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Abstract: Heart disease, globally recognized as a leading cause of death, has seen its impact magnified 
by the emergence of COVID-19. The heightened demand for early detection and diagnosis of heart 
disease has forced the development of innovative, intelligent systems. This research offers a novel 
approach by leveraging extended short-term memory networks (LSTM) and including COVID-19 as 
a significant parameter in cardiac arrest analysis. A comparative study is conducted between LSTM 
and other prevalent techniques, such as support vector machines (SVM), linear regression (LR), and 
artificial neural networks (ANN), focusing on accuracy and other prognostic criteria for heart disease. 
We aim to develop an intelligent system powered by LSTM to predict heart disease, thereby assisting 
healthcare professionals in making well-informed decisions about heart disease management, stroke 
prevention, and patient monitoring. Additionally, hyperparameter tuning has been performed to 
optimize the LSTM model’s performance in cardiac arrest prediction. The results underscore that 
LSTM, especially when trained with COVID-19 as an input parameter, surpasses other established 
techniques in prediction accuracy. The proposed model underwent experimental testing, showcasing 
its proficiency in predicting cardiovascular disease. 
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1. Introduction 

Cardiovascular diseases constitute a prominent cause of mortality globally. In this regard, early 
detection and diagnosis are critical for effective treatment. To predict the risk of a heart attack, various 
techniques, and technologies can be used. The Internet of Things (IoT) devices can continuously 
monitor parameters such as heart rate, blood pressure, and oxygen saturation levels. These devices can 
transmit the collected data to a central system where Machine Learning (ML) algorithms can be 
leveraged to analyze the information and as certain the potential risk of a heart attack. Such integrated 
systems hold promises for enhancing proactive healthcare management by enabling timely risk 
prediction and preventive interventions based on real-time physiological data. But the IoT devices can 
be costly and require a consistent internet connection. Furthermore, in IoT technology, factors such as 
battery life and sensor calibration may have an impact on prediction accuracy [1,2]. ECG monitoring 
entails the precise positioning of sensors on the body to diligently observe and record the intricate 
electrical activity of the heart. The data is then analyzed to detect anomalies indicating a risk of heart 
attack. Some patients may find ECG monitoring uncomfortable, and the data may be influenced by 
factors such as movement and electrode placement [3,4]. The Arduino platform is a microcontroller 
platform that can be used to build custom heart rate monitoring devices. These devices can be 
programmed to collect and analyze data. Further, send alerts if a heart attack is imminent. Setting up 
and programming Arduino devices necessitates sound technical knowledge. Furthermore, factors such 
as sensor calibration and environmental conditions may have an impact on prediction accuracy [5,6]. 
Machine Learning has emerged as a prevalent technique extensively employed in the prediction of 
heart attacks. It analyses data using algorithms and statistical models to identify patterns that may 
indicate the likelihood of a cardio arrest. 

The ANN is a machine-learning algorithm designed to emulate the structural and functional 
characteristics of the human brain. By leveraging its architecture, ANNs possess the capability to 
acquire intricate patterns and correlations within data, enabling them to generate predictions and 
insights based on acquired knowledge. ANN can be used in heart attack prediction by training the 
network with historical patient data and using the network to predict the likelihood of a heart attack 
for a new patient [7–9]. Logistic Regression (LR) is a statistical machine learning algorithm employed 
to examine the association between a dependent variable, such as the occurrence of a heart attack, and 
one or more independent variables, including but not limited to age, gender, and blood pressure. Its 
utilization facilitates the understanding of the probabilistic relationship and provides insights into the 
influence of these independent variables on the likelihood of the specified outcome. LR can be used in 
heart attack prediction by building a model that calculates the probability of a heart attack based on 
the patient’s input features [10–12]. SVM (Support Vector Machine) is a type of machine learning 
algorithm that separates data into different classes by finding the hyperplane that maximally separates 
the classes. SVM can be used in heart attack prediction by separating patients who have had a heart 
attack from those who have not, based on their input features [13–15]. In [16], a new approach called 
Improved Feature Space-based Gradient Boosting Regression Tree Ensemble (IFS-GBRTE) to 
predicting complications in Type 2 Diabetes (T2D) cases. The proposed method employs a gradient-
boosting ensemble algorithm with classification and regression tree (CART) base learners to expand 
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the feature space using existing theories and refine it through cross-validation. The technique 
outperforms individual and ensemble models with an amazing 82.49% accuracy. This breakthrough 
not only improves the accuracy of T2D complication risk prediction, but it also has the ability to guide 
early prevention, effective screening, and comprehensive care regimens, ultimately lowering mortality 
rates and optimizing healthcare budget allocation. In [17], the prediction model has been the focus of 
studies since the last century in the diagnosis and prognosis of various diseases. With the advancement 
in computational technology, machine learning (ML) has become the widely used tool to develop a 
prediction model. This review is to investigate the current development of a prediction model for the 
risk of cardiovascular disease (CVD) among type 2 diabetes (T2DM) patients using machine learning. 
In [18], Colorectal cancer (CRC) is the third leading cause of cancer-related deaths worldwide, often 
originating from precancerous polyps. Detecting and classifying these polyps accurately and early 
during colonoscopy is crucial. Our innovative approach introduces an interpretable deep neural 
network, named multi-task real-time deep neural network with Shapley additive explanations. This 
method simultaneously detects and classifies polyps according to Yamada guidelines, and segments 
them. Notably, this is the first instance of using deep learning for Yamada classification during 
colonoscopy. We validate our approach through comprehensive experiments on CVC-CLINIC and 
CVC-COLON datasets, showing strong performance using metrics like AUC, precision, recall, F1 
score and accuracy. Our method offers real-time efficiency, superior to other deep learning methods, 
providing interpretable feedback that meets colorectal surgeon requirements. This valuable decision 
support minimizes missed diagnoses and misclassifications, enhancing colonoscopy’s effectiveness. 

The above-mentioned literature mostly focuses on machine learning-based algorithms to detect 
cardiovascular diseases considering the input as diabetics, smoking habits, pulse rate, and oxygen 
levels. However, after COVID-19 pandemic, there are several sudden deaths have been observed 
due to cardio arrest in healthy persons. Despite its primary classification as a respiratory disease, 
COVID-19 has the potential to have a significant impact on the cardiovascular system [19–21]. Along 
with respiratory difficulties, some people who get the virus may develop cardiovascular complications, 
such as myocarditis (inflammation of the heart muscle), thrombosis (the formation of blood clots), and 
blood vessel damage. It is critical to recognize that the complex link between COVID-19 and 
cardiovascular diseases defies simple categorization. Not every COVID-19 patient will develop 
cardiovascular difficulties, and the virus is not the sole cause of such complications. The interplay of 
different elements, ranging from pre-existing health issues and age to the complexities of immune 
response, influences the nature and severity of symptoms. Practitioners use a comprehensive strategy 
to assess an individual’s cardiovascular well-being, incorporating several benchmarks such as 
symptoms, medical history, and diagnostic testing. COVID-19 may play a role in this framework, 
particularly if individuals continue to experience cardiovascular symptoms after infection with 
COVID-19. In recent times, it has been observed that after COVID-19, the number of cardiac arrest 
cases has increased. In addition, recent studies have demonstrated a strong correlation between 
COVID-19 and cardiac attack, making it a major factor in predicting cardiovascular diseases. This 
motivates to develop a model that focuses on the probability of cardio arrest chances in COVID-19-
affected and non-COVID patients. 

Motivated by the need to consider COVID as one of the important parameters, this study proposed 
a COVID-based LSTM model to predict cardiovascular disease. LSTM models possess the capability 
to acquire intricate patterns and establish relationships within temporal data, enabling them to generate 
predictions based on learned insights. In the context of heart attack prediction, LSTM’s potential is 
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noteworthy due to its ability to effectively capture long-term dependencies and discern complex 
patterns present in time-series data. This unique capacity empowers LSTM models to contribute 
significantly to the advancement of heart attack prediction by accurately identifying critical indicators 
and risk factors over extended periods. Further, to analyze the impact of COVID-19 on cardiovascular 
diseases, hyperparameter-tuned LSTM models are being employed. These models are being trained 
using ECG peak values and COVID-19 as parameters to predict the likelihood of cardiovascular 
disease in patients. The use of hyperparameter tuning ensures optimal performance of the LSTM 
models, leading to accurate predictions. This research holds substantial potential for enhancing the 
precision of cardiovascular disease prediction, while concurrently facilitating prompt patient 
management and treatment. The comparative analysis has been carried out among proposed 
hyperparameter-tuned LSTM models with SVM, ANN, and LR models. The LSTM model has shown 
superiority in predicting cardiovascular diseases in this context because it can capture temporal 
dependencies in data, which is critical in medical applications. The proposed technique has been 
validated experimentally under different operating conditions. Finally, the proposed model will 
provide valuable insights into the efficacy of LSTM models in predicting cardiovascular diseases and 
will have a noteworthy contribution to the early detection and treatment of such diseases. 

The major contribution of the paper has been highlighted as: 
 A hyperparameter-based LSTM model has been proposed for cardiac arrest prediction. 
 The proposed model has undergone comparative evaluations against established techniques, 

including SVM, ANN, and LR, with regard to its effectiveness in predicting cardiac arrest. 
 In the proposed model, COVID-19 has been considered as an input training parameter in order 

to correlate COVID and cardiac arrest. 
 The proposed cardiac arrest prediction model has been validated experimentally under various 

operating conditions. 
The rest of the paper is organized as follows: In section II and Section III depict the LSTM model 

and hyperparameters tuning of LSTM respectively. Section IV discusses the analysis and discussion 
of the results. Finally, section V highlights the conclusion of the work. 

2. LSTM-based model 

In this section, LSTM based model has been discussed to predict cardiovascular disease. Long 
short-term memory (LSTM) neural networks are brought out to encounter the drawbacks of recurrent 
neural networks. LSTM can be considered an advanced sequential network that allows information 
stored in short-term memory for longer durations. The drawback of RNNs is that they cannot remember 
information for a longer time, here comes the problem of vanishing gradient. Thus, LSTMs have been 
identified as a viable solution to address the challenge of vanishing gradient, thereby enhancing the 
efficacy of cardiovascular disease prediction. They can learn the long-term dependencies. Figure 1 
depicts a detailed view of the LSTM network. Here, ‘c’ represents the vector representation of the 
neuron, and the time state is denoted with ‘t’. At the current instant ‘t’, the input layer is expressed as 
X(t) and at the previous moment (t−1), the hidden layer is expressed as H(t−1). The internal state Sc 
is the cell state where we can add or remove the information. Gates are connected to this cell state and 
are used to control the information that passes through it. Gates are the structures that decide which 
information needs to be passed through them. A gate refers to a sigmoidal layer that is influenced by 
the input layer at the current time step and the hidden layer at the preceding time step [20]. 
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Figure 1. LSTM architecture. 

Forget gate: The primary role of the forget gate is to discern the components of information that 
necessitate retention and those that can be disregarded within the context of the overall memory system. 
Thus, we can say that the forget gate is a sigmoid layer that decides whether information needs to be 
remembered or forgotten. It is represented by Fc. The output of the forget gate is either 0 or 1. Here, if 
the output is ‘1’, then the information will be retained or remembered. If the output of Fc is ‘0’ then it 
means that the information will be forgotten. The inputs to the forget gate are X(t) and H(t−1). The 
forget gate can be evaluated using (1). 

( ) ( ) ( 1)( )t fX t fh t
ff W x W h b           (1) 

Input gate: The input gate serves as the component responsible for assimilating new information 
derived from the input into the cell. This gate plays a pivotal role in determining the specific new 
information that should be incorporated into the cell state. The input gate encompasses both a sigmoid 
layer and a tanh layer, working in tandem to facilitate this decision-making process. The sigmoid layer 
regulates the values that need to be added to the cell state which is represented as ‘ic’. The tanh layer, 
denoted as ‘gc’, fulfills the purpose of generating a vector representing the new state, ‘sc’. This new 
state vector is subsequently combined with the previous state, thereby facilitating the update process. 
These two are represented using Eqs 2,3. 

( ) ( ) ( 1)( )t iX t ih t
ii W x W h b           (2) 

( ) ( ) ( 1)tanh( )t gX t gh t
gg W x W h b          (3) 
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The derived Eqs 2,3 are multiplied and then the useful information from forget gate is multiplied 
by the previous cell state to update the information from the previous state to the current cell state. 
This is represented using Eq 3. 

( ) ( ) ( ) ( 1) ( )* *t t t t ts g i s f         (4) 

Output gate: The information which needs to be output is obtained by the output gate ‘oc’. It 
comprises a sigmoid layer and a Tanh layer. The tanh layer is applied to the current cell state ‘sc’ to 
scale the values to (−1 to +1). This is multiplied by the sigmoid layer output to obtain the cell state 
information. This is represented using Eqs 5,6. 

( ) ( ) ( 1)( )t oX t oh t
oo W x W h b          (5) 

( ) ( ) ( )tanh( )*t t th s o         (6) 

When it comes to selecting hyperparameters for an LSTM model, the following key parameters 
need to be considered: 

The number of LSTM layers: The quantity of LSTM layers can influence the model’s capacity to 
capture intricate relationships within the data. However, it is crucial to exercise caution when adding 
excessive layers, as it can potentially result in overfitting of the model. 

The number of LSTM units: The quantity of LSTM units within each layer can also influence the 
model’s capacity to capture intricate data relationships. Nevertheless, caution must be exercised when 
adding a surplus of units, as it may escalate the computational complexity of the model. 

Learning rate: The learning rate plays a crucial role in regulating the speed at which the model 
adjusts its parameters during the training process. Employing a high learning rate may result in rapid 
convergence but can lead to suboptimal performance. Conversely, a low learning rate may prolong the 
convergence time excessively. Thus, selecting an appropriate learning rate is essential for achieving 
optimal training outcomes. 

Dropout rate: Dropout is a regularization technique employed during training, whereby nodes 
within the network are randomly omitted. This mechanism aids in mitigating the risk of overfitting. 
The dropout rate, defined as the probability of node dropout, governs the extent to which nodes are 
excluded from the network during each training iteration. 

Batch size: The batch size denotes the number of samples processed in each training iteration. 
Opting for a larger batch size can expedite convergence; however, it is important to consider the 
increased demand for memory and computational resources that accompany it. 

Number of epochs: The number of epochs determines the frequency with which the model iterates 
over the complete training dataset. Training with a limited number of epochs can result in underfitting, 
whereby the model fails to capture complex patterns in the data. Conversely, excessive epochs can lead 
to overfitting, where the model becomes overly specialized to the training dataset and exhibits reduced 
generalization capabilities. Thus, selecting an appropriate number of epochs is crucial for achieving a 
well-balanced model performance [22–24]. 

Cardiovascular disease management benefits from effective handling of temporal dependencies, 
accommodating irregular data sampling, enabling early risk detection, analyzing real-time wearable or 
remote data, and providing contextual insights through consideration of medical history and lifestyle 
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using Long Short-Term Memory (LSTM) models. The capacity of LSTM to capture evolving illness 
traits over time helps to comprehend disease development, while its adaptability to irregular data points 
assures reliable findings despite varying measurement intervals. The model’s sensitivity to tiny 
changes allows for fast alarms for cardiovascular risks, allowing for proactive actions, while its 
contextual awareness improves the accuracy of outcome estimates. This holistic approach to 
cardiovascular care alters it by combining disparate parts into a coherent framework for informed 
decision-making. Due to above-mentioned special features, LSTM techniques have been adopted in 
cardiovascular disease prediction in the present study. 

 

Figure 2. Overview of the proposed cardiovascular diseases detection system. 

The proposed LSTM based cardiovascular disease prediction system has been depicted in Figure 2. 
In the proposed system, electrocardiogram (ECG) peak signal and COVID have been considered as 
parameters to forecast cardiac arrest. A recent study compared different machine learning models and 
found that the LSTM model achieved the highest prediction accuracy in many applications. In this 
regard, in the present paper, the LSTM model has been used to predict cardiac arrest. Furthermore, the 
hyperparameters tuning mechanism has been adopted to improve the LSTM model’s performance. 
LSTM models, in general, have exhibited remarkable proficiency in handling sequential data and have 
demonstrated successful applications across a range of domains, including but not limited to time series 
prediction, language modeling, and speech recognition. In the context, of cardiac arrest prediction, 
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LSTM models can analyze time-series data that has been generated from ECGs to identify patterns or 
abnormalities that might indicate a higher risk of cardiac arrest. To potentially enhance the accuracy 
of the LSTM model, an additional parameter, namely oxygen level, has been incorporated alongside 
the ECG peak signal and COVID. This integration aims to leverage the combined information from 
these factors, further augmenting the model’s predictive capabilities. The MAX30100 is a sensor that 
measures oxygen saturation levels and heart rate. Including this data alongside ECG and COVID, 
information can provide a more comprehensive understanding of the patient’s cardiovascular health 
and overall well-being. Incorporating the MAX30100 data into the LSTM model can potentially 
enhance the model’s ability to detect abnormalities and patterns in the data, as it offers a different 
perspective on the patient’s heart rate and oxygen levels. Nevertheless, ensuring the quality and 
representativeness of the MAX30100 data utilized for both training and testing the model is of 
paramount importance. Combining multiple inputs in an LSTM model can potentially improve the 
accuracy of cardiac arrest prediction by capturing a more holistic view of the patient’s health. 
Nonetheless, selecting appropriate hyperparameters and using high-quality training data are crucial 
considerations for building accurate and reliable LSTM models. One such concept is using a Raspberry 
Pi as a controller to gauge the likelihood of developing heart disease. The AD8232 and a push-pull 
button for COVID-19 input are the inputs for this prediction model. The AD8232 is a heart rate monitor 
that records heartbeat information and measures the electrical activity of the heart. When determining 
if a patient is a COVID-19 patient or not, the push-pull button is used. We’ve decided in advance that 
a 1 denotes a COVID-19 patient and a 0 denotes a non-COVID patient. Using the patient’s heart rate, 
ECG, and COVID-19 as input, the LSTM algorithm (discussed in section 2) has been examined for 
cardiovascular disease prediction. The developed LSTM model can then accurately forecast the 
patient’s risk of heart disease. The model’s final result will show whether the patient is at risk for heart 
disease or not. Medical professionals can use this predictive model to spot heart disease early warning 
symptoms and take the required actions to stop additional difficulties. 

3. Hyperparameters tuning technique 

In this section, LSTM hyperparameter-tuning techniques have been elaborated in detail The 
hyperparameter tuning involves the systematic exploration and selection of optimal parameter values 
that govern the behavior and performance of an LSTM model. In LSTM, hyperparameters are not 
learned from data, but rather they are set by the user or the machine learning engineer prior to training 
the algorithm. The process of hyperparameter tuning entails an iterative search for the optimal 
combination of hyperparameters that maximizes the algorithm’s performance on a dedicated validation 
set. Various techniques can be employed to accomplish this task, including grid search, random search, 
or Bayesian optimization, which facilitate the systematic exploration and evaluation of different 
hyperparameter configurations. Hyperparameter tuning is an important step in the LSTM workflow, 
as it can significantly impact the performance of the algorithm. By selecting the optimal 
hyperparameters, the algorithm can achieve better accuracy, faster convergence, and improved 
generalization to new data. 

Hyperparameter tuning is an important step in the process of developing an optimal LSTM model. 
To enhance the model’s performance, several hyperparameters can be subject to tuning, encompassing 
the number of LSTM layers and units, learning rate, dropout rate, batch size, sequence length, and 
activation function. Exploring and optimizing these hyperparameters can contribute to the refinement 
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and effectiveness of the model. Each of these hyperparameters holds the potential to influence the 
model’s capacity to comprehend intricate patterns within the input sequence and mitigate the risk of 
overfitting. Finding the optimal combination of hyperparameters requires experimentation, and a grid 
search or random search algorithm can be used to automate the process. Ultimately, the goal of 
hyperparameter tuning is to achieve a well-performing LSTM model that can accurately predict 
outputs for a given input sequence [25–27]. 

Hyperparameter tuning using GridSearchCV from sci-kit-learn. GridSearchCV is a function 
designed to systematically explore a specified parameter space, exhaustively searching for the optimal 
combination of hyperparameters that yields the highest performance for a given estimator. A multilayer 
perceptron (MLP) classifier is used as the estimator, and a parameter space is defined using a dictionary 
object. The parameter space includes several hyperparameters that can be tuned, such as the number 
of hidden layers and their sizes, the activation function, the optimization algorithm, the regularization 
parameter alpha, and the learning rate. GridSearchCV performs cross-validation with the given 
hyperparameters and selects the combination that results in the highest accuracy score. The n_jobs 
parameter is set to -1 to use all available CPUs, and the cv parameter is set to 3 to perform a 3-fold 
cross-validation. Upon fitting the GridSearchCV object to the training data, the optimal 
hyperparameters discovered are displayed in the console by accessing the clf.best_params_ attribute. 
These hyperparameters can then be used to build a final MLP classifier that should perform better than 
a default MLP classifier with no hyperparameter tuning. GridSearchCV operates by systematically 
exploring a pre-defined hyperparameter space specified by the user. It evaluates the model’s 
performance for each unique combination of hyperparameters using cross-validation. In this example, 
the hyperparameter space is defined by the “parameter_space’’ dictionary. For each combination of 
hyperparameters, the GridSearchCV function trains an MLPClassifier model using the training data 
and evaluates its performance using cross-validation with 3 folds (as specified by the “c’’ parameter). 
The performance of each model is then averaged over the folds to obtain a cross-validation score. 
Finally, GridSearchCV returns the combination of hyperparameters that resulted in the highest cross-
validation score as the best hyperparameters found. This is printed to the console in the last line of the 
code. Figure 2 depicts the operation of the hyperparameter tuning model. Figure 3 depicts the steps of 
the optimal hyperparameter-tuning. GridSearchCV, a comprehensive hyperparameter tuning 
methodology, has different advantages over previous methods. GridSearchCV ensures that the ideal 
configuration is determined inside the search space by thoroughly exploring all feasible 
hyperparameter combinations within a specific grid. This intensive search method provides a thorough 
grasp of the correlations between hyperparameters and model performance, as well as results that are 
easily interpretable and insights into parameter relevance. Its organized exploration reduces the danger 
of missing important hyperparameter interactions, and its deterministic nature ensures reproducibility 
and allows for baseline comparisons with other tuning methods. GridSearchCV is ideal for novices 
and smaller parameter spaces because of its ease of implementation. However, while GridSearchCV 
excels in thoroughness, its computing requirements may not be suitable for large search fields. Other 
techniques such as random search or Bayesian optimization may be more efficient alternatives, 
emphasizing the necessity of method selection based on individual problem settings and available 
resources. 
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Figure 3. Hyperparameters tuning technique. 

4. Result and discussion 

In this section, the cardiac arrest prediction technique using LSTM has been proposed. The 
proposed system’s effectiveness has been studied in a real-time framework. 
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Figure 4. Experimental test bench. 

The experimental prototype has been developed to predict cardiac arrest and has been depicted in 
Figure 4. The test bench includes the AD8232, MAX30100, and a push-pull button. The AD8232 is a 
specialized monitoring chip designed for single-lead ECG measurement, enabling the precise 
assessment of the heart’s electrical activity (Figure 5). The measured ECG signal for different persons 
has been depicted in Figure 5. The MAX30100 is a dedicated module functioning as a pulse oximeter 
and heart rate sensor, primarily employed for quantifying heart rate and determining the blood oxygen 
saturation level. The push-pull button is used to give input that is 1 or 0 to specify whether the person 
has a history of COVID-19 or not. The inclusion of COVID-19 as one of the important parameters in 
cardiac arrest prediction because patients with COVID-19 exhibit cardiac muscle inflammation 
because this virus directly damages the heart, even in individuals who were previously healthy and had 
no cardiac issues. This type of inflammation damages the cardiac muscle, alters heart rhythm, and 
impairs blood pumping at the highest level. The human heart’s electrical activity can be measured 
through an electrocardiogram (ECG) signal. The ECG signal provides valuable insights into the heart’s 
health and can help identify various heart conditions, including the risk of a heart attack. The developed 
LSTM model will be trained considering the input datasets collected from AD8232, MAX30100, and 
a push-pull button. The trained model uses the peak value of the ECG signal (Figure 5) to 
determine the risk of a heart attack. The model’s training has determined that if the peak value 
falls between −0.25 to 0.50, the patient is at risk of a heart attack. If the peak value falls between 0.50 
to 1.25, the patient is not at immediate risk of a heart attack, but some over-peaks might be allowed 
due to exercise or other physical activities. However, if the peak value exceeds 1.25 and falls 
between 1.25 to 1.50, it indicates that the patient is again at risk of a heart attack. 
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Figure 5. ECG waveform of the different persons. 

Based on the output from this sensor (MAX30100), a machine-learning model can be trained to 
prognosticate an individual’s risk level by utilizing their SpO2 values. In this particular scenario, the 
machine learning model has been trained to classify SpO2 values into three distinct categories, thereby 
determining the corresponding risk levels associated with each category. SpO2 values between 0 to 50 
have been classified as high risk, values between 50 to 75 as mild risk, and values between 75 to 100 
as non-risk, which indicates that the individual is healthy. 
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Figure 6. Comparative analysis of different ML techniques. 

Based on the provided accuracy scores, we can see that all four models - SVM, LR, ANN, and 
LSTM - have varying levels of performance in predicting the target variable. The Support Vector 
Machine (SVM) has the lowest accuracy score of 76%, which is the least accurate among the four 
models. SVMs are recognized for their proficiency in handling intricate datasets; however, their 
performance may not always be optimal when confronted with datasets containing a high number of 
features. Logistic Regression (LR) has an accuracy score of 78.8%, which is higher than SVM but still 
lower than ANN and LSTM. LR is a linear model that can work well on datasets with few features but 
may struggle on more complex datasets. Artificial Neural Networks (ANNs) have an accuracy score 
of 85%, which is higher than both SVM and LR but still lower than LSTM. ANNs are good at handling 
complex data and can be very powerful, but they can also be prone to overfitting and may require 
careful tuning to perform well. Finally, the Long Short-Term Memory (LSTM) model has the highest 
accuracy score of 88.5%, making it the most accurate model among the above-discussed models. 
Figure 6 depicts the comparative analysis among different ML algorithms (LSTM, SVM, LR, and 
ANN) and it has been observed that the LSTM-based model has been outperformed in terms of 
accuracy. 

Further, the hyperparameter tuning of LSTM can improve the overall accuracy and reliability of 
cardiovascular disease prediction. In this regard, hyperparameter tuning (discussed in section 3) has 
been adopted in order to find reliable and best prediction results. Further, hyperparameters are values 
that are set prior to training the LSTM network and can significantly impact its performance. In this 
work, several key hyperparameters within the LSTM architecture have been examined, including the 
number of LSTM layers, the number of LSTM units per layer, the choice of activation function, the 
dropout rate, and the learning rate. Table 1 depicts the optimally tuned hyperparameters such as hidden 
layer size, Solver, Alpha, learning rate and activation function. These hyperparameters have been 
deemed critical and subject to comprehensive analysis in order to optimize the LSTM model’s 
performance. By tuning these hyperparameters, it has been observed that performance enhancement 
of the LSTM model by adjusting its architecture and regularization. For example, increasing the 
number of LSTM layers or units can improve the model’s ability to capture complex temporal 
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dependencies, while adding dropout regularization can help prevent overfitting. Further, 
hyperparameter tuning can be an effective way to optimize an LSTM model for a specific task and 
improve its performance and accuracy. However, it’s important to note that hyperparameter tuning 
should be done carefully and systematically to avoid overfitting and to ensure that the network 
generalizes well to unseen data. After tuning the hyperparameter (hidden layer size, Solver, Alpha, 
learning rate and activation function), the overall accuracy has been improved from 88.5 to 91%. This 
depicts the efficacy of the optimal hyperparameter tuning. Figure 7 depicts a comparative analysis of 
with and without hyperparameter tuning. It also highlights the significance of optimal tuning by 
improving the overall model performance by predicting accurate results. Further, Table 2 depicts the 
hyperparameter tuning in terms of accuracy, sensitivity, specificity and AUC. There is no change in 
sensitivity and specificity but accuracy and AUC are higher during hyperparameters tuning. 

Table 1. Hyperparameters configuration of LSTM Scheme. 

Parameters Selected Optimal parameters 
Hidden layer size (50, 50, 50), (50, 100, 50), (100) (50, 100, 50) 
Solver Sgd, adam Adam
Alpha 0.0001,0.05 0.0001
Learning rate Constant, adaptive Adaptive 
Activation function Tanh, sigmoid Tanh

Table 2. Hyperparameters tuning. 

LSTM Accuracy Sensitivity Specificity AUC 

Without tuning 88.5 1.0 90.8 1.0 

With hyperparameters tuning 91.0 1.0 92.1 1.0 

 

Figure 7. Hyperparameters tuned LSTM and non-hyperparameters tuned LSTM. 
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Table 3. Prediction analysis using different techniques with test datasets. 

Trained data SVM LR ANN LSTM 

(Suffering Patient) - 1 Yes Yes Yes Yes 

(Non-suffering Patient) - 2 No No Yes No 

(Suffering Patient) - 3 Yes Yes No Yes 

(Suffering Patient) - 3 Yes Yes No Yes 

(Suffering Patient) - 4 Yes Yes Yes Yes 

(Non-suffering Patient) - 5 No No No No 

(Non-suffering Patient) - 6 Yes Yes No No 

Further, to judge the performance of different machine learning models (LSTM, SVM, LR and 
ANN) for predicting cardiac arrest, the predefined dataset has been framed and tested for prediction 
accuracy. Table. 3 depicts that the LSTM model outperformed other machine learning models (SVM, 
LR and ANN) in terms of accuracy and efficiency. The LSTM model’s proficiency in handling 
sequential data, including heart rate over time, proves highly advantageous in predicting cardiac arrests. 
The use of LSTM for predicting heart attacks is promising and could have significant implications for 
improving patient outcomes. However, it’s important to continue to evaluate and improve the model’s 
performance to ensure its accuracy and reliability in real-world clinical settings. 

5. Conclusion 

This work offers an LSTM-based model for cardiovascular illness prediction and compares it to 
established ML techniques such as ANN, SVM, and LR. The results depict that the LSTM model 
outperforms the previous models in terms of predictive ability. A significant 2.5% improvement in 
cardiovascular disease prediction has been achieved by precisely adjusting the LSTM model’s 
hyperparameters. The study carefully tests the model under a wide range of operational scenarios, 
continuously producing extremely reliable accuracy. This demonstrates the model’s utility as an early-
stage cardiovascular disease screening tool. Results highlight the tremendous promise of LSTM-based 
models in the field of healthcare. The model’s versatility is particularly impressive, as evidenced by 
its use of COVID-19 data. This demonstrates the potential for these approaches to successfully address 
emerging health concerns. In essence, the study makes a strong case for the usefulness of LSTM-based 
models in cardiovascular disease prediction, paving the way for early identification and intervention. 
More clarity and emphasis on key lessons could help this effort. Highlighting how the LSTM model 
outperforms traditional ML techniques and how hyperparameter adjustment leads to this gain would 
provide a better understanding of the model’s superiority. Furthermore, the model’s adaptability to the 
dynamic context of COVID-19 data might be explained more explicitly, since it demonstrates the 
model’s usefulness in real-world, developing circumstances. By improving these characteristics, the 
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conclusion would better capture the relevance of the study’s findings as well as its implications for 
future research and healthcare applications. 
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