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Abstract: This paper presents an investigation into the relationship between heart attacks and the
Omicron variant, employing a novel mathematical model. The model incorporates two adjustable
control parameters to manage the number of infected individuals and individuals with the Omicron
variant. The study examines the model’s positivity and boundedness, evaluates the reproduction
number (R0), and conducts a sensitivity analysis of the control parameters based on the reproduction
number. The model’s parameters are estimated using the widely utilized least squares curve fitting
method, employing real COVID-19 cases from Türkiye. Finally, numerical simulations demonstrate
the efficacy of the suggested controls in reducing the number of infected individuals and the Omicron
population.
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1. Introduction

The COVID-19 pandemic emerged on November 17, 2019 in Wuhan, the capital of the Hubei
region of China. The disease emerged as a type of pneumonia that developed in humans without a
specific reason, and as a result of research, a new coronavirus called SARS-CoV-2 was diagnosed. It
has started to spread rapidly all over the world since the middle of January 2020. On March 11, 2020,
the World Health Organization declared a global epidemic due to the rapidly spreading virus. As of
May 15, 2022, while there were 521,097,997 confirmed cases and 475,547,947 recoveries in the world,
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6,288,116 patients died due to the virus. There is some inconclusive evidence that the incubation period
of the disease is between 2 and 27 days, during which time the virus is contagious. Symptoms of the
disease include coughing, difficulty in breathing, high fever and loss of sense of smell. In addition, the
virus can cause more deaths, especially in individuals with chronic diseases (https://covid19.who.int/).

As the virus continues to spread worldwide, many variants have emerged in this process. Among
them, the fastest spreading Omicron variant (B.1.1.529) first appeared on 24 November 2021 in South
Africa. Omicron comparison to the Delta variant multiplies approximately 70 times faster in the
bronchi (lung and respiratory tract). However, the Omicron variant is 91% less deadly than the delta
variant and has a 51% less risk of hospitalization. However, it is still seen as a risk in individuals with
a chronic disorder or low immunity.

Although COVID-19 infection is seen as a respiratory disease, basically one third of coronavirus-
related deaths occur due to heart-related causes. The COVID-19 virus itself basically occupies the
vein that covers the inner surface of the vessel. Therefore, this virus can cause serious problems
wherever there is a vein. The most important problem caused by the virus is that it causes intravascular
coagulation. This situation, on the one hand, forms the basis of the involvements in the lungs, on the
other hand, it appears as a factor that facilitates the heart attack [1–3].

When faced with an epidemic disease, state administrators and health institutions need to find
answers to questions such as how the disease spreads and what are the factors in this spread in order
to make the right decisions in the prevention of the disease. In this process, mathematical models play
a key role. To date, many mathematical models related to infectious diseases and biology have been
created. Among them, Naik et al. [4] investigated the dynamical properties of a discrete-time Bazykin-
Berezovskaya prey-predator model characterized by a strong Allee effect and offer a detailed analysis
of its dynamics. On the basis of the fluid model, Sene [5] discussed the impact of the second-grade
parameter, as well as the Grashof number, on the velocity’s dynamics. Sabbar [6] investigated the
impact of jumps on an epidemic model which contains three intervention measures: media coverage,
isolation, and medical therapy. In this research, the author provides sufficient criteria for asymptotic
extinction and persistence. Hammouch et al. [7] provided a brunch of solutions to a chaotic system and
synchronization. Especially, since the beginning of COVID-19, the disease has been attracting great
interest of many scientists and contributed to the literature. Naik et al. [8], proposed a novel fractional-
order epidemic model incorporating two distinct operators to analyze the transmission dynamics of the
COVID-19 epidemic. Joshi et al. [9], presented a SIR model for Covid-19, incorporating the ABC
derivative, to analyze the impacts of various factors, such as including face masks, social distancing,
quarantine, etc. The proposed model employs a Beddington-DeAngelis infection rate and a Holling
type-II treatment rate to assess the influence of different model parameters on the infected population.
In [10], the main purpose of the authors is to conduct a comprehensive analysis of a fractional-order
vaccination model designed specifically for COVID-19, taking into account the significant factor of
environmental transmission. The investigation critically employs various tools derived from the field
of fractional calculus to examine the intricate dynamics of the model and to gain deeper insights into
the complex interactions between vaccination strategies and environmental factors in combating the
spread of the virus. With all that, Ucar et al. [11] investigated the dynamics and numerical simulations
of a smoking model by taking light, regular, and quit smokers into account. In another study [12], the
authors introduced a dynamical HIV-1 model in the Caputo sense, incorporating the interplay among
cancer cells, healthy CD4+T lymphocytes, and virus-infected CD4+T lymphocytes, resulting in the
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emergence of chaotic dynamics. Modeling the dynamics of influenza A disease by incorporating the
Caputo-Fabrizio (CF) fractional derivative operator is handled in [13]. Of particular significance in
the model is the consideration of distinct contact rates between exposed and infected individuals,
which contributes to a more accurate representation of the disease transmission process. Ucar et
al. [14] considered an SAIDR-type model to examine the computer viruses dynamics. Elhia et al. [15]
investigated the tuberculosis dynamics with multiple infectious compartments and time delays. In
the paper [16], the co-dynamics of malaria and cholera are investigated within the framework of the
Caputo-Fabrizio derivative. Additionally, the reader can refer to additional important contributions in
this area by carefully reading the references [17].

A mathematical model can be improved by adding some meaningful parameters, allowing for the
formulation of optimal control problems, and thus different strategies can be developed to assist in the
prevention and treatment of diseases in the future. There are many studies in the literature that have
been conducted on the optimal control of various diseases. The problem of fractional optimal control
on a cancer model in which chemotherapy and immunotherapy drug concentrations are considered
as control variables and the effect of obesity in this model is also investigated in [18]. Oncolytic
virotherapy combined with chemotherapy is discussed in [19] for minimizing the cancer tumor cells.
Various control strategies were examined by Akman et al. [20, 21] in an expanded tuberculosis model
by adding three control parameters, such as distance control and prevention of treatment failures at
home and in the hospital, which were added to the model. To minimize the deleterious impact of
chemotherapy treatment, a fractional optimal control problem was designed and its effects on the
growth of the pure tumor cell population were studied by Balenau et al. [22]. In [23], an optimal
control problem is suggested with three control parameters for describing the dengue outbreak in
Johor State, Malaysia. Some control approaches that include therapy for respiratory syncytial virus
disease have been proposed by Jajarmi et al. [24] in the sense of fractional derivative. In the same way,
in order to minimize the number of individuals who were exposed to HIV, four control parameters
were considered in a fractional HIV transmission model by [25]. In the recent studies of Amenn
et al. [26], two control parameters as vaccination and treatment were added to a fractional SIRV
model designed for some infectious diseases and optimal treatment protocols were proposed. Elhia
et al. [27] applied optimal control techniques to a SEIR tuberculosis disease model with time delay,
three infectious compartments, and three controls. Some control approaches in a detailed variable-
order fractional cancer treatment model consisting of 18 compartments were presented by Sweilam et
al. [28]. In addition, transmission dynamics of echinococcosis and mumps virus and some treatment
control strategies recommended for eradication of these diseases can be found in [29,30], respectively.
Especially, recently, there are studies on optimal control of COVID-19 and its co-infection [31–38].

The purpose of the study is initially to determine the parameters that play an important role in
the transmission of COVID-19 and Omicron, and then to integrate the appropriate optimal control
strategies into the model in order to predict and control the spread of the disease. In line with this
target, we have proposed a model to investigate the impact of COVID-19 and the Omicron variant
on the risk of a heart attack. In addition, two control variables are added to the mathematical model
which is defined as self-isolation (u1) and treatment (u2). In this way, the effects of the added control
mechanisms on the model have been examined. According to our knowledge, there is not an optimal
control study in the literature that has been conducted to investigate the effects of the Omicron variant
on heart attacks. First, we have proved the positivity and boundedness of the new model. Then, the
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disease-free equilibrium point and the corresponding basic reproduction number are determined to
examine the rate of the disease spread and its limit. Sensitivity analysis has been carried out in order to
observe the effects of model and control parameters on the reproduction number. In addition, in order
to obtain a more realistic model, the parameters used in the numerical simulation have been determined
in the most appropriate way to the real COVID-19 data from Türkiye with the parameter estimation
approach. As a final step, the maximum principle of Pontryagin is used to establish the necessary
conditions to minimize the objective functional, which is designed for the optimal control problem.
The solution of the optimal control problem has been performed numerically by the forward-backward
sweep method, and thus the effectiveness of the created control strategies has been examined.

The paper is divided into the following sections: the new model that summarizes the relation
between COVID-19, Omicron, and heart attack has been introduced in Section 2. Section 3 specifies
the solution’s positivity and boundedness. In addition, R0 has been determined. The parameters in
Section 4 have been used in the sensitivity analysis to calculate the impact on R0. In Section 5, the
parameter estimation approach is examined. In Section 6, the optimal control problem is created and
the necessary and sufficient conditions for the minimization of the objective functional are expressed.
Forward-backward sweep method has been utilized to examine the effects of the designed control
approaches on the model variables according to the parameters in Table 1, in Section 7. Finally,
Section 8 provides a synopsis of the current work.

2. Mathematical modelling

We can forecast the scope and severity of infectious diseases by utilizing mathematical models to
depict them. Mathematical models can be used to create plans of action to remedy numerous diseases
and stop their spread. Different mathematical models have been used to describe the COVID-19
pandemic. One of these models illustrates the severity of COVID-19’s harmful effects on a number of
other illnesses. Some of these models included vaccination, while others included the quarantine that
was implemented to stop the transmission of the disease. A few models also depict COVID-19’s impact
on various illnesses, with chronic conditions like diabetes [39] being among the most significant. In
this study, a model has been developed to investigate the harmful effects of COVID-19 and the Omicron
variant on heart attack disease patients by taking into account the optimal control approaches. In the
model, we adopt two controls as the self-isolation of infected individuals u1 (t) and different types of
treatment alternatives u2 (t) such as drug, physiological therapy, etc.

Six subpopulations are considered in order to examine the transmission of COVID-19 with and
without the Omicron variant as susceptible (S), exposed (E), infected without Omicron (I), Omicron-
infected (O), recovered (R), and heart attack (H). The proposed integer-order model is as follows:

dS
dt
= Λ − (µ + γ1)S − β1

SE

N
− β2
SI

N
− β3
SO

N
,

dE
dt
= β1 (1 − ε1 − ε2)

SE

N
− (µ + α1 + σ)E,

dI
dt
= β1ε1

SE

N
+ β2
SI

N
+ α1E − (µ + α2 + δ1 + δ2 + u1)I,

dO
dt
= β1ε2

SE

N
+ β3
SO

N
+ σE − (µ + α3 + δ3 + δ4 + u2)O, (2.1)
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dR
dt
= α2I + α3O − γ2R − µR + u1I + u2O,

dH
dt

= γ1S + δ2I + δ4O + γ2R − (µ2 + µ)H ,

with subject to the following initial conditions

S(0) = S0 ≥ 0,E(0) = E0 ≥ 0,I(0) = I0 ≥ 0,O(0) = O0 ≥ 0,R(0) = R0 ≥ 0,H(0) = H0 ≥ 0.

Table 1 provides the biological meanings of the values in the model (2.1).

Table 1. Parameters that were used in the numerical analysis and their values.

Par. Meaning Value Source

Λ Rate of recruitment 2.9517e + 03 Estimated
µ The natural death rate 3.4857e − 05 Estimated
µ2 The rate of people who die as a result of a heart attack 0.8000 Fitted
γ1 The probability of having a heart attack in those who are susceptible 0.0247 Fitted
γ2 The probability of having a heart attack in those who are recovered 0.6000 Fitted
δ1 The mortality rate due to complications 0.1161 Fitted
δ2 The probability of having a heart attack in those who are infected in I class 0.1085 Fitted
δ3 The rate of fatalities from complications 0.5000 Fitted
δ4 The probability of having a heart attack in those who are infected in O class 0.4000 Fitted
β1 Disease transmission rate by contact with the E class 0.3963 Fitted
β2 Disease transmission rate by contact with the I class 0.5000 Fitted
β3 Disease transmission rate by contact with the O class 0.7000 Fitted
α1 the fraction of COVID-19 infected people who are screened 0.0034 Fitted
α2 The proportion of individuals that recovered from the I class 0.0994 Fitted
α3 The proportion of individuals that recovered from the O class 0.7800 Fitted
σ The screening rate of people infected with the Omicron variant 0.0664 Fitted
ε1 Detection of infection with a non-Omicron variant 1.0000e − 04 Fitted
ε2 Detection of infection with an Omicron variant 1.0000e − 04 Fitted

3. Positivity and boundedness of the solution

This section examines both the positivity and the boundedness of the solution which is given
by model (2.1). Let R6

+ = ζ(t) ∈ R6 : ζ(t) ≥ 0 and ζ(t) = [S(t),E(t),I(t),O(t),R(t),H(t)]T . We
demonstrate the non-negativeness of the model (2.1) solution.

Theorem 1. Along with the initial conditions, the solution of model (2.1) is bounded in R6
+.

Proof. Assuming positive invariance for the non-negative region R6
+. We achieve the following using

the system (2.1):

S′|S=0 = Λ ≥ 0,
E′|E=0 = 0 ≥ 0,

I′|I=0 = β1ε1
SE

N
+ α1E ≥ 0,
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O′|O=0 = β1ε2
SE

N
+ σE ≥ 0, (3.1)

R′|R=0 = (α2 + u1)I + (α3 + u2)O ≥ 0,
H ′|H=0 = γ1S + δ2I + δ4O + γ2R ≥ 0.

If (S(0),E(0),I(0),O(0),R(0),H(0)) ∈ R6
+, then from the system (3.1), the hyperplanes S = 0,E =

0,I = 0,O = 0,R = 0, and H = 0 are an impassable barrier for the solution of model (2.1). This
means that the region R6

+ is a set that is positively invariant.

Theorem 2. The region
P = {(S(t),E(t),I(t),O(t),R(t),H(t)) ∈ R6

+, 0 < S(t)+E(t)+I(t)+O(t)+R(t)+H(t) ≤ Λ
µ
} is a positive

invariant set for the system (2.1).

Proof. Based on model (2.1), we getN ′(t) = Λ− µ(S(t)+E(t)+I(t)+O(t)+R(t)+H(t))− µ2H(t)−
δ1I(t) − δ3O(t).
This gives N ′(t) ≤ Λ − µN(t). We get by applying the Laplace transform to the last equation
sN(s) − N(0) ≤ Λ

s − µN(s), which further gives N(s) ≤ Λ
s(s+µ) +

N(0)
s+µ . We deduce that if

(S0,E0,I0,O0,R0,H0) ∈ R6
+, then N(t) ≤ Λ

µ
. This implies that the total population N(t) is bounded,

thus, S(t),E(t),I(t),O(t),R(t) and H(t) are bounded.

Basic reproduction number

The disease transmission coefficient (”R0”) is determined for the local stability of the disease-free
equilibrium DFE using the next generation matrix method (NGMM) [40,41]. R0 represents the extent
of the virus’s dissemination or the number of persons who can become infected with it. Biologically,
if R0 < 1 then the infection will die out, if R0 > 1, the disease remains in the community. In order to
determine R0, the right side of the model (2.1) is considered as F -V, where F andV demonstrate the
transmission part and the transition part, respectively.

F =



0
β1
S0E0

N

β2
S0I0

N

β3
S0O0

N

0
0


,

and

V =



(µ + γ1)S0 + β1
S0E0

N
+ β2

S0I0

N
+ β3

S0O0

N

β1(ε1 + ε2)S
0E0

N
+ (µ + α1 + σ)E0

−β1ε1
S0E0

N
− α1E

0 + (µ + α2 + u1 + δ1 + δ2)I0

−β1ε2
S0E0

N − σE
0 + (µ + α3 + u2 + δ3 + δ4)O0

−α2I
0 − α3O

0 + γ2R
0 + µR0 − u1I

0 − u2O
0

−γ1S
0 − δ2I

0 − δ4O
0 − γ2R

0 + (µ2 + µ)H0


.

By utilizing the NGMM [40, 41], the matrices F and V at DFE = (S0,E0,I0,O0,R0,H0) =

AIMS Bioengineering Volume 10, Issue 3, 218–239.



224(
Λ

µ + γ1
, 0, 0, 0, 0,

γ1Λ

(µ + γ1)(µ + µ2)

)
are obtained by F =

∂Fx(DFE)
∂ty

 and V =
∂Vx(DFE)

∂ty

,
1 ≤ x, y ≤ 3. This implies,

F =


β1
S0

N
0 0

0 β2
S0

N
0

0 0 β3
S0

N

 ,
V =


β1(ε1 + ε2)S

0

N
+ (α1 + µ + σ) 0 0

−α1 − β1ε1
S0

N
δ1 + δ2 + µ + u1 + α2 0

−σ − β1ε2
S0

N
0 α3 + δ3 + δ4 + µ + u2

 .
R0 is computed using the spectral radius of the matrix

(
FV−1

)
at DFE, which is represented by three

situation, R01, R02 and R03:

R01 =
Λβ1

Λβ1(ε1 + ε2) +N(µ2 + α1γ1 + α1µ + γ1µ + γ1σ + µσ)
,

R02 =
Λ β2

N (γ1 + µ) (α2 + δ1 + δ2 + µ + u1)
,

R03 =
Λ β3

N (γ1 + µ) (α3 + δ3 + δ4 + µ + u2)
,

in which
R0 = max [R01,R02,R03] . (3.2)

4. Sensitivity analysis of R0

The goal of this part is to investigate the sensitivity of R01, R02, and R03 according to the reproduction
number-influencing parameters. In these analyses, only the effects of β1, β2, β3, ε1, u1 and u2 parameters
on the relevant reproduction number values were taken into account. We have applied the same method
as in [42] and get the following:

∂R01

∂β1
=

Λ

Λ (ε1 + ε2) +N
(
µ2 + α1 γ1 + α1 µ + γ1 µ + γ1 σ + µσ

) > 0,

∂R01

∂σ
= −

Λ β1N (γ1 + µ)(
Λ (ε1 + ε2) +N

(
µ2 + α1 γ1 + α1 µ + γ1 µ + γ1 σ + µσ

))2 < 0,

∂R02

∂β2
=

Λ

N (γ1 + µ) (α2 + δ1 + δ2 + µ + u1)
> 0,

∂R02

∂u1
= −

Λ β2

N (γ1 + µ) (α2 + δ1 + δ2 + µ + u1)2 < 0,

∂R03

∂β3
=

Λ

N (γ1 + µ) (α3 + δ3 + δ4 + µ + u2)
> 0,

∂R03

∂u2
= −

Λ β3

N (γ1 + µ) (α3 + δ3 + δ4 + µ + u2)2 < 0.

In the sensitivity analysis, one can see that the values of R01 and R02 increase and decrease in proportion
to the growth of β1, σ and β2, u1 values, respectively. Similarly, the value of R03 increases and
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decreases in proportion to the growth of β3 and u2 values. In addition, Figure 1 shows the effects of
the parameters considered in the analysis on the relevant reproduction numbers within the determined
limitations. When the analyses and visuals are studied, it is concluded that reasonable steps should be
done to decrease the spread of the disease by minimizing the parameters that cause the derivative of
reproduction numbers to be positive and maximizing the factors that cause it to be negative.
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Figure 1. Sensitivity analysis of reproduction numbers according to model and control
parameters.

5. Estimating of model parameters

Using the parameter estimation (PE) methodology, which is gaining a growing amount of popularity
in the last few years, we can generate the curve that fits the real data the best while identifying the
parameter values that are closest to the real data. In order to provide a better understanding of how this
method works, the following algorithm can be used

• Locate the coefficients c that resolve the issue min
c
∥X(c, cdata) − ydata∥22 =

min
c

∑
i

(X(c, cdatai) − ydatai)2 , given input data cdata, and the observed output ydata, where

cdata and ydata are matrices or vectors, and X(c, cdata) is a similar-sized matrix-valued or
vector-valued function to ydata.
• Lower and upper bounds, denoted by lb and ub, can be determined if there are boundaries. The

arguments c, lb, and ub can be vectors or matrices.
• The following vector-valued function must be calculated using the user-defined function; the

MATLAB routine lsqcurvefit only provides a minimal user interface for data-fitting concerns.

X(c, cdata) =



X(c, cdata(1)
X(c, cdata(2)
X(c, cdata(3)

...

X(c, cdata(k)


.
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The heart attack and COVID-19 interaction model we built has a total of 18 parameter values.
Utilizing actual COVID-19 data from Türkiye, we fitted 16 parameters to the objectives of the
aforementioned algorithm (https://covid19.saglik.gov.tr/), and by using Türkiye’s current average
lifespan of 78.6 years and its entire population of 84, 680, 273 (https://www.worldometers.info/world-
population/turkey-population/), we estimated the recruitment rate Λ and the natural death rate µ. If the
initial conditions are taken into account as the entire population of Türkiye and the initially exposed
individuals E(0) = 65, 000, sinceN(0) = S(0)+E(0)+I(0)+O(0)+R(0)+H(0), S(0) = 69, 628, 891,
O(0) = 1, 300, I(0) = 36, 731, other remaining populations are calculated as R(0) = 14, 947, 920, and
H(0) = 431. As can be seen in Table 1, the parameter values that were used in the modeling process
are listed along with the best-fit values that were obtained using the Least squares Curve fitting Method
(LCM). Along with this, by utilizing real data in Türkiye from January 1, 2022, to March 31, 2022, the
second infectious rate R01 = 0.0080, R02 = 0.0022, and R03 = 5.8717e − 04 have been computed. The
real COVID-19 cases are shown in Figure 2 by the red-filled circles, and the model’s best-fitting curve
is shown by the blue solid line.
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Figure 2. Real COVID-19 cases and the best-fitted curve in Türkiye from January 1, 2022,
to March 31, 2022.

In order to assess the model parameters, we computed the absolute relative error values between
the curve fitted in Figure 2 and the actual Covid-19 data, taking into account the progression of time.
Figure 3 presents these error values, which indicate the level of agreement between the model and the
real data. Notably, the fitted model parameters obtained from Figure 3 exhibit biological significance
and inspire confidence in their validity.
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Figure 3. The absolute relative error values for model parameters.

In addition, statistical analyses were carried out in order to assess the reliability of the parameter
values obtained on the basis of the simulation results. As a result of these analyses, a confidence
interval (CI) was calculated based on the confidence level of each parameter estimate. The confidence
intervals provide valuable information on the statistical precision of the parameter estimates. The
calculated confidence intervals were obtained using a 99% confidence level and express how certain
or uncertain each parameter estimate is at a given confidence level. This information allows us to
understand the reliability of the simulation results in a more holistic way. The details of the confidence
interval calculations are shown in Table 2.

Table 2. Confidence intervals calculated at 99% confidence level for the fitted parameters of
model (2.1).

Parameter CI Lower Bound CI Upper Bound Parameter CI Lower Bound CI Upper Bound

µ2 0.322727 1.010640 β2 0.500000 0.500000
γ1 0.024653 0.024654 β3 0.700000 0.700000
γ2 0.242060 0.757974 α1 0.003442 0.003442
δ1 0.107950 0.153416 α2 0.061371 0.103206
δ2 0.086821 0.135284 α3 0.780000 0.780000
δ3 0.500000 0.500000 σ 0.066363 0.066363
δ4 0.400000 0.400000 ε1 0.000100 0.000100
β1 0.396254 0.396255 ε2 0.000100 0.000100

The confidence intervals obtained as a result of the conducted statistical analyses have been made
more meaningful by considering only the 30 simulation values that are in line with Figure 2. An
analysis of Table 2 shows that the lower and upper limits of the confidence intervals of some model
parameters are almost equal. This indicates that the estimation obtained from the analysis is close to
the real value of the model parameter. In addition, for the other model parameters, confidence intervals
have been statistically obtained at the 99% confidence level, where the real value of the prediction is
probably located.
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6. Optimal control of the model

To reduce the number of COVID-19 patients without the Omicron variant as well as those with the
Omicron variant in this section, we have introduced two time-dependent control parameters, u1 (t) as
self-isolation and u2 (t) as treatment, to the model (2.1) based on the input data. On the basis of this,
we suggest the optimal control problem (OCP)

min
(u1(t),u2(t))∈Uad

J (u1 (t) , u2 (t)) =

T∫
0

(
ϵ1I (t) + ϵ2O (t) +

ϵ3
2

u2
1 (t) +

ϵ4
2

u2
2 (t)

)
dt, (6.1)

governed by the system (2.1) with the set of Lebesgue measurable admissible control given by

Uad = {u1 (t) , u2 (t) | 0 ≤ u1 (t) , u2 (t) ≤ 1, t ∈ [0,T ]} ,

where ϵi, i = 1, 2, 3, 4 represents the relative costs of the infected class, Omicron class, and associated
control strategies, respectively. For the optimal control problem we are considering, the Lagrangian
function L can be defined as follows:

L (S,E,I,O,R,H , u1, u2) = ϵ1I (t) + ϵ2O (t) +
ϵ3
2

u2
1 (t) +

ϵ4
2

u2
2 (t) .

The cost functional J (u1 (t) , u2 (t)) is minimized here by considering some constraints that are defined
on the control variables u1 (t) and u2 (t). As a result of minimizing the cost functional, both the
reduction of diseased individuals with COVID-19 I (t) and Omicron variants O (t), as well as the cost
of implementing control strategies, are improved. In other words, we determine the solution of (2.1)
as (S∗ (t) ,E∗ (t) ,I∗ (t) ,O∗ (t) ,R∗ (t) , H∗ (t)) associated with the optimal control

(
u∗1 (t) , u∗2 (t)

)
∈ Uad

so that
J
(
u∗1 (t) , u∗2 (t)

)
= min

(u1(t),u2(t))∈Uad
J (u1 (t) , u2 (t)) ,

is reached.
Before giving the necessary conditions, let’s first prove that there exists the

(
u∗1, u

∗
2

)
optimal control pair

for which the cost functional J is minimized in a finite period of time.

Theorem 3. The
(
u∗1, u

∗
2

)
∈ Uad optimal control pair exists such that J(u∗1, u∗2) = min J(u1, u2), solution

to optimal control problem (6.1).

Proof. The following conditions must be fulfilled in order to demonstrate the solution’s existence:

(1) The admissible control set Uad and the state solutions of (2.1) is nonempty.
(2) The admissible control set Uad is both closed and convex and in addition, the state system can be

described as a linear function of the control variables with coefficients that are dependent on time
as well as state variables.

(3) The Lagrange function L in (6.1) is convex on the admisible control set Uad and
L(S,E,I,O,R,H , u1, u2) ≥ h(u1, u2), where h(u1, u2) is continuous and |(u1, u2)|−1 h(u1, u2)→ ∞
whenever |(u1, u2)| → ∞, with |.| the L2(0,T ) norm.
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The solutions of the system (2.1) are bounded for each of the control variables u1 and u2 in the set
Uad, and the right-hand side satisfies the Lipschitz condition with regard to the state variables. So,
condition (1) is satisfied by using the Picard-Lindelöf theorem [43]. The admissible control set Uad is
closed and convex by its definition. The model system (2.1) is linear in the control variables u1 and u2

with the coefficients depending on the state variables. Thus, condition (2) is held. Lastly, due to the
fact that the control variables u1 and u1 are in quadratic nature, the Lagrange function L is convex. We
have L (S,E,I,O,R,H , u1, u2) ≥ ϵ32 u2

1 (t)+ ϵ42 u2
2 (t). Let c = min (ϵ3, ϵ4) > 0 and h (u1, u2) = c

(
u2

1 + u2
2

)
.

In this case, condition (3) is also met as well. As a result, from [44], there exists a control pair
(
u∗1, u

∗
2

)
,

minimizing the cost functional J.

Using the Maximum Principle of Pontryagin [45], we can now obtain the necessary conditions for
the OCP (6.1). In order to do so, we define the Hamiltonian in the following way:

H (S (t) ,E (t) ,I (t) ,O (t) ,R (t) ,H (t) , u1 (t) , u2 (t))

= L (S(t),E(t),I(t),O(t),R(t),H(t), u1(t), u2(t))

+ λ1

(
Λ − (µ + γ1)S (t) − β1

S (t)E (t)
N (t)

− β2,
S (t)I (t)
N (t)

− β3
S (t)O (t)
N (t)

)
+ λ2

(
β1 (1 − ε1 − ε2)

S (t)E (t)
N (t)

− (µ + α1 + σ)E (t)
)

+ λ3

(
β1 ε1

S (t)E (t)
N (t)

+ β2
S (t)I (t)
N (t)

+ α1 E (t) − (µ + α2 + δ1 + δ2 + u1 (t)) I (t)
)

+ λ4

(
β1 ε2

S (t)E (t)
N (t)

+ β3
S (t)O (t)
N (t)

+ σE (t) − (µ + α3 + δ3 + δ4 + u2 (t))O (t)
)

+ λ5 (u1 (t) I (t) + u2 (t) O (t) + α2 I (t) + α3O (t) − µR (t) − γ3 R (t))

+ λ6 (γ1 S (t) + δ2 I (t) + δ4O (t) + γ3 R (t) − (µ2 + µ) H (t))

+ λ7 (Λ − µ2H (t) − δ1 I (t) − µN (t) − δ3O (t)) ,

(6.2)

where λi (t), 1 ≤ i ≤ 7 are the adjoint variables such that

λ̇1 = −
∂H
∂S
, λ̇2 = −

∂H
∂E
, λ̇3 = −

∂H
∂I
, λ̇4 = −

∂H
∂O
,

λ̇5 = −
∂H
∂R
, λ̇6 = −

∂H
∂H
, λ̇7 = −

∂H
∂N
,

with the transversality conditions λi (T ) = 0 for 1 ≤ i ≤ 7. Optimal controls (u1 (t) , u2 (t)) are obtained
by the following relations

∂H
∂u1
= ϵ3 u1 (t) − λ3 I (t) + λ5 I (t) = 0,

∂H
∂u2
= ϵ4u2 (t) − λ4O (t) + λ5O (t) = 0.

Then, in order to arrive at the optimality conditions, we use the restrictions on ui, i = 1, 2. The analysis
presented above can be condensed into the theorem given below.
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Theorem 4. Let (S∗ (t) ,E∗ (t) ,I∗ (t) ,O∗ (t) ,R∗ (t) , H∗ (t)) represent the optimal state solutions for the
system (2.1), and

(
u∗1, u

∗
2

)
∈ Uad represent the optimal control pair which is minimizing the objective

functional (6.1). Then, there are adjoint variables λi, 1 ≤ i ≤ 7 that provide

λ̇1 (t) = −λ1

(
−µ + γ1 − β1

E

N
− β2,

I

N
− β3
O

N

)
− λ2β1 (1 − ε1 − ε2)

E

N
− λ3

(
β1ε1
E

N
+ β2
I

N

)
− λ4

(
β1ε2
E

N
+ β3
O

N

)
− λ6γ1,

λ̇2 (t) = λ1β1
S

N
− λ2

(
β1 (1 − ε1 − ε2)

S

N
− µ − α1 − σ

)
− λ3

(
β1ε1
S

N
+ α1

)
− λ4

(
β1ε2
S

N
+ σ

)
,

λ̇3 (t) = −ϵ1 + λ1β2
S

N
− λ3

(
β2
S

N
− µ − α2 − δ1 − δ2 − u1

)
− λ5 (u1 + α2) − λ6δ2 + λ7δ1,

λ̇4 (t) = −ϵ2 + λ1β3
S

N
− λ4

(
β3
S

N
− µ − α3 − δ3 − δ4 − u2

)
− λ5 (u2 + α3) − λ6δ4 + λ7δ3,

λ̇5 (t) = λ5 (µ + γ3) − λ6γ3,

λ̇6 (t) = λ6 (µ + µ2) + λ7µ2,

λ̇7 (t) = −λ1

(
β1
SE

N2 + β2
SI

N2 + β3
SO

N2

)
+ λ2β1 (1 − ε1 − ε2)

SE

N2 + λ3

(
β1ε1
SE

N2 + β2
SI

N2

)
+ λ4

(
β1ε2
SE

N2 + β3
SO

N2

)
+ λ7µ,

(6.3)

with the tranversality conditions λi (T ) = 0 for 1 ≤ i ≤ 7. Furthermore, the following properties hold:

u1 = min
(
max

(
I∗ (λ3 − λ5) ϵ−1

3 , 0
)
, 1

)
,

u2 = min
(
max

(
O∗ (λ4 − λ5) ϵ−1

4 , 0
)
, 1

)
.

(6.4)

7. Numerical simulations and discussion

In the literature, there are a variety of methods that can be used to solve problems of optimal
control such as the Forward-Backward Sweep (FBS) method, total-enumeration method, or linear
programming method. Here, we present the numerical solution to model (2.1) based on the FBS
method [46] and the values in Table 1 as inputs for the numerical solution. In this method, the system’s
of state variables (2.1) have been solved forward in time and the system’s of co-state variables (6.3)
have been solved backward in time by using the well-known fourth-order Runge-Kutta method. As
a result of numerical simulations, the effects of control parameters on the dynamics of populations
who have been infected with COVID-19 and the Omicron variant have been investigated. For this
investigation, model parameter values have been estimated with the real data from Türkiye between
January 1 and March 31, 2022.

In numerical solutions of optimal control problem, since the cost of treatment of Omicron
individuals is much more than the cost of self-isolation, we take the weight constants in cost functional
(6.1) as ϵ2 > ϵ1 and ϵ4 > ϵ3.

In Figure 4, it is seen that there has been an increase in the number of susceptible individuals in
the case of controls. This increase can be interpreted as the positive effect of control variables on the
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S class. Similarly, it is observed that the controls cause an increase in the number of exposed (E)
individuals.

In Figure 5, the effect of the established control strategies on the infected and Omicron populations
is clearly seen. For example, on the 20th day of the simulation process, the number of infected
individuals is calculated as 44, 237 and 584, 654 with and without controls, respectively. Similarly,
the total number of persons in the Omicron class on the 20th day is calculated as 419, 776 and 685, 619
with and without control. This indicates that the control parameters’ expected remarkable effect is
readily seen.

Owing to efforts to curtail COVID-19 from spreading, we have utilized control u1 (t) in Figure 6. If
Figure 6 and Figure 9 are taken into account, a significant decrease is noted in the infected individuals
between the 10th and 70th days, when the control u1 reaches its maximum value. On the other hand,
when Figures 7 and 9 are considered together, the desired positive effect of the control u2 parameter,
which we added to reduce the spread of the Omicron variant, is clearly visible.

In Figure 8, one can see the behaviors of the recovered and heart attack classes under the control
parameters. It is observed that the number of individuals who recovered increased due to the presence
of the control parameters. In the heart attack class, a decrease is observed with the effect of the control
parameters at the beginning. Nevertheless, there is a significant increase in the number of cases of
heart attacks observed after the 20th day due to the increase in the number of exposed and susceptible
individuals over time.

To better evaluate the effectiveness of the control variables under consideration, the cost functional
values and reduction percentages were calculated for various strategies and are presented in Table 3.

Table 3. Reduction percentages and values of the cost functional J in (6.1).

Strategy Value of the cost functional J Reduction (%)
Without control 9.07314e + 09 –

u1 (t), u2 (t) 3.57717e + 09 60.57
u1 (t) 5.08637e + 09 43.94
u2 (t) 7.71862e + 09 14.93

As can be seen, with the consideration of u1 (t) and u2 (t) controls together, a reduction of 60.57%
in cost functional value occurs. If the u1 (t) and u2 (t) controls are applied separately, it is seen that the
reduction rates of 43.94% and 14.93%, respectively, are achieved in the value of the cost functional.
Accordingly, we can see that u1 (t) (self-isolation) is a more dominant effect on minimizing the cost
function when compared with u2 (t) (treatment).

All of these results are attractive and useful forecasts for COVID-19 and Omicron variant.
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8. Conclusions

In this article, we have studied optimal control strategies on a new COVID-19 and Omicron variant
mathematical model with two control parameters as self-isolation u1 (t) and treatment u2 (t). With these
control strategies, it is aimed to reduce the number of infected and Omicron individuals.

In the first part of the paper, we demonstrate that the solution to our model is both positive as well
as bounded. As well, the NGMM is used to calculate R0, which is the baseline reproduction number or
disease transmission coefficient for the local stability of the disease-free equilibrium. After that, taking
into account actual COVID-19 data from Türkiye, LCM was used to minimize the sum of the squares
of the difference between the numerical solution provided to the infected persons and the actual data,
and the best-fit curve was discovered (see Figure 2). Furthermore, using the parameter estimation (PE)
approach, a calibration procedure has been carried out in order to find the most compatible values of the
parameters of the model with the goal of better and more realistically observing the disease dynamics.
According to specialists in infectious diseases, the Omicron variant of COVID-19 spreads differently
from other variants of COVID-19 that have been identified so far [47]. This difference also coincides
with the parameter estimation results we have found (β2 = 0.5 and β3 = 0.7). Furthermore, the level of
agreement between the model and the real-data is represented by the absolute relative error in Figure 3.
Notably, the fitted model parameters obtained from Figure 3 exhibit biological significance and inspire
confidence in their validity.

The sufficient conditions for the control parameters u1 and u2 are utilized from Pontryagin’s
maximum principle. For the numerical simulations of the OCP, the forward-backward sweep method
is handled. Numerical simulations in which control strategies are considered separately and together
are depicted.

Our results indicate that the control variables lead to a significant reduction in the number of
individuals in the infected and Omicron classes, as intended. Based on our investigations, it can be
concluded that if infected individuals behave sensitively and self-isolate, and if individuals with the
Omicron variant seek proper treatment, it may be possible to decrease and eventually eliminate the
disease over time. Furthermore, upon examining Table 3, it becomes clear that self-isolation remains
one of the most effective strategies in controlling the spread of COVID-19 and its Omicron variant, even
when used alone. Moreover, it has become increasingly urgent to continue practicing self-isolation in
order to prevent COVID-19 from undergoing further dangerous mutations.
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7. Hammouch Z, Yavuz M, Özdemir N (2021) Numerical solutions and synchronization
of a variable-order fractional chaotic system. Math Model Num Simul Appl 1: 11–23.
https://doi.org/10.53391/mmnsa.2021.01.002

8. Naik PA, Yavuz M, Qureshi S, et al. (2020) Modeling and analysis of COVID-19 epidemics with
treatment in fractional derivatives using real data from Pakistan. Eur Phys J Plus 135: 1–42.
https://doi.org/10.1140/epjp/s13360-020-00819-5

9. Joshi H, Yavuz M, Townley S, et al. (2023) Stability analysis of a non-singular fractional-
order covid-19 model with nonlinear incidence and treatment rate. Phys Scripta 98: 045216.
https://doi.org/10.1088/1402-4896/acbe7a

10. Atede AO, Omame A, Inyama SC (2023) A fractional order vaccination model for COVID-19
incorporating environmental transmission: a case study using Nigerian data. Bull Biomath 1: 78–
110. https://doi.org/10.59292/bulletinbiomath.2023005
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39. Özköse F, Yavuz M (2022) Investigation of interactions between COVID-19 and diabetes with
hereditary traits using real data: a case study in Turkey. Comput Biol Med 141: 105044.
https://doi.org/10.1016/j.compbiomed.2021.105044

AIMS Bioengineering Volume 10, Issue 3, 218–239.

http://dx.doi.org/https://doi.org/10.1016/j.chaos.2020.109892
http://dx.doi.org/https://doi.org/10.11121/ijocta.01.2021.00885
http://dx.doi.org/https://doi.org/10.1016/j.apm.2020.08.012
http://dx.doi.org/https://doi.org/10.1016/j.nonrwa.2021.103388
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2021.110668
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2020.110054
http://dx.doi.org/https://doi.org/10.11121/ijocta.01.2021.00974
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2021.110689
http://dx.doi.org/https://doi.org/10.1371/journal.pone.0257512
http://dx.doi.org/https://doi.org/10.1016/j.apm.2021.06.016
http://dx.doi.org/https://doi.org/10.1016/j.aej.2020.09.058
http://dx.doi.org/https://doi.org/10.3390/axioms11040170
http://dx.doi.org/https://doi.org/10.3934/mbe.2023527
http://dx.doi.org/https://doi.org/10.1016/j.compbiomed.2021.105044


239

40. Driessche VP, Watmough J (2002) Reproduction numbers and sub-threshold endemic
equilibria for compartmental models of disease transmission. Math Biosci 180: 29–48.
https://doi.org/10.1016/S0025-5564(02)00108-6

41. Diekmann O, Heesterbeek JAP, Roberts MG (2010) The construction of next-
generation matrices for compartmental epidemic models. J R Soc Interface 7: 873–885.
https://doi.org/10.1098/rsif.2009.0386

42. Chitnis N, Hyman JM, Cushing JM (2008) Determining important parameters in the spread of
malaria through the sensitivity analysis of a mathematical model. Bull Math Biol 70: 1272.
https://doi.org/10.1007/s11538-008-9299-0

43. Coddington EA, Levinson N (1955) Theory of Ordinary Differential Equations, Tata McGraw-Hill
Education.

44. Gaff HD, Schaefer E, Lenhart S (2011) Use of optimal control models to predict
treatment time for managing tick-borne disease. J Biol Dynam 5: 517–530.
https://doi.org/10.1080/17513758.2010.535910

45. Pontryagin LS (1987) Mathematical Theory of Optimal Processes, 1 Ed., CRC Press.
https://doi.org/10.1201/9780203749319

46. Lenhart S, Workman JT (2007) Optimal Control Applied to Biological Models, 1 Ed., CRC Press.
https://doi.org/10.1201/9781420011418

47. Vitiello A, Ferrara F, Auti AM, et al. (2022) Advances in the Omicron variant development. J Int
Med 292: 81–90. https://doi.org/10.1111/joim.13478

© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Bioengineering Volume 10, Issue 3, 218–239.

http://dx.doi.org/https://doi.org/10.1016/S0025-5564(02)00108-6
http://dx.doi.org/https://doi.org/10.1098/rsif.2009.0386
http://dx.doi.org/https://doi.org/10.1007/s11538-008-9299-0
http://dx.doi.org/https://doi.org/10.1080/17513758.2010.535910
http://dx.doi.org/https://doi.org/10.1201/9780203749319
http://dx.doi.org/https://doi.org/10.1201/9781420011418
http://dx.doi.org/ https://doi.org/10.1111/joim.13478
http://creativecommons.org/licenses/by/4.0

	Introduction
	Mathematical modelling
	Positivity and boundedness of the solution
	Sensitivity analysis of Lg
	Estimating of model parameters
	Optimal control of the model
	Numerical simulations and discussion
	Conclusions

