
AIMS Bioengineering, 9(3): 283–292. 
DOI: 10.3934/bioeng.2022019 
Received: 30 June 2022 
Revised: 07 August 2022 
Accepted: 22 August 2022 
Published: 09 September 2022 

http://www.aimspress.com/journal/Bioengineering 

 

Mini review 

Promising probiotics for the treatment of nephrotoxicity induced during 

immune-checkpoint therapy against cancers 

Sayuri Yoshikawa, Kurumi Taniguchi, Haruka Sawamura, Yuka Ikeda, Ai Tsuji and Satoru 
Matsuda* 

Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 
630-8506, Japan. 

* Correspondence: Email: smatsuda@cc.nara-wu.ac.jp; Tel: +81742203451; Fax: +81742203451. 

Abstract: The immune-related adverse events resulting from the therapy of immune checkpoint 
inhibitors could cause kidney injury. Inflammatory reprogramming of regulatory T helper (Treg) cells 
or type 17 T helper (Th17) cells might be involved in the pathogenesis of nephropathy. Accumulating 
evidence confirms a connection between the diversity of gut microbiota and kidney diseases, 
suggesting that successful modification of gut microbiota could attenuate kidney injury. In other words, 
certain gut microbiota could contribute to the protection of kidneys via the gut-kidney axis. It has been 
shown that the dysbiosis of gut microbiota might affect the gut-kidney axis, leading to nephrotoxicity. 
On the contrary, altered levels of D-amino acids, ROS, and SCFAs through the adjustment of gut 
microbiota might be relevant to the reduction of nephrotoxicity. Here, we have discussed and 
suggested the beneficial roles of gut microbiota in the prevention of the kidney injury induced during 
immune-checkpoint therapy. 
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1. Introduction 

The immune checkpoint inhibitors targeting programmed cell death protein-1 (PD-1) or its     
ligand (PD-L1) are among the most effective immunotherapy agents, which are now given to increasing 
numbers of patients with advanced cancers. Consequently, a considerable number of immune-related 
adverse events have been reported, predicting that such events will become important [1]. The immune-
related adverse events which may result from the therapy of immune checkpoint inhibitors could affect 
various organs, including the kidneys [2]. Now, the number of immune-related adverse events have 
grown noticeably, and it has become a major focus of current investigation. The most common kidney 
side effect associated with immune-related nephrotoxicity is acute kidney injury, which is usually 
caused by acute tubule-interstitial nephritis, with severity ranging from mild to life-threatening; it is 
also imitating the acute T-cell-mediated kidney injury of graft-versus-host disease (GVHD) in 
hematopoietic stem cell transplantation [3]. In addition, it has been reported that the use of the immune 
checkpoint inhibitors in patients with a preexisting autoimmune disease might be related to the 
increased occurrence of overall adverse events [4]. Recently, probiotics and/or prebiotics were shown 
to attenuate the severity of the disease condition within acute kidney injury [5], GVHD [6] and 
autoimmune disease [7], suggesting that gut microbiota might have considerable protective effects on 
the host against the above-mentioned immunological disorders. In addition, the uses of probiotics and/or 
prebiotics have shown potential positive effects, even against the production of uremic toxins in kidneys, 
with minimal risk of hyperkalemia and/or cachexia [8]. An increasing number of studies are also 
suggesting the effects of gut microbiota on the alleviation of acute kidney injury. In fact, plant-based 
diets and prebiotic, probiotic and symbiotic supplementation may lead to favorable alterations in the 
gut microbiota [9], suggesting that probiotics and/or prebiotics have potential benefits for the primary 
prevention of immune-related adverse events. Therefore, probiotics may therefore be a promising 
strategy to reduce the severity of acute kidney injury [5]. 

2. Treg cells and Th17 cells may be involved in the pathogenesis of immune-related adverse 
events 

PD-1-blocking antibody therapy may rapidly result in the depletion of circulating PD-1 positive 
T regulatory (Treg) cells [10], which plays an important role in the effective anti-tumor responses in 
the tumor microenvironment [11]. Treg cells can facilitate immune-avoidance by tumor cells via 
diminishing anti-tumor immunity [12]. Similarly, the role of PD-L1 is overriding in type 1 T           
helper (Th1) and type 17 T helper (Th17) cell immunity [13]. Functional T cells, including the subsets 
of Th17 cells and Treg cells, play significant roles in determining the inflammatory    
microenvironment [14]. Therefore, anti-PD-1 therapies often trigger T cell-mediated adverse events 
that mimic Th17-mediated inflammatory diseases [15]. The reprogramming of immune cells might be 
a feature of GVHD, which is associated with the differentiation of CD4 positive Th1 cells into Th17 
cells, along with the dysfunction of Treg cells [16]. In addition, Th17 cells are more prevalent in 
immune-related enterocolitis than Th1 cells [17]. Arthritis, after combined CTLA-4 and PD-1 inhibitor 
therapy, has favorably enhanced Th17 and transient Th1 or Th17 cell signatures [18]. Treg cells and/or 
Th17 cells are important in the immunopathology of lupus nephritis [19]. A high ratio of Th17/Treg 
cells was observed in lupus nephritis [20]. A potential role of the Th17 cells was also indicated in renal 
inflammation in glomerulonephritis [21]. In the setting of inflammatory responses with pathogenic 
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Th17 cells, mesenchymal stem cells may suppress the differentiation of Th17 cells and the related 
inflammation in the kidneys [22]. In addition, it has been suggested that an imbalance of Th17/Treg 
cells seems to be an immunological basis of nephritic syndrome [23]. Accordingly, inflammatory 
reprogramming of Treg cells and/or Th17 cells might be a feature of the nephropathy in 
immunotherapy-induced immune-related adverse events [24]. 

3. Gut microbiota could contribute to the protection of kidneys 

Accumulating evidence confirms a connection between the diversity of gut microbiota and host 
diseases. In other words, the potential of gut microbiota has been recognized as a contributing factor 
in the development of various diseases, including obesity, diabetes, kidney disease and        
hypertension [25,26]. Gut microbiota can affect the systemic levels of reactive oxygen species (ROS) 
that play vital roles in inflammatory diseases [27]. Generally, living cells reluctantly release ROS for 
indispensable ATP synthesis, which may cause DNA damage in cells [28]. However, some important 
physiological roles of ROS include the regulation of enzymes involved in autophagy, whose signaling 
could affect the balance of Th17/Treg cells [29]. ROS are defined as oxygen-hugging active molecules 
capable of reacting with various host molecules or organs, which also result from inflammatory 
reactions [30]. Gut microbiota may manage the production of ROS, which eventually protect some 
organs against oxidative stress [31]. Therefore, understanding the redox regulation of physiological 
processes seems to be important for developing a therapeutic approach with the modification of gut 
microbiota. The pathogenic connection between the gut microbiome and kidney diseases is termed the 
gut–kidney axis [32], which is often implicated in IgA nephropathy and/or in chronic kidney         
disease (CKD) (Figure 1). In the cases of both diseases, an apparent reduction of the tight junction 
proteins may be possibly be attributed to the production of uremic toxins [33,34]. In addition, gut 
bacteria could activate a Th17/Th1 T-cell response, which may increase the production of 
inflammatory cytokines, triggering inflammation and/or immune response in the kidneys [35]. In fact, 
changes in the composition of the gut microbiota can promote an inflammatory status that is relevant 
to the pathogenesis of nephropathy [36]. For example, patients with renal failure have a low abundance 
of the genus Lactobacillus, whereas the proportion of the family Enterobacteriaceae are increased in 
the patients [37]. 

A beneficial role of gut microbiota in the progression of kidney diseases has been suggested. For 
example, probiotics such as Akkermansia and Lactobacillus could alleviate renal metabolism in CKD 
through the gut-kidney axis [38]. The reversal of gut dysbiosis using fecal microbiota       
transplantation (FMT) may be a promising therapy for CKD [39]. Successful modification or 
remodeling of the composition of gut microbiota could attenuate kidney inflammation [40]. In the 
development and/or prevention of diabetic nephropathy, the microbiota in the gut-kidney axis might 
play a key role [36], suggesting potential efficacy of the gut microbiota in the nephrotoxicity induced 
during immune-checkpoint therapy. For example, Salvia miltiorrhiza could alleviate the renal 
metabolism caused by cyclosporine-induced chronic nephrotoxicity through the gut-kidney axis [38] 
(Figure 1). 
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Figure 1. Hypothetical schematic image of the gut-kidney axis and the gut-immune axis 
involved in the nephrotoxicity induced during immune-checkpoint therapy. The indicated 
antibodies are provided as examples, and are in no particular order. The arrowheads mean 
stimulation, whereas the hammerhead represents inhibition. Note that some critical 
pathways, such as inflammation activation and/or epigenetics pathways, have been omitted 
for clarity. Abbreviations: ROS, reactive oxygen species; SCFAs, short-chain fatty acids; 
CTLA-4, cytotoxic T lymphocyte-associated protein 4; PD-1, programmed cell death 
protein-1; PD-L1, programmed cell death ligand 1. 

4. Favorable roles of gut-kidney axis for the protection of kidneys 

As a vital regulator of gut microbiota, the role of the linkage between nutrition and the gut 
microbiota in conserving the host health has been widely discussed [41]. Therefore, researchers have 
increasingly turned their attention to gut microbiota and its derived metabolites as a potential target 
for various therapeutics [42]. In clinical practice, the most largely used gut microbiota-targeted 
therapies are probiotics and prebiotics. Probiotics are alive bacteria that have health benefits when 
administered [43]. Prebiotics can promote the growth and/or activity of beneficial bacteria [43]. 
Synbiotics denote a mixture comprising probiotic and prebiotics, and they also present a health benefit. 
Also, the use of substances produced through metabolism of the gut microbes has also shown an 
encouraging effect on the host as postbiotics [44]. The gut microbiota may produce various D-amino 
acids that are beneficial for the protection of kidneys. For example, D-Ala inhibits ROS production 
and/or improves the potential of mitochondria [45]. Some Enterobacteriaceae, including Escherichia 
coli and/or Klebsiella oxytoca, could generate D-Ala in the gut, which might ameliorate kidney injury 
in mice, suggesting that D-Ala could be a promising therapeutic target [45]. In addition, it has been 
demonstrated the protective effects of gut-derived D-serine on kidney injury as another potential 
therapeutic target [46]. Several studies highlighted the relationship among the gut microbiota and 
oxidative stresses in various diseases [47]. ROS might be strictly controlled by the various signaling 
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processes for appropriate gut immunity [48]. Some microbial products could upregulate the activity of 
superoxide dismutase, which results in a lower level of systemic ROS [49]. Nephrotoxicity rapidly 
weakens kidney function due to exposure to ROS, leading to inflammatory responses [50], which could 
be affected by alterations in the redox conditions of the gut. Carbohydrates are fermented to generate 
short-chain fatty acids (SCFAs), which are fatty acids with fewer than six carbon atoms, and they may 
work as an inhibitor for histone deacetylase (HDAC) [51]. HDAC inhibitors can attenuate acute kidney 
injury-mediated damage in the animal models of kidney diseases [52]. In addition, certain levels of 
SCFAs produced by healthy gut microbiota have been shown to possess anti-inflammatory properties 
with the regulation of T cell proliferation [53]. Furthermore, it has been shown that SCFAs can improve 
kidney function through the modulation of the inflammatory process via the expression levels of the 
enzymes involved in chromatin epigenetic modification [54]. In other words, SCFAs can improve 
kidney function after an injury, most likely via the epigenetic modification occurring as a result of a 
dual relationship between gut and kidneys [54]. Altering the composition of the gut microbiota has 
been shown to systematically alleviate the immunopathology of the CTLA-4 blockade in a Treg-
dependent manner in mice [55]. The gut microbiota might also impact host cell metabolism [55]. 
Consequently, levels of D-amino acids, ROS and SCFAs that have been altered via the modification 
of gut microbiota could be relevant to the reduction of nephrotoxicity and/or the protection of kidneys. 
Recent relevant research showing promising effects of probiotics, prebiotics and FMT against kidney 
injury, including nephropathy, are shown in Table 1. 

Table 1. Relevant researches showing promising effects of probiotics, prebiotics and fecal 
microbiota transplantation (FMT) against kidney injury. 

Method Reference No. 
Probiotics 5,36,42,43,44 
Prebiotics 42,43,44 
FMT 36,39 

5. Next perspectives 

It has been shown that cisplatin causes the dysbiosis of gut microbiota, which might change the 
microbiota-derived metabolites and affect the gut–kidney axis, leading to nephrotoxicity [56]. 
Therefore, potential mechanisms for kidney protection should include several changes in the structure 
of commensal bacteria, such as increasing butyrate-producing bacteria, decreasing pathogenic bacteria 
and modulating the levels of microbiota-dependent metabolites, such as those affected by SCFAs, 
endotoxins and uremic toxins. As for immune-related adverse events, the gut-immune axis might affect 
the pathogenesis of the events. As an interesting example, it has been shown that high salt-intake may 
induce Th17 cells via the gut-immune axis, affecting autoimmunity and/or cardiovascular disease [57]. 
In a dose-dependent manner, sodium chloride was shown to be a driving factor for autoimmune 
diseases, including rheumatoid arthritis, through the induction of pathogenic Th17 cells [58]. 
Furthermore, it has been reported that a diet rich in sodium chloride may affect gut microbiota and 
increase intestinal Th17 cells, indicating the harmful effects of salt consumption on the gut-immune 
axis in multiple sclerosis [59]. Prospective clinical trials will be mandatory to investigate the effects 
of gut microbiota as a potential supportive therapeutic intervention against the nephropathy in human 
immune-related adverse events. In the end, the application of microorganisms could transmit 
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antibiotic-resistance actors to the other microorganisms in the gut, which could result in important 
infections to the host [60]. Therefore, more studies should also be compulsory for identifying 
promising strategies to evade antibiotic resistance spread to pathogens in the gut. 
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