-based QRS detector begins to decrease at 𝐷 > 0.2. Similarly, as shown in 

Figures 3b,c, the predictivity and F1-score of the UPSR-based QRS detector exhibit a higher 𝐷 value 

at the point of decrease compared to the UMSR-based QRS detector. This indicates that UPSR provides 

stronger robustness against MA noise for the QRS detector compared to traditional UMSR. 

 

Figure 3. (a) Sensitivity, (b) predictivity, (c) F1-score of the UMSR and UPSR-based QRS 

detectors on MA noise-injected ECG signals from the MIT-BIH Arrhythmia dataset. 

Figures 4–6 present the performance variations of the two QRS detectors when injected with BW, 

EM, and mixed noise, respectively. The trends depicted in these three figures follow similar patterns 

as shown in Figure 3. In all cases, the UPSR-based QRS detector consistently maintains better 

performance at larger 𝐷 compared to the UMSR-based QRS detector. These results indicate that the 

UPSR module significantly improves the noise robustness of the QRS detection algorithm for ECG 

data with cardiac arrhythmias. 

 

Figure 4. (a) Sensitivity, (b) predictivity, (c) F1-score of the UMSR and UPSR-based QRS 

detectors on BW noise-injected ECG signals from the MIT-BIH Arrhythmia dataset. 
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Figure 5. (a) Sensitivity, (b) predictivity, (c) F1-score of the UMSR and UPSR-based QRS 

detectors on EM noise-injected ECG signals from the MIT-BIH Arrhythmia dataset. 

 

Figure 6. (a) Sensitivity, (b) predictivity, (c) F1-score of the UMSR and UPSR-based QRS 

detectors on mixed noise-injected ECG signals from the MIT-BIH Arrhythmia dataset. 

3.3. Performance on other two databases with injecting noise 

 

Figure 7. Robustness boundary Dmax of UMSR and UPSR-based QRS detector on the 

(a) EDB and (b) MIT-BIH NST datasets under different noise injection conditions. 
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As discussed in Section 3.2, the noise robustness of the SR-based QRS detectors can be evaluated 

by comparing the value of 𝐷 at which the performance starts to degrade. In this work, considering 

that the F1-score combines sensitivity and predictive value, we define the value of 𝐷 at which the F1-

score of the QRS detector starts to degrade as the robustness boundary 𝐷𝑚𝑎𝑥. Figure 7 presents the 

results of the noise stress testing on EDB and MIT-BIH NST datasets for the SR-based QRS detection 

algorithms. Clearly, under all test conditions, the 𝐷𝑚𝑎𝑥 of the UPSR-based QRS detection algorithm 

is larger than that of the UMSR-based algorithm. This indicates that, similar to the case of MIT-BIH 

Arrhythmia dataset, our proposed UPSR can provide the QRS detector with stronger noise robustness 

compared to the traditional UMSR. 

3.4. SR effect comparison between UMSR and UPSR 

To investigate the enhancement effects of the two SR modules on QRS complexes, we defined 

the SNR gain of the ECG signal after SR module processing as ∆𝑆𝑁𝑅 . Figure 8 presents the 

relationship curve between ∆𝑆𝑁𝑅  and 𝐷  for the two SR-based QRS detectors under different 

injected noise conditions. Clearly, as 𝐷 increases, both UMSR and UPSR initially exhibit an increase 

in ∆𝑆𝑁𝑅  followed by a decrease, providing evidence of successfully induced SR effects [52]. In 

related studies, the noise robustness of SR systems is typically considered to be positively correlated 

with the SNR gain of the processed signal [53]. Therefore, this suggests that the UPSR achieves 

stronger noise robustness for the QRS detection algorithm compared to the UMSR by inducing a 

stronger SR effect. It is noteworthy that the complexity of the UPSR described in Algorithm 1 is the 

same as that of UMSR presented in reference [21]. This implies that under identical optimization 

conditions, the UPSR-based QRS detector can achieve the same computational complexity as the 

UMSR-based QRS detector, i.e., O(n). 

 

Figure 8. ∆SNR of the UMSR and UPSR-based QRS detectors when injecting (a) MA, 

(b) BW, (c) EM, and (d) mixed noise. 
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4. Conclusions 

In this study, we proposed a QRS detection algorithm based on UPSR. Compared to neural 

network-based QRS detectors, the proposed algorithm does not require a large amount of training data. 

Testing on three widely used public datasets demonstrated that the proposed algorithm outperforms 

many state-of-the-art traditional algorithms in terms of detection performance. Compared to traditional 

UMSR-based detectors, UPSR induces stronger SR effects, thereby enhancing the noise robustness of 

the QRS detector. From the perspective of the Robustness boundary 𝐷𝑚𝑎𝑥, the noise margin of the 

UPSR-based QRS detector is increased by 25% to 100% compared to that of the UMSR-based detector. 

From a clinical application perspective, our proposed algorithm does not require a large amount 

of training data like neural network-based QRS detectors. Therefore, it can be used even in the absence 

of clinical data. However, due to the significant variations in heart conditions caused by different 

cardiovascular diseases, it is inevitable to re-optimize the parameters of this algorithm. This limitation 

actually increases the burden of optimization computations in general environments such as outpatient 

service. In contrast, in some customized application scenarios, such as ECG monitoring of elderly 

individuals with cardiovascular diseases in their homes, parameter optimization only needs to be 

performed once at the beginning and periodically calibrated thereafter, resulting in a relatively low 

computational burden. 

Furthermore, the importance of portable hardware for customized physiological monitoring is 

gradually increasing. Although this study discusses the implementation of the QRS detection algorithm 

based on UPSR, the configuration of this algorithm in hardware has not been discussed. Generally, 

there are two approaches to implementing smart portable hardware: one based on neuromorphic 

devices utilizing material properties [54]; the other based on miniaturized electronic devices and 

circuit chips [55]. Considering that periodic nonlinearity exists both in materials [56] and circuit 

structures [57], hardware QRS detectors based on UPSR are expected to be realizable in both 

frameworks. However, achieving adaptive parameter optimization in hardware will be a challenge 

worth exploring in the future. In addition, as machine learning algorithms play an increasingly 

important role in biomedical engineering [58–60], it is also valuable to investigate how UPSR can be 

utilized to enhance the noise robustness of these algorithms. 
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