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Abstract: Heart disease, globally recognized as a leading cause of death, has seen its impact magnified
by the emergence of COVID-19. The heightened demand for early detection and diagnosis of heart
disease has forced the development of innovative, intelligent systems. This research offers a novel
approach by leveraging extended short-term memory networks (LSTM) and including COVID-19 as
a significant parameter in cardiac arrest analysis. A comparative study is conducted between LSTM
and other prevalent techniques, such as support vector machines (SVM), linear regression (LR), and
artificial neural networks (ANN), focusing on accuracy and other prognostic criteria for heart disease.
We aim to develop an intelligent system powered by LSTM to predict heart disease, thereby assisting
healthcare professionals in making well-informed decisions about heart disease management, stroke
prevention, and patient monitoring. Additionally, hyperparameter tuning has been performed to
optimize the LSTM model’s performance in cardiac arrest prediction. The results underscore that
LSTM, especially when trained with COVID-19 as an input parameter, surpasses other established
techniques in prediction accuracy. The proposed model underwent experimental testing, showcasing
its proficiency in predicting cardiovascular disease.
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1. Introduction

Cardiovascular diseases constitute a prominent cause of mortality globally. In this regard, early
detection and diagnosis are critical for effective treatment. To predict the risk of a heart attack, various
techniques, and technologies can be used. The Internet of Things (IoT) devices can continuously
monitor parameters such as heart rate, blood pressure, and oxygen saturation levels. These devices can
transmit the collected data to a central system where Machine Learning (ML) algorithms can be
leveraged to analyze the information and as certain the potential risk of a heart attack. Such integrated
systems hold promises for enhancing proactive healthcare management by enabling timely risk
prediction and preventive interventions based on real-time physiological data. But the [oT devices can
be costly and require a consistent internet connection. Furthermore, in IoT technology, factors such as
battery life and sensor calibration may have an impact on prediction accuracy [1,2]. ECG monitoring
entails the precise positioning of sensors on the body to diligently observe and record the intricate
electrical activity of the heart. The data is then analyzed to detect anomalies indicating a risk of heart
attack. Some patients may find ECG monitoring uncomfortable, and the data may be influenced by
factors such as movement and electrode placement [3,4]. The Arduino platform is a microcontroller
platform that can be used to build custom heart rate monitoring devices. These devices can be
programmed to collect and analyze data. Further, send alerts if a heart attack is imminent. Setting up
and programming Arduino devices necessitates sound technical knowledge. Furthermore, factors such
as sensor calibration and environmental conditions may have an impact on prediction accuracy [5,6].
Machine Learning has emerged as a prevalent technique extensively employed in the prediction of
heart attacks. It analyses data using algorithms and statistical models to identify patterns that may
indicate the likelihood of a cardio arrest.

The ANN is a machine-learning algorithm designed to emulate the structural and functional
characteristics of the human brain. By leveraging its architecture, ANNs possess the capability to
acquire intricate patterns and correlations within data, enabling them to generate predictions and
insights based on acquired knowledge. ANN can be used in heart attack prediction by training the
network with historical patient data and using the network to predict the likelihood of a heart attack
for a new patient [7-9]. Logistic Regression (LR) is a statistical machine learning algorithm employed
to examine the association between a dependent variable, such as the occurrence of a heart attack, and
one or more independent variables, including but not limited to age, gender, and blood pressure. Its
utilization facilitates the understanding of the probabilistic relationship and provides insights into the
influence of these independent variables on the likelihood of the specified outcome. LR can be used in
heart attack prediction by building a model that calculates the probability of a heart attack based on
the patient’s input features [10—-12]. SVM (Support Vector Machine) is a type of machine learning
algorithm that separates data into different classes by finding the hyperplane that maximally separates
the classes. SVM can be used in heart attack prediction by separating patients who have had a heart
attack from those who have not, based on their input features [13—15]. In [16], a new approach called
Improved Feature Space-based Gradient Boosting Regression Tree Ensemble (IFS-GBRTE) to
predicting complications in Type 2 Diabetes (T2D) cases. The proposed method employs a gradient-
boosting ensemble algorithm with classification and regression tree (CART) base learners to expand
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the feature space using existing theories and refine it through cross-validation. The technique
outperforms individual and ensemble models with an amazing 82.49% accuracy. This breakthrough
not only improves the accuracy of T2D complication risk prediction, but it also has the ability to guide
early prevention, effective screening, and comprehensive care regimens, ultimately lowering mortality
rates and optimizing healthcare budget allocation. In [17], the prediction model has been the focus of
studies since the last century in the diagnosis and prognosis of various diseases. With the advancement
in computational technology, machine learning (ML) has become the widely used tool to develop a
prediction model. This review is to investigate the current development of a prediction model for the
risk of cardiovascular disease (CVD) among type 2 diabetes (T2DM) patients using machine learning.
In [18], Colorectal cancer (CRC) is the third leading cause of cancer-related deaths worldwide, often
originating from precancerous polyps. Detecting and classifying these polyps accurately and early
during colonoscopy is crucial. Our innovative approach introduces an interpretable deep neural
network, named multi-task real-time deep neural network with Shapley additive explanations. This
method simultaneously detects and classifies polyps according to Yamada guidelines, and segments
them. Notably, this is the first instance of using deep learning for Yamada classification during
colonoscopy. We validate our approach through comprehensive experiments on CVC-CLINIC and
CVC-COLON datasets, showing strong performance using metrics like AUC, precision, recall, F1
score and accuracy. Our method offers real-time efficiency, superior to other deep learning methods,
providing interpretable feedback that meets colorectal surgeon requirements. This valuable decision
support minimizes missed diagnoses and misclassifications, enhancing colonoscopy’s effectiveness.

The above-mentioned literature mostly focuses on machine learning-based algorithms to detect
cardiovascular diseases considering the input as diabetics, smoking habits, pulse rate, and oxygen
levels. However, after COVID-19 pandemic, there are several sudden deaths have been observed
due to cardio arrest in healthy persons. Despite its primary classification as a respiratory disease,
COVID-19 has the potential to have a significant impact on the cardiovascular system [19-21]. Along
with respiratory difficulties, some people who get the virus may develop cardiovascular complications,
such as myocarditis (inflammation of the heart muscle), thrombosis (the formation of blood clots), and
blood vessel damage. It is critical to recognize that the complex link between COVID-19 and
cardiovascular diseases defies simple categorization. Not every COVID-19 patient will develop
cardiovascular difficulties, and the virus is not the sole cause of such complications. The interplay of
different elements, ranging from pre-existing health issues and age to the complexities of immune
response, influences the nature and severity of symptoms. Practitioners use a comprehensive strategy
to assess an individual’s cardiovascular well-being, incorporating several benchmarks such as
symptoms, medical history, and diagnostic testing. COVID-19 may play a role in this framework,
particularly if individuals continue to experience cardiovascular symptoms after infection with
COVID-19. In recent times, it has been observed that after COVID-19, the number of cardiac arrest
cases has increased. In addition, recent studies have demonstrated a strong correlation between
COVID-19 and cardiac attack, making it a major factor in predicting cardiovascular diseases. This
motivates to develop a model that focuses on the probability of cardio arrest chances in COVID-19-
affected and non-COVID patients.

Motivated by the need to consider COVID as one of the important parameters, this study proposed
a COVID-based LSTM model to predict cardiovascular disease. LSTM models possess the capability
to acquire intricate patterns and establish relationships within temporal data, enabling them to generate
predictions based on learned insights. In the context of heart attack prediction, LSTM’s potential is
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noteworthy due to its ability to effectively capture long-term dependencies and discern complex
patterns present in time-series data. This unique capacity empowers LSTM models to contribute
significantly to the advancement of heart attack prediction by accurately identifying critical indicators
and risk factors over extended periods. Further, to analyze the impact of COVID-19 on cardiovascular
diseases, hyperparameter-tuned LSTM models are being employed. These models are being trained
using ECG peak values and COVID-19 as parameters to predict the likelihood of cardiovascular
disease in patients. The use of hyperparameter tuning ensures optimal performance of the LSTM
models, leading to accurate predictions. This research holds substantial potential for enhancing the
precision of cardiovascular disease prediction, while concurrently facilitating prompt patient
management and treatment. The comparative analysis has been carried out among proposed
hyperparameter-tuned LSTM models with SVM, ANN, and LR models. The LSTM model has shown
superiority in predicting cardiovascular diseases in this context because it can capture temporal
dependencies in data, which is critical in medical applications. The proposed technique has been
validated experimentally under different operating conditions. Finally, the proposed model will
provide valuable insights into the efficacy of LSTM models in predicting cardiovascular diseases and
will have a noteworthy contribution to the early detection and treatment of such diseases.

The major contribution of the paper has been highlighted as:

e A hyperparameter-based LSTM model has been proposed for cardiac arrest prediction.

e The proposed model has undergone comparative evaluations against established techniques,
including SVM, ANN, and LR, with regard to its effectiveness in predicting cardiac arrest.

e Inthe proposed model, COVID-19 has been considered as an input training parameter in order
to correlate COVID and cardiac arrest.

e The proposed cardiac arrest prediction model has been validated experimentally under various
operating conditions.

The rest of the paper is organized as follows: In section II and Section III depict the LSTM model
and hyperparameters tuning of LSTM respectively. Section IV discusses the analysis and discussion
of the results. Finally, section V highlights the conclusion of the work.

2. LSTM-based model

In this section, LSTM based model has been discussed to predict cardiovascular disease. Long
short-term memory (LSTM) neural networks are brought out to encounter the drawbacks of recurrent
neural networks. LSTM can be considered an advanced sequential network that allows information
stored in short-term memory for longer durations. The drawback of RNNss is that they cannot remember
information for a longer time, here comes the problem of vanishing gradient. Thus, LSTMs have been
identified as a viable solution to address the challenge of vanishing gradient, thereby enhancing the
efficacy of cardiovascular disease prediction. They can learn the long-term dependencies. Figure 1
depicts a detailed view of the LSTM network. Here, ‘c’ represents the vector representation of the
neuron, and the time state is denoted with ‘t’. At the current instant ‘t’, the input layer is expressed as
X(t) and at the previous moment (t—1), the hidden layer is expressed as H(t—1). The internal state Sc
is the cell state where we can add or remove the information. Gates are connected to this cell state and
are used to control the information that passes through it. Gates are the structures that decide which
information needs to be passed through them. A gate refers to a sigmoidal layer that is influenced by
the input layer at the current time step and the hidden layer at the preceding time step [20].
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Figure 1. LSTM architecture.

Forget gate: The primary role of the forget gate is to discern the components of information that
necessitate retention and those that can be disregarded within the context of the overall memory system.
Thus, we can say that the forget gate is a sigmoid layer that decides whether information needs to be
remembered or forgotten. It is represented by Fc. The output of the forget gate is either 0 or 1. Here, if
the output is ‘1°, then the information will be retained or remembered. If the output of Fc is ‘0’ then it
means that the information will be forgotten. The inputs to the forget gate are X(t) and H(t—1). The
forget gate can be evaluated using (1).

£O = W *x© +W "D 4 b ) (1)

Input gate: The input gate serves as the component responsible for assimilating new information
derived from the input into the cell. This gate plays a pivotal role in determining the specific new
information that should be incorporated into the cell state. The input gate encompasses both a sigmoid
layer and a tanh layer, working in tandem to facilitate this decision-making process. The sigmoid layer
regulates the values that need to be added to the cell state which is represented as ‘ic’. The tanh layer,
denoted as ‘gc’, fulfills the purpose of generating a vector representing the new state, ‘sc’. This new
state vector is subsequently combined with the previous state, thereby facilitating the update process.
These two are represented using Eqs 2,3.

i(t) :o_(WiX X(t) +Wihh(t71) +b|) )

g = tanh(W ™ x® +W h* 1 b, ) 3)
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The derived Egs 2,3 are multiplied and then the useful information from forget gate is multiplied
by the previous cell state to update the information from the previous state to the current cell state.
This is represented using Eq 3.

) _ A ;) (t-1) 5 £ ()
sV = IV +5s f
g @)

Output gate: The information which needs to be output is obtained by the output gate ‘oc’. It
comprises a sigmoid layer and a Tanh layer. The tanh layer is applied to the current cell state ‘sc’ to
scale the values to (—1 to +1). This is multiplied by the sigmoid layer output to obtain the cell state
information. This is represented using Egs 5,6.

0" =o(W>*xV +Wh" +h) (5)

h(t) — tanh(S(t)) * O(t) (6)

When it comes to selecting hyperparameters for an LSTM model, the following key parameters
need to be considered:

The number of LSTM layers: The quantity of LSTM layers can influence the model’s capacity to
capture intricate relationships within the data. However, it is crucial to exercise caution when adding
excessive layers, as it can potentially result in overfitting of the model.

The number of LSTM units: The quantity of LSTM units within each layer can also influence the
model’s capacity to capture intricate data relationships. Nevertheless, caution must be exercised when
adding a surplus of units, as it may escalate the computational complexity of the model.

Learning rate: The learning rate plays a crucial role in regulating the speed at which the model
adjusts its parameters during the training process. Employing a high learning rate may result in rapid
convergence but can lead to suboptimal performance. Conversely, a low learning rate may prolong the
convergence time excessively. Thus, selecting an appropriate learning rate is essential for achieving
optimal training outcomes.

Dropout rate: Dropout is a regularization technique employed during training, whereby nodes
within the network are randomly omitted. This mechanism aids in mitigating the risk of overfitting.
The dropout rate, defined as the probability of node dropout, governs the extent to which nodes are
excluded from the network during each training iteration.

Batch size: The batch size denotes the number of samples processed in each training iteration.
Opting for a larger batch size can expedite convergence; however, it is important to consider the
increased demand for memory and computational resources that accompany it.

Number of epochs: The number of epochs determines the frequency with which the model iterates
over the complete training dataset. Training with a limited number of epochs can result in underfitting,
whereby the model fails to capture complex patterns in the data. Conversely, excessive epochs can lead
to overfitting, where the model becomes overly specialized to the training dataset and exhibits reduced
generalization capabilities. Thus, selecting an appropriate number of epochs is crucial for achieving a
well-balanced model performance [22-24].

Cardiovascular disease management benefits from effective handling of temporal dependencies,
accommodating irregular data sampling, enabling early risk detection, analyzing real-time wearable or
remote data, and providing contextual insights through consideration of medical history and lifestyle
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using Long Short-Term Memory (LSTM) models. The capacity of LSTM to capture evolving illness
traits over time helps to comprehend disease development, while its adaptability to irregular data points
assures reliable findings despite varying measurement intervals. The model’s sensitivity to tiny
changes allows for fast alarms for cardiovascular risks, allowing for proactive actions, while its
contextual awareness improves the accuracy of outcome estimates. This holistic approach to
cardiovascular care alters it by combining disparate parts into a coherent framework for informed
decision-making. Due to above-mentioned special features, LSTM techniques have been adopted in
cardiovascular disease prediction in the present study.
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Figure 2. Overview of the proposed cardiovascular diseases detection system.

The proposed LSTM based cardiovascular disease prediction system has been depicted in Figure 2.
In the proposed system, electrocardiogram (ECG) peak signal and COVID have been considered as
parameters to forecast cardiac arrest. A recent study compared different machine learning models and
found that the LSTM model achieved the highest prediction accuracy in many applications. In this
regard, in the present paper, the LSTM model has been used to predict cardiac arrest. Furthermore, the
hyperparameters tuning mechanism has been adopted to improve the LSTM model’s performance.
LSTM models, in general, have exhibited remarkable proficiency in handling sequential data and have
demonstrated successful applications across a range of domains, including but not limited to time series
prediction, language modeling, and speech recognition. In the context, of cardiac arrest prediction,
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LSTM models can analyze time-series data that has been generated from ECGs to identify patterns or
abnormalities that might indicate a higher risk of cardiac arrest. To potentially enhance the accuracy
of the LSTM model, an additional parameter, namely oxygen level, has been incorporated alongside
the ECG peak signal and COVID. This integration aims to leverage the combined information from
these factors, further augmenting the model’s predictive capabilities. The MAX30100 is a sensor that
measures oxygen saturation levels and heart rate. Including this data alongside ECG and COVID,
information can provide a more comprehensive understanding of the patient’s cardiovascular health
and overall well-being. Incorporating the MAX30100 data into the LSTM model can potentially
enhance the model’s ability to detect abnormalities and patterns in the data, as it offers a different
perspective on the patient’s heart rate and oxygen levels. Nevertheless, ensuring the quality and
representativeness of the MAX30100 data utilized for both training and testing the model is of
paramount importance. Combining multiple inputs in an LSTM model can potentially improve the
accuracy of cardiac arrest prediction by capturing a more holistic view of the patient’s health.
Nonetheless, selecting appropriate hyperparameters and using high-quality training data are crucial
considerations for building accurate and reliable LSTM models. One such concept is using a Raspberry
Pi as a controller to gauge the likelihood of developing heart disease. The AD8232 and a push-pull
button for COVID-19 input are the inputs for this prediction model. The AD8232 is a heart rate monitor
that records heartbeat information and measures the electrical activity of the heart. When determining
if a patient is a COVID-19 patient or not, the push-pull button is used. We’ve decided in advance that
a 1 denotes a COVID-19 patient and a 0 denotes a non-COVID patient. Using the patient’s heart rate,
ECG, and COVID-19 as input, the LSTM algorithm (discussed in section 2) has been examined for
cardiovascular disease prediction. The developed LSTM model can then accurately forecast the
patient’s risk of heart disease. The model’s final result will show whether the patient is at risk for heart
disease or not. Medical professionals can use this predictive model to spot heart disease early warning
symptoms and take the required actions to stop additional difficulties.

3. Hyperparameters tuning technique

In this section, LSTM hyperparameter-tuning techniques have been elaborated in detail The
hyperparameter tuning involves the systematic exploration and selection of optimal parameter values
that govern the behavior and performance of an LSTM model. In LSTM, hyperparameters are not
learned from data, but rather they are set by the user or the machine learning engineer prior to training
the algorithm. The process of hyperparameter tuning entails an iterative search for the optimal
combination of hyperparameters that maximizes the algorithm’s performance on a dedicated validation
set. Various techniques can be employed to accomplish this task, including grid search, random search,
or Bayesian optimization, which facilitate the systematic exploration and evaluation of different
hyperparameter configurations. Hyperparameter tuning is an important step in the LSTM workflow,
as it can significantly impact the performance of the algorithm. By selecting the optimal
hyperparameters, the algorithm can achieve better accuracy, faster convergence, and improved
generalization to new data.

Hyperparameter tuning is an important step in the process of developing an optimal LSTM model.
To enhance the model’s performance, several hyperparameters can be subject to tuning, encompassing
the number of LSTM layers and units, learning rate, dropout rate, batch size, sequence length, and
activation function. Exploring and optimizing these hyperparameters can contribute to the refinement
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and effectiveness of the model. Each of these hyperparameters holds the potential to influence the
model’s capacity to comprehend intricate patterns within the input sequence and mitigate the risk of
overfitting. Finding the optimal combination of hyperparameters requires experimentation, and a grid
search or random search algorithm can be used to automate the process. Ultimately, the goal of
hyperparameter tuning is to achieve a well-performing LSTM model that can accurately predict
outputs for a given input sequence [25-27].

Hyperparameter tuning using GridSearchCV from sci-kit-learn. GridSearchCV is a function
designed to systematically explore a specified parameter space, exhaustively searching for the optimal
combination of hyperparameters that yields the highest performance for a given estimator. A multilayer
perceptron (MLP) classifier is used as the estimator, and a parameter space is defined using a dictionary
object. The parameter space includes several hyperparameters that can be tuned, such as the number
of hidden layers and their sizes, the activation function, the optimization algorithm, the regularization
parameter alpha, and the learning rate. GridSearchCV performs cross-validation with the given
hyperparameters and selects the combination that results in the highest accuracy score. The n_jobs
parameter is set to -1 to use all available CPUs, and the cv parameter is set to 3 to perform a 3-fold
cross-validation. Upon fitting the GridSearchCV object to the training data, the optimal
hyperparameters discovered are displayed in the console by accessing the clf.best params  attribute.
These hyperparameters can then be used to build a final MLP classifier that should perform better than
a default MLP classifier with no hyperparameter tuning. GridSearchCV operates by systematically
exploring a pre-defined hyperparameter space specified by the user. It evaluates the model’s
performance for each unique combination of hyperparameters using cross-validation. In this example,
the hyperparameter space is defined by the “parameter space’ dictionary. For each combination of
hyperparameters, the GridSearchCV function trains an MLPClassifier model using the training data
and evaluates its performance using cross-validation with 3 folds (as specified by the “c’ parameter).
The performance of each model is then averaged over the folds to obtain a cross-validation score.
Finally, GridSearchCV returns the combination of hyperparameters that resulted in the highest cross-
validation score as the best hyperparameters found. This is printed to the console in the last line of the
code. Figure 2 depicts the operation of the hyperparameter tuning model. Figure 3 depicts the steps of
the optimal hyperparameter-tuning. GridSearchCV, a comprehensive hyperparameter tuning
methodology, has different advantages over previous methods. GridSearchCV ensures that the ideal
configuration is determined inside the search space by thoroughly exploring all feasible
hyperparameter combinations within a specific grid. This intensive search method provides a thorough
grasp of the correlations between hyperparameters and model performance, as well as results that are
easily interpretable and insights into parameter relevance. Its organized exploration reduces the danger
of missing important hyperparameter interactions, and its deterministic nature ensures reproducibility
and allows for baseline comparisons with other tuning methods. GridSearchCV is ideal for novices
and smaller parameter spaces because of its ease of implementation. However, while GridSearchCV
excels in thoroughness, its computing requirements may not be suitable for large search fields. Other
techniques such as random search or Bayesian optimization may be more efficient alternatives,
emphasizing the necessity of method selection based on individual problem settings and available
resources.

AIMS Bioengineering Volume 10, Issue 3, 265-282.



274

IMPORT
LIBRARIES

FIT
GRIDSEARCH
CV WITH
TRAINING DATA

I

PRINT

PARAMETERS
FOUND BY
GRIDSEARCH

Figure 3. Hyperparameters tuning technique.

4. Result and discussion

In this section, the cardiac arrest prediction technique using LSTM has been proposed. The
proposed system’s effectiveness has been studied in a real-time framework.
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Figure 4. Experimental test bench.

The experimental prototype has been developed to predict cardiac arrest and has been depicted in
Figure 4. The test bench includes the AD8232, MAX30100, and a push-pull button. The AD8232 is a
specialized monitoring chip designed for single-lead ECG measurement, enabling the precise
assessment of the heart’s electrical activity (Figure 5). The measured ECG signal for different persons
has been depicted in Figure 5. The MAX30100 is a dedicated module functioning as a pulse oximeter
and heart rate sensor, primarily employed for quantifying heart rate and determining the blood oxygen
saturation level. The push-pull button is used to give input that is 1 or 0 to specify whether the person
has a history of COVID-19 or not. The inclusion of COVID-19 as one of the important parameters in
cardiac arrest prediction because patients with COVID-19 exhibit cardiac muscle inflammation
because this virus directly damages the heart, even in individuals who were previously healthy and had
no cardiac issues. This type of inflammation damages the cardiac muscle, alters heart rhythm, and
impairs blood pumping at the highest level. The human heart’s electrical activity can be measured
through an electrocardiogram (ECG) signal. The ECG signal provides valuable insights into the heart’s
health and can help identify various heart conditions, including the risk of a heart attack. The developed
LSTM model will be trained considering the input datasets collected from AD8232, MAX30100, and
a push-pull button. The trained model uses the peak value of the ECG signal (Figure 5) to
determine the risk of a heart attack. The model’s training has determined that if the peak value
falls between —0.25 to 0.50, the patient is at risk of a heart attack. If the peak value falls between 0.50
to 1.25, the patient is not at immediate risk of a heart attack, but some over-peaks might be allowed
due to exercise or other physical activities. However, if the peak value exceeds 1.25 and falls
between 1.25 to 1.50, it indicates that the patient is again at risk of a heart attack.
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Figure 5. ECG waveform of the different persons.

Based on the output from this sensor (MAX30100), a machine-learning model can be trained to
prognosticate an individual’s risk level by utilizing their SpO2 values. In this particular scenario, the
machine learning model has been trained to classify SpO2 values into three distinct categories, thereby
determining the corresponding risk levels associated with each category. SpO2 values between 0 to 50
have been classified as high risk, values between 50 to 75 as mild risk, and values between 75 to 100
as non-risk, which indicates that the individual is healthy.
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Based on the provided accuracy scores, we can see that all four models - SVM, LR, ANN, and
LSTM - have varying levels of performance in predicting the target variable. The Support Vector
Machine (SVM) has the lowest accuracy score of 76%, which is the least accurate among the four
models. SVMs are recognized for their proficiency in handling intricate datasets; however, their
performance may not always be optimal when confronted with datasets containing a high number of
features. Logistic Regression (LR) has an accuracy score of 78.8%, which is higher than SVM but still
lower than ANN and LSTM. LR is a linear model that can work well on datasets with few features but
may struggle on more complex datasets. Artificial Neural Networks (ANNs) have an accuracy score
of 85%, which is higher than both SVM and LR but still lower than LSTM. ANNSs are good at handling
complex data and can be very powerful, but they can also be prone to overfitting and may require
careful tuning to perform well. Finally, the Long Short-Term Memory (LSTM) model has the highest
accuracy score of 88.5%, making it the most accurate model among the above-discussed models.
Figure 6 depicts the comparative analysis among different ML algorithms (LSTM, SVM, LR, and
ANN) and it has been observed that the LSTM-based model has been outperformed in terms of
accuracy.

Further, the hyperparameter tuning of LSTM can improve the overall accuracy and reliability of
cardiovascular disease prediction. In this regard, hyperparameter tuning (discussed in section 3) has
been adopted in order to find reliable and best prediction results. Further, hyperparameters are values
that are set prior to training the LSTM network and can significantly impact its performance. In this
work, several key hyperparameters within the LSTM architecture have been examined, including the
number of LSTM layers, the number of LSTM units per layer, the choice of activation function, the
dropout rate, and the learning rate. Table 1 depicts the optimally tuned hyperparameters such as hidden
layer size, Solver, Alpha, learning rate and activation function. These hyperparameters have been
deemed critical and subject to comprehensive analysis in order to optimize the LSTM model’s
performance. By tuning these hyperparameters, it has been observed that performance enhancement
of the LSTM model by adjusting its architecture and regularization. For example, increasing the
number of LSTM layers or units can improve the model’s ability to capture complex temporal
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dependencies, while adding dropout regularization can help prevent overfitting. Further,
hyperparameter tuning can be an effective way to optimize an LSTM model for a specific task and
improve its performance and accuracy. However, it’s important to note that hyperparameter tuning
should be done carefully and systematically to avoid overfitting and to ensure that the network
generalizes well to unseen data. After tuning the hyperparameter (hidden layer size, Solver, Alpha,
learning rate and activation function), the overall accuracy has been improved from 88.5 to 91%. This
depicts the efficacy of the optimal hyperparameter tuning. Figure 7 depicts a comparative analysis of
with and without hyperparameter tuning. It also highlights the significance of optimal tuning by
improving the overall model performance by predicting accurate results. Further, Table 2 depicts the
hyperparameter tuning in terms of accuracy, sensitivity, specificity and AUC. There is no change in
sensitivity and specificity but accuracy and AUC are higher during hyperparameters tuning.

Table 1. Hyperparameters configuration of LSTM Scheme.

Parameters Selected Optimal parameters
Hidden layer size (50, 50, 50), (50, 100, 50), (100) (50, 100, 50)
Solver Sgd, adam Adam

Alpha 0.0001,0.05 0.0001

Learning rate Constant, adaptive Adaptive
Activation function Tanh, sigmoid Tanh

Table 2. Hyperparameters tuning.

LSTM Accuracy Sensitivity Specificity AUC

Without tuning 88.5 1.0 90.8 1.0
With hyperparameters tuning ~ 91.0 1.0 92.1 1.0

91.5

91

90.5

90

89.5

89

Accuracy (%)

88.5
88
87.5

87
Without Tuning With Hyperparameter Tuning

Figure 7. Hyperparameters tuned LSTM and non-hyperparameters tuned LSTM.
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Table 3. Prediction analysis using different techniques with test datasets.

Trained data SVM LR ANN LSTM
(Suffering Patient) - 1 Yes Yes Yes Yes
(Non-suffering Patient) - 2 No No Yes No
(Suffering Patient) - 3 Yes Yes No Yes
(Suffering Patient) - 3 Yes Yes No Yes
(Suffering Patient) - 4 Yes Yes Yes Yes
(Non-suffering Patient) - 5 No No No No
(Non-suffering Patient) - 6 Yes Yes No No

Further, to judge the performance of different machine learning models (LSTM, SVM, LR and
ANN) for predicting cardiac arrest, the predefined dataset has been framed and tested for prediction
accuracy. Table. 3 depicts that the LSTM model outperformed other machine learning models (SVM,
LR and ANN) in terms of accuracy and efficiency. The LSTM model’s proficiency in handling
sequential data, including heart rate over time, proves highly advantageous in predicting cardiac arrests.
The use of LSTM for predicting heart attacks is promising and could have significant implications for
improving patient outcomes. However, it’s important to continue to evaluate and improve the model’s
performance to ensure its accuracy and reliability in real-world clinical settings.

5. Conclusion

This work offers an LSTM-based model for cardiovascular illness prediction and compares it to
established ML techniques such as ANN, SVM, and LR. The results depict that the LSTM model
outperforms the previous models in terms of predictive ability. A significant 2.5% improvement in
cardiovascular disease prediction has been achieved by precisely adjusting the LSTM model’s
hyperparameters. The study carefully tests the model under a wide range of operational scenarios,
continuously producing extremely reliable accuracy. This demonstrates the model’s utility as an early-
stage cardiovascular disease screening tool. Results highlight the tremendous promise of LSTM-based
models in the field of healthcare. The model’s versatility is particularly impressive, as evidenced by
its use of COVID-19 data. This demonstrates the potential for these approaches to successfully address
emerging health concerns. In essence, the study makes a strong case for the usefulness of LSTM-based
models in cardiovascular disease prediction, paving the way for early identification and intervention.
More clarity and emphasis on key lessons could help this effort. Highlighting how the LSTM model
outperforms traditional ML techniques and how hyperparameter adjustment leads to this gain would
provide a better understanding of the model’s superiority. Furthermore, the model’s adaptability to the
dynamic context of COVID-19 data might be explained more explicitly, since it demonstrates the
model’s usefulness in real-world, developing circumstances. By improving these characteristics, the

AIMS Bioengineering Volume 10, Issue 3, 265-282.



280

conclusion would better capture the relevance of the study’s findings as well as its implications for
future research and healthcare applications.
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