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Abstract: Listeria monocytogenes poses a significant threat to food safety worldwide, including in 

African countries. This bacterium is capable of causing severe infections, particularly in vulnerable 

populations. In this review, we provide an overview of the prevalence, transmission, and control 

measures of L. monocytogenes in the food chain across North Africa. Various factors contribute to the 

persistence and spread of this pathogen in food production and distribution systems, including 

environmental contamination, improper handling, and inadequate hygiene practices. Understanding 

the dynamics of L. monocytogenes in the North African food chain is crucial for implementing 

effective control strategies to mitigate the risk of contamination and protect public health. This review 

highlights the rise of virulence genes in L. monocytogenes from food production, especially milk 

production, over the past five years and their subsequent identification in human L. monocytogenes 

isolates from listeriosis cases. This underscores the persistent challenges that L. monocytogenes may 

pose to food safety and public health in North African countries. 
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1. Introduction 

Foodborne diseases threaten food safety and global trade and challenge public health in Europe 

and many other countries [1]. L. monocytogenes is a widespread foodborne pathogen capable of 

causing severe disease. The estimated annual incidence of L. monocytogenes infections can vary based 
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on geographic region, data collection, and reporting [2]. For instance, in the United States alone, the 

Centers for Disease Control and Prevention (CDC) reports that every year close to 1600 individuals 

get sick, and 260 die from Listeria infections [3]. This might vary depending on time and location. 

Further, it is difficult to estimate the number of listeriosis cases as some diseases are not diagnosed or 

reported [4,5]. However, there has been a heightened awareness of L. monocytogenes in the food chain 

and in North Africa, where there are differences in food safety rules and regulations [2,6]. L. 

monocytogenes is present in various food and environmental samples in North Africa and constitutes 

a potential hazard to the public [7,8]. L. monocytogenes outbreaks cause hospitalization and fatalities 

that result in economic losses. Lack of adequate resources and regulatory constraints are barriers to 

overall control and highlight L. monocytogenes as a concern in the North African region. 

North Africa, comprising Algeria, Egypt, Libya, Morocco, and Tunisia, is subject to challenging 

environmental conditions characterized by water scarcity. According to El Kenawy [9], in 2016, this 

region covers approximately 4,758,160 square kilometers, with 90% classified as dry or semi-dry 

areas, posing unique challenges for preventing and controlling foodborne diseases [10,11]. L. 

monocytogenes in the food chain is important for North Africa [12]. Additionally, the 

sociodemographic conditions, agricultural production, and food processing practices in North Africa 

may further sustain L. monocytogenes and present issues for food safety and human health [13]. The 

food products and environmental samples of L. monocytogenes within the region show that it is 

prevalent within the food chain of North Africa [14]. 

Several factors add to the difficulties of managing L. monocytogenes in food in this area. Deficient 

infrastructure for food production, processing, and delivery, poor hygiene practices, poor sanitation 

facilities, and insufficient access to clean water provide a suitable environment for contamination by 

L. monocytogenes [6]. In addition, weak regulatory oversight, limited monitoring systems, and lack of 

resources for food safety programs exacerbate the problem. Migration and urbanization also define 

dietary practices and contribute to the spread of L. monocytogenes [15]. Pregnant women, newborns, 

the elderly, and those with poor immunity are at a higher risk of developing listeriosis [16]. 

L. monocytogenes is a member of the Listeriaceae family of bacteria that is a Gram-positive, non-

sporulating rod-shaped bacteria without capsules, 5 to 4.0 μm in width and 0.5 to 2.0 μm in length [17,18]. 

They are facultative anaerobes and are motile at temperatures between 10–25 °C. Listeria can grow 

across a wide temperature range (0–45 °C), various pH levels (4.5–9), and in high salt concentrations 

(10% NaCl). The genus Listeria includes 17 species, but only L. monocytogenes is known to cause 

foodborne illness in humans, while L. ivanovii primarily affects animals. These bacteria have been 

found in various food sources, including meat, seafood, dairy products, and vegetables, as well as in 

water, plants, soil, and the feces of asymptomatic human and animal carriers [19,20]. Consumption of 

contaminated food products accounts for an estimated 99% of all human listeriosis cases [21]. Clinical 

symptoms of listeriosis manifest as septicemia, meningitis, meningoencephalitis, prenatal infection, 

abortion, and gastroenteritis [22,23]. L. monocytogenes infections are accountable for the highest 

hospitalization rates among all foodborne pathogens and have also been linked to large outbreaks of 

human illness worldwide [24,25]. 

In North African countries, surveillance for L. monocytogenes is performed at different levels. 

The surveillance is conducted by the Ministries of Health at the national level that accumulate and 

share information on cases identified in healthcare facilities across the country [6]. Regional and local 

health departments also contribute to managing the cases in the respective areas. Centralized and 

regional laboratories employ microbiological methods to confirm L. monocytogenes and 
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epidemiologists investigate confirmed cases, source investigation, and case clustering [26]. 

Stakeholder engagement improves data sharing, coordination, and response. Information and 

communication campaigns focus on food hygiene issues and signs of illness. Education and training 

programs seek to enhance surveillance systems, health facilities, and professional competency to 

attenuate the likelihood of L. monocytogenes dissemination and enhance population wellness [27]. 

Our aims in this review are to outline the (i) knowledge and (ii) most recent trends regarding the 

frequency of virulence genes in L. monocytogenes found in North African countries in foods using 

literature that covers the last 20 years. As a secondary objective, we aim to shed light on the data 

regarding the present status of antimicrobial resistance. 

2. Materials and methods 

A comprehensive search was conducted in all electronic databases such as PubMed 

(https://pubmed.ncbi.nlm.nih.gov/), Scopus (https://www.scopus.com/home.uri), Web of Science 

(https://www.webofscience.com/wos/), and Google Scholar (https://scholar.google.com/) to identify 

studies conducted in the last twenty years [28]. The search was narrowed down using the following 

keywords for each country: L. monocytogenes in the food chain in Algeria; virulence gene profile of 

L. monocytogenes isolates in Algeria; and antimicrobial resistance among L. monocytogenes. Studies 

included in this review were those that reported the prevalence, antimicrobial susceptibility patterns, 

and virulence gene profiles of L. monocytogenes isolates obtained from samples from North African 

countries. Low-quality studies and inadequate data were also excluded from the review. 

3. Status of human listeriosis in North Africa 

The status of human listeriosis in North Africa shows a multifaceted relationship between the 

incidence of L. monocytogenes pathogenic bacteria and food combinations [6]. Research has revealed 

that different foodborne sources play a vital role in the contamination of L. monocytogenes in the 

human population within the region. Milk products have been a significant source of listeriosis, and 

they remain a constant threat to humans [29]. Several factors that cross-influence demography, 

healthcare, and environmental conditions define epidemiology within North Africa. However, there 

are variations in the specifics of epidemiological data from one country to another due to variances in 

reporting systems and concerns [30]. Infectious diseases like listeriosis impact the region, with 

prevalence influenced by local practices and resources [6]. It is important to understand that some 

countries have sound surveillance systems while others face various challenges. Measures to improve 

surveillance practices through partnership and capacity development have been pursued to this purpose. 

Nevertheless, the importance of data and data-driven approaches to tracking and containing infectious 

diseases is getting more attention. Thus, cooperation with health authorities and other institutions 

remains the key to stabilizing the epidemiological situation and meeting the population’s health needs 

in North African countries [31]. 

The epidemiological landscape implies that the incidences of L. monocytogenes infections are not 

homogenous throughout North Africa, and as a result, it is significant to understand the dynamics in 

question [32]. Therefore, cultural practices in food handling and methods of food processing largely 

determine the probability of these infections. In addition, the global trade in food products and their 

supply chain has emerged as another factor that complicates the fight against these pathogens [33,34]. 
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In North Africa, pregnant women might struggle to diagnose and treat listeriosis due to the 

possibility of limited access to healthcare services and prenatal care, especially in some areas [35]. In 

Algeria, Eleftherios Mylonakis et al., [36] documented the first two cases of neonatal listeriosis within 

29 days in the same maternity hospital. One of them, the mother, resided on a farm 50 km from Algiers, 

and her family used to take fresh milk from their cow daily. In Egypt, a cross-sectional study was 

conducted among 50 pregnant women by EL-Naenaeey et al., [37] in which 4% tested positive for L. 

monocytogenes. The same survey identified L. monocytogenes in 8% of 200 milk samples and 4% of 

50 feces samples from dairy cattle and established how L. monocytogenes pose a great danger to the 

public health of dairy products. The prevalence of L. monocytogenes in raw milk poses a public health 

risk for milk handlers, dairy farm workers, and milk consumers. 

The detection and surveillance of L. monocytogenes among humans in the North African region 

help us understand the prevalence of listeriosis in the region. This knowledge is important as it reveals 

the genetic variation of L. monocytogenes and their ability to thrive on different foods. The prevalence 

of human listeriosis in North Africa indicates that the incidence of infection may be influenced by 

multiple food matrices [2]. Public health authorities, regulatory agencies, and the food industry need 

to work together to reduce the risk of contamination and to implement strict measures and controls that 

will guarantee the safety of the population in the region through prevention. This requires 

comprehensive research and coordinated initiatives to mitigate the potential impact of listeriosis. 

4. Sources of L. monocytogenes in North Africa 

L. monocytogenes is a foodborne pathogen that causes listeriosis, and this disease is serious and 

has high fatality rates, especially among persons with a weakened immunity system, including 

pregnant women, the elderly, newborns, and the immuno-compromised [38]. In North Africa, L. 

monocytogenes and factors that may be attributed to its prevalence are multiple. L. monocytogenes is 

mostly found in raw milk and dairy products like soft cheese; most dairy farms still perform traditional 

practices and have high incidences of consuming raw milk, contributing to the contamination [32,39]. 

Cheese and yogurt made from pasteurized milk can be again contaminated if certain measures are not 

observed while handling and packing the foodstuffs [40]. The especially vulnerable products include 

those that can be eaten without cooking, such as cold meat, delicates, pate, sausage, etc., if they were 

stored at improper temperatures or eaten after their expiration [41,42]. L. monocytogenes is largely 

found linked with smoked fish and any other processed seafood, particularly when they are not stored 

at the proper temperatures or consumed after their shelf lives [43]. Moreover, fresh fruits, vegetables, 

and other fresh produce like spinach and similar products can easily be contaminated through water or 

soil or during processing [44]. 

L. monocytogenes is a natural flora in soil and water. The pathogen invades food crops and water 

through contaminated water used in processing and irrigation besides the direct application of 

untreated manure, which circulates the pathogen within the food chain [45,46]. L. monocytogenes is 

capable of surviving on food processing plants’ surfaces, and deposits may develop on the equipment 

or on the surfaces that are prone to make biofilms. When there is inadequate cleaning and disinfecting, 

such biofilms can attach and proliferate to the production stage, where they get transferred to the food 

products [47,48]. Cattle, sheep, and goats, for instance, can be asymptomatic carriers of L. 

monocytogenes and, therefore, shed the bacteria in their feces, contaminating feed and water [49]. Meat 

and poultry also easily become contaminated with L. monocytogenes during processing, slaughtering, 
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and packaging of poultry and poultry products [50]. 

L. monocytogenes can spread to humans both directly and indirectly. Direct transmission is more 

common among individuals in professions that involve close interaction with animals or animal 

products, such as farmers, veterinarians, slaughterhouse workers, poultry processors, and butchers [51]. 

Additionally, direct contact with pets infected with L. monocytogenes, especially puppies or kittens 

with L. monocytogenes-induced diarrhea, can be a source of infection [52]. While several indirect 

transmission routes from animals to humans exist, the most prevalent ones involve the consumption 

of contaminated milk, meat, or eggs [1].  

In North Africa, various social factors contribute to malnutrition, including poverty, lack of access 

to clean water, insufficient food supplies, and inadequate healthcare services. Malnutrition weakens 

the immune system, making the body more susceptible to diseases such as listeriosis. Additionally, 

illnesses like AIDS increase the risk of L. monocytogenes infections. The immune system's reduced 

ability to fight pathogens in HIV/AIDS patients makes these individuals potential carriers and sources 

of L. monocytogenes transmission [53]. Street dogs and cats, especially those that move between 

neighborhoods and frequently enter people's homes, can also spread L. monocytogenes. Moreover, 

traditional food practices and limited refrigeration in rural areas can heighten the risk of foodborne 

illnesses. These unique conditions in North African countries highlight the need to understand the link 

between consumer health and immunity to listeriosis. Preventive and control measures for L. 

monocytogenes should address these risk factors to be effective. As shown in Figure 1, there are 

possible pathways of L. monocytogenes transmission to humans in North Africa. 

 

Figure 1. illustrates the potential pathways of L. monocytogenes transmission to humans 

in North African (accessed on August 5, 2024). 
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Table 1 summarizes research studies on L. monocytogenes frequency in North African food. 

Several researchers have documented the prevalence of L. monocytogenes in Algerian food products, 

highlighting public health risks. Abdellaoui et al., [54] found L. monocytogenes in 5.2% of 385 cheese 

samples. Benhalima et al., [32] reported Listeria spp. in 14.3% of 42 raw milk samples and 6.7% of 

45 sausage samples, with L. monocytogenes present in only Sausage at 2.2%. Hamdi et al., [55] found 

L. monocytogenes in 2.6% of 153 raw milk samples. Bouayad and Hamdi [56] detected Listeria spp. 

in 9.3% of 227 ready-to-eat food samples (Figure 2). 

Table 1. The occurrence of L. monocytogenes in North African foods. 

Country Tested Food Samples  

(Total Number) 

Listeria 

spp. % * 

L. 

monocytogenes % 

Other Listeria 

Species % 

Confirmation Methods 

(If PCR Targets Genes) 

References 

Algeria Cheese (n = 385) ND 5.2 ND PCR technique [54] 

 Raw milk (n = 42) 14.3 ND L. innocua (4.4), L. 

seeligeri (2.2). 

API Listeria strips [32] 

 Sausage (n = 45) 6.7 2.2 L. innocua (4.4), L. 

seeligeri (0). 

  

 Foods ready to eat (n = 

227) 

9.3 2.6 L. innocua (4.8), L. 

ivanovii (1.3), L. 

welshimeri (0.4). 

API Listeria strips [56] 

 Raw milk (n = 153) ND 2.6 ND API Listeria strips [55] 

Egypt Tilapia (n = 40) ND 5 ND PCR technique (16S 

rRNA) 

[44] 

 Catfish (n = 25) ND 8 ND   

 Vegetables (n = 90) ND 1.1 ND   

 Poultry carcasses (n = 

250) 

ND 9.6 ND API Listeria strips [57] 

 Raw milk (n = 153) ND 10 ND PCR technique (16S 

rRNA) 

[58] 

 Beef burger (n = 153) ND 3.3 ND   

 beef sausage (n = 153) ND 6.6 ND   

 Minced meat (n = 153) ND 13.3 ND   

 Chicken fillet meat (n = 

153) 

ND 3.3 ND   

 Pasteurized milk (n = 

100) 

10 20 L. innocua (50), L. 

ivanovii (10), L. 

grayi (10), L. 

welshimeri (10), 

PCR technique (16S 

rRNA) 

[59] 

 Chicken fillets (n = 100) 52 30.6 L. innocua (57.1), 

L. ivanovii (12.2), 

L. grayi (0), L. 

welshimeri (0), 

  

 Minced meat (n = 65) ND 23 ND MALDI-TOF  

MS 

[60] 

Continued on the next page 
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Country Tested Food Samples  

(Total Number) 

Listeria 

spp. % * 

L. 

monocytogenes % 

Other Listeria 

Species % 

Confirmation Methods 

(If PCR Targets Genes) 

References 

 Milk (n = 300) ND 5.9 ND  [61] 

 Raw milk (n = 50) ND 20 L. innocua (2), L. 

welshimeri (6), L. 

grayii (4) 

PCR technique (16S 

rRNA) 

[62] 

 Pasteurized milk (n = 50) ND 0 L. innocua (0), L. 

welshimeri (0), L. 

grayii (0) 

  

 Flavored milk (n = 50) ND 0 L. innocua (0), L. 

welshimeri (0), L. 

grayii (0) 

  

 Raw milk (n = 60) 28.3 13.3 L. innocua (3.3) PCR technique (16S 

rRNA) 

[63] 

 Soft cheese (n = 30) 36.7 18.2 ND PCR technique (16S 

rRNA) 

[64] 

 Ice cream (n = 30) 46.7 8 ND   

 Raw milk (n = 150) 8.7 61.5 L. innocua (23), L. 

welshimeri (15.4) 

PCR technique (16S 

rRNA) 

[65] 

 Dairy products (n = 150) ND 27.3 ND PCR technique (16S 

rRNA) 

[66]  

 Milk (n = 120) ND 7.5 ND API Listeria strips [67] 

 Farm milk bulk tank (n = 

25) 

ND 0 ND Biochemical tests [68] 

 Plain yoghurt (n = 25) ND 0 ND   

 Fresh soft cheese (n = 

50) 

ND 14 ND   

 Raw Milk (n = 50) ND 6 ND PCR technique (16S 

rRNA) 

[41] 

 Ice Cream (n = 50) ND 0 ND   

 Minced Meat (n = 50) ND 14 ND   

 Fish Fillet (n = 50) ND 8 ND   

 Sausage (n = 50) ND 6 ND   

 Raw milk (n = 75) 27 (36) 22.2 L. innocua (25.9), 

L. ivanovii (3.7), L. 

seeligeri (3.7), L. 

welshimeri (7.4) 

Biochemical tests [69] 

 Pasteurized milk (n = 50) 14 (28) 21.4 L. innocua (14.3), 

L. ivanovii (0), L. 

seeligeri (14.3), L. 

welshimeri (7.1) 

  

Continued on the next page 

 



104 

AIMS Agriculture and Food  Volume 10, Issue 1, 97–128. 

Country Tested Food Samples  

(Total Number) 

Listeria 

spp. % * 

L. 

monocytogenes % 

Other Listeria 

Species % 

Confirmation Methods 

(If PCR Targets Genes) 

References 

 Ice cream (n = 50) 19(38) 26.3 L. innocua (21), L. 

ivanovii (5.7), L. 

seeligeri (0), L. 

welshimeri (10.5) 

  

 Ras cheese (n = 50) 13(26) 15.4 L. innocua (23), L. 

ivanovii (15.4), L. 

seeligeri (0), L. 

welshimeri (0) 

  

 Ice cream (n = 200) ND 5.5 ND PCR technique (16S 

rRNA) 

[70] 

 Goat meat (n = 20) 20 50 ND Biochemical tests [71] 

 Goat liver (n = 20) 30 33.3 ND   

 Goat kidney (n = 20) 30 33.3 ND   

 Goat lungs (n = 20) 0 0 ND   

 Goat rumen (n = 20) 50 30 ND   

 Soft cheese (n = 155) 14.2 4.5 L. innocua (9.7). PCR technique [39] 

 Fillet fish (n = 100) ND 7 ND PCR technique (16S 

rRNA) 

[72] 

 Poultry meat (n = 90) ND 10 ND PCR technique (16S 

rRNA) 

[73] 

 Kariesh cheese (n = 120) ND 0.8 ND PCR technique (16S 

rRNA) 

[48] 

 Meat, hamburger (n = 

50) 

ND 2 ND   

 Chicken, broilers internal 

organs (n = 120) 

ND 2.5 ND   

 Layers internal organs (n 

= 120) 

ND 2.5 ND   

 Table eggs (n = 100) ND 1 ND   

 Ducks internal organs (n 

= 60) 

ND 1.7 ND   

 Silage (n = 90) ND 3.3 ND   

 Fish, frozen fish (n = 

100) 

ND 1 ND   

 fish filet (n = 58) ND 1.7 ND   

 Herring (n = 66) ND 1.5 ND   

 Brain tissue, rabbit (n = 

30) 

ND 3.3 ND   

 Goats, fetal livers (n = 

15) 

ND 6.7 ND   

Continued on the next page 
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Country Tested Food Samples  

(Total Number) 

Listeria 

spp. % * 

L. 

monocytogenes % 

Other Listeria 

Species % 

Confirmation Methods 

(If PCR Targets Genes) 

References 

 Milk of dairy cows (n = 

200) 

19 4 L. Ivanovii (6), L. 

innocua (2), L. 

grayi (3), L. 

Welshimeri (4) 

PCR technique (16S 

rRNA) 

[37] 

 Minced meat (n = 20) 50 15 L. ivanovii (10), L. 

welshimeri (5), L. 

innocua (20), L. 

seeligeri (0), L. 

grayi (0). 

PCR technique [42] 

 Kofta (n = 20) 70 20 L. ivanovii (5), L. 

welshimeri (10), L. 

innocua (14), L. 

seeligeri (10), L. 

grayi (5). 

  

 Sausage (n = 20) 35 10 L. ivanovii (10), L. 

welshimeri (5), L. 

innocua (10), L. 

seeligeri (0), L. 

grayi (0). 

  

 Burger (n = 20) 60 15 L. ivanovii (15), L. 

welshimeri (10), L. 

innocua (10), L. 

seeligeri (5), L. 

grayi (5). 

  

 Luncheon (n = 20) 40 10 L. ivanovii (10), L. 

welshimeri (10), L. 

innocua (5), L. 

seeligeri (5), L. 

grayi (0). 

  

 Pasterma (n = 20) 25 5 L. ivanovii (10), L. 

welshimeri (0), L. 

innocua (5), L. 

seeligeri (5), L. 

grayi (0). 

  

 Vegetable (n = 331) ND 14.2 ND PCR technique (16S 

rRNA) 

[74] 

 Chicken meats (n = 100) ND 2.8 ND PCR technique (16S 

rRNA) 

[75] 

 Liver (n = 100) ND 5.3 ND   

 Spleen (n = 100) ND 2 ND   

 Kidneys (n = 100) ND 3.3 ND   

Continued on the next page 
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Country Tested Food Samples  

(Total Number) 

Listeria 

spp. % * 

L. 

monocytogenes % 

Other Listeria 

Species % 

Confirmation Methods 

(If PCR Targets Genes) 

References 

 Raw milk, milking 

equipment, and hand 

swabs (n = 300) 

26.3 23 L. innocua (3.3) PCR technique (16S 

rRNA) 

[76] 

 Dairy products (n = 240) 10 33.3 L. welshimeri 

(12.5), L. grayii 

(45.8), L. innocua 

(8.3), L. ivanovii 

(0), L.seeligeri (0) 

Biochemical tests [77] 

 Luncheon (n = 25) ND 4 ND Biochemical tests  

[24]  

 

 

 

 Beef burger (n = 50) ND 8 ND   

 Sausage (n = 50) ND 0 ND   

 Cottage cheese (n = 50) ND 0 ND   

 Raw milk (n = 50) ND 8 ND   

 Minced meat (n = 25) ND 4 ND   

 Beef burgers (n = 50) ND 32 ND  [78]  

 Minced meat (n = 25) ND 4 ND PCR technique (16S 

rRNA) 

 

 Luncheon (n = 25) ND 4 ND   

 Raw milk (n = 100) ND 13 ND Biochemical tests [79] 

 Raw milk (n = 51) 27.5 3.9 L. ivanovii (3.9), L. 

innocua (9.8), L. 

seeligeri (5.9), L. 

grayi (2), L. 

welshimeri (2). 

Biochemical tests 

 

 

[80] 

 Kareish cheese (n = 51) 13.73 2 L. ivanovii (2), L. 

innocua (2), L. 

seeligeri (6.5), L. 

grayi (0), L. 

welshimeri (2). 

  

 Burger (n = 50) 8 ND L. ivanovii (2), L. 

innocua (0), L. 

seeligeri (0), L. 

grayi (4). L. 

welshimeri (2). 

  

Continued on the next page 
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Country Tested Food Samples  

(Total Number) 

Listeria 

spp. % * 

L. 

monocytogenes % 

Other Listeria 

Species % 

Confirmation Methods 

(If PCR Targets Genes) 

References 

 Butter (n = 31) 6.5 ND L. ivanovii (3.2), L. 

innocua (0), L. 

seeligeri (0), L. 

grayi (0), L. 

welshimeri (3.2). 

  

 Egg shells (n = 30) ND 13.3 ND PCR technique (inlA) [81] 

 Beef luncheon (RTE) (n 

= 40) 

ND 15 ND Biochemical tests 

 

[82] 

 Chicken luncheon (RTE) 

(n = 40) 

ND 10 ND   

 Frankfurter beef (RTE) 

(n = 40) 

ND 2.5 ND   

 Dairy product (n = 200) ND 14 ND PCR technique [83] 

 Frozen lean beef (n = 30) 20 3.3 L. ivanovii (6.7), L. 

grayi (3.3), L. 

innocua (3.3), L. 

Seeligeri (3.3), L. 

welshimeri (0). 

API Listeria strips [84] 

 Raw milk (n = 30) 13.3 ND L. ivanovii (3.3), L. 

grayi (3.3), L. 

innocua (0), L. 

Seeligeri (3.3), L. 

welshimeri (3.3). 

  

 Frozen catfish (n = 51) ND 56.9 ND Biochemical tests [85] 

 Mackerel (n 104) ND 0.96 ND   

 Tilapia (n = 100) 31 4 L. ivanovii (8), L. 

innocua (5), L. 

seeligeri (5), L. 

grayi (3), L. 

welshimeri (6) 

PCR technique [86] 

 Nile tilapia (n = 13) ND 0 ND Biochemical tests [43] 

 Mullet (n = 10) ND 20 ND   

 Tuna (n = 12) ND 16.7 ND   

 Blue crab (n = 12) ND 33.3 ND   

 Shrimp (n = 14) ND 42.9 ND   

 Bivalve mollusks (n = 

10) 

ND 60 ND   

 Meat products (n = 144) 28 58 ND API Listeria strips [87] 

 Poultry products (n = 

120) 

19 48 ND   

Continued on the next page 
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Country Tested Food Samples  

(Total Number) 

Listeria 

spp. % * 

L. 

monocytogenes % 

Other Listeria 

Species % 

Confirmation Methods 

(If PCR Targets Genes) 

References 

 Seafood products (n = 

120) 

16 53 ND   

 Dairy products (n = 120) 23 63 ND   

 Plant products (n = 72) 39 61 ND   

 Minced frozen beef (n = 

25) 

32 4 L. ivanovii (0), L. 

innocua (28), L. 

welshimeri (0), L. 

seeligeri (0), L. 

grayi (0), L. 

murrayi (0). 

Biochemical tests 

 

[88] 

 Luncheon (n = 25) 32 8 L. ivanovii (4), L. 

innocua (0), L. 

welshimeri (8), L. 

seeligeri (8), L. 

grayi (4), L. 

murrayi (0). 

  

 Frozen chicken leg (n = 

25) 

52 ND L. ivanovii (12), L. 

innocua (8), L. 

welshimeri (8), L. 

seeligeri (0), L. 

grayi (16), L. 

murrayi (0). 

  

 Frozen chicken fillet (n = 

25) 

56 8 L. ivanovii (12), L. 

innocua (12), L. 

welshimeri (12), L. 

seeligeri (0), L. 

grayi (8), L. 

murrayi (4). 

  

 Egg shells (n = 100) ND 7 ND Biochemical tests [89] 

 Egg contents (n = 100) ND 0 ND   

Libya Raw cow milk (n = 20) 45 20 ND Biochemical tests [90] 

 Laben (n = 20) 35 5 ND   

 Ricotta cheese (n = 20) 40 5 ND   

 Maassora cheese (n = 20) 40 5 ND   

 Chicken meat (n = 20) 45 20 ND   

 Chicken burger (n = 20) 60 15 ND   

 Raw beef (n = 20) 65 20 ND   

 Beef burger (n = 20) 60 5 ND   

 Beef sausage (n = 20) 55 20 ND   

 Ice cream (n = 160) ND 4 ND API Listeria strips [91] 

Morocco Raw milk (n = 150) ND 3.8 ND PCR technique (inlA) [92] 

Continued on the next page 
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Country Tested Food Samples  

(Total Number) 

Listeria 

spp. % * 

L. 

monocytogenes % 

Other Listeria 

Species % 

Confirmation Methods 

(If PCR Targets Genes) 

References 

 Traditional whey (n = 

150) 

ND 5.7 ND   

 Rayeb (n = 150) ND 0 ND   

 Smen (n = 150) ND 1.9 ND   

 Raw bovine meat (n = 

150) 

ND 1.9 ND   

 Raw poultry meat (n = 

150) 

ND 1.9 ND   

 Raw minced meat (n = 

150) 

ND 5.7 ND   

 Raw sausage (n = 150) ND 5.7 ND   

 Raw fish (n = 150) ND 1.9 ND   

 Salads (n = 150) ND 0 ND   

 Beef meat (n = 140) ND 7.1 ND Biochemical tests [93] 

 Dairy products (n = 404) 3.2 0.7 L. innocua (1.5), L. 

welshimeri (0.7), L. 

seeligeri (0.3). 

API Listeria strips [94] 

 Bovine meat products (n 

= 258) 

12.8 2.7 L. innocua (9.3), L. 

welshimeri (0), L. 

seeligeri (0). 

  

 Poultry meat products (n 

= 103) 

14.6 ND L. innocua (13.6), 

L. welshimeri (1), 

L. seeligeri (0). 

  

 Pastries (n = 162) 4.9 3.1 L. innocua (1.9), L. 

welshimeri (0), L. 

seeligeri (0). 

  

 Salads (n = 143) 2.8 ND L. innocua (2.8), L. 

welshimeri (0), L. 

seeligeri (0). 

  

 Chickpea flour cooked 

with eggs sold in the 

street (n = 20) 

25 ND L. innocua (25), L. 

welshimeri (0), L. 

seeligeri (0). 

  

 Mayonnaises (n = 6) 33.3 16.7 L. innocua (16.7), 

L. welshimeri (0), 

L. seeligeri (0). 

  

 Raw milk, Lben and Jben 

(n = 288) 

ND 5.9 ND API Listeria strips [95] 

 Red meats (n = 112) 4.5 20 L. innocua 

(80), L. welshimeri 

(0). 

PCR technique (hly) [96] 

Continued on the next page 
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Country Tested Food Samples  

(Total Number) 

Listeria 

spp. % * 

L. 

monocytogenes % 

Other Listeria 

Species % 

Confirmation Methods 

(If PCR Targets Genes) 

References 

 Ground meat and 

sausages (n = 240) 

9.6 35 L. innocua 

(65), L. welshimeri 

(0). 

  

 Raw poultry (n = 74) 20 7 L. innocua 

(80), L. welshimeri 

(13). 

  

Tunisia Fish (n = 50) - 2 Not reported API Listeria strips [97] 

 Sausage (n = 30) - 3 Not reported   

       

*The percentage (%) of Listeria species is calculated from the positive samples (isolated target bacteria). 

 

Figure 2. Studies that have detected the L. monocytogenes in foods in the last two decades 

in African, Libya, Morocco, and Tunisia. 

In Egypt, many studies have been conducted to detect the occurrence of L. monocytogenes in 

foods (Figure 3). Milk products and red meats have shown the highest sources of L. monocytogenes. 

Recently, especially in 2021 and 2022, many studies have detected the occurrence of L. monocytogenes 

in milk products such as those by El-Baz and Elsayed [68], Abdeen et al. [41], and Elsayed et al. [61]. 

Additionally, red meats have been implicated as sources of L. monocytogenes by several studies. For 

example, Radwan et al. [60] detected L. monocytogenes in 23% of 65 minced meat samples, and Abou-

Khadra et al. [58] detected it in 13.3% of 153 minced meat samples. Several researchers have also detected 

L. monocytogenes in seafood, poultry products, and vegetables, as shown in Table 1. 

In Libya, according to Hesham et al, [90], L. monocytogenes was detected in various food sources. 

They sampled 20 samples from each source and found the bacteria in raw cow milk (20%), Laben (5%), 

Ricotta cheese (5%), Maassora cheese (5%), chicken meat (20%), chicken burger (15%), raw beef (20%), 

beef burger (5%), and beef sausage (20%). Additionally, El-Sharef et al. [91] detected L. 

monocytogenes in ice cream, with a prevalence of 4% out of 160 samples. 
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Figure 3. Studies that have detected the L. monocytogenes in foods in the last two decades 

in Egypt. 

In Morocco, Boukili et al. [93] and Ennaji et al. [96] detected L. monocytogenes in red meats. 

Additionally, according to Bouymajane et al. [92], L. monocytogenes was isolated from raw milk at a 

rate of 3.8% out of 150 samples and from raw fish at 1.9% out of 150 samples. In Tunisia, Hmaïed et 

al. [97] found L. monocytogenes in fish, with a prevalence of 2% out of 50 samples, and in sausage, 

with a prevalence of 3% out of 30 samples (Figure 2). 

Several studies describe the frequent isolation of L. monocytogenes in food products from North 

African countries. In Algeria, Abdellaoui et al. [54] detected L. monocytogenes in cheese samples, 

while Benhalima et al. [32] identified L. monocytogenes in raw milk and sausage. Several researchers 

who conducted studies in Egypt identified L. monocytogenes in milk products and red meats; however, 

Radwan et al. [60] and Abou-Khadra et al.. [58] documented a high prevalence of the bacteria. Hesham 

et al. [90] identified the bacteria in different foods in the Libyan context. In Morocco and Tunisia, 

researchers detected L. monocytogenes in raw milk, fish, and red meats. These researchers have pointed 

out that L. monocytogenes is prevalent in different types of foods in most of the North African countries. 

Thus, the simple identification of L. monocytogenes may not necessarily be a justifiable reason for 

initiating control measures. In the view of Habib et al. [6], it is vital to recognize all potential risks and 

investigate their interconnectedness if an upscale risk evaluation is to be produced. This way of 

handling control measures ensures that they are applied properly in combating L. monocytogenes 

contamination based on the risk factors inherent to the product. The key elements that may include the 

source of contamination, modes of transmission, and possible health risks should be evaluated to 

understand the best control measures. Surveillance efforts in Egypt emphasize the importance of 

vigilant monitoring, while in Morocco, the focus is on enhancing food security, particularly in meat 

products. 

5. Virulence factors 

L. monocytogenes is involved in foodborne diseases, and genes required for the virulence of 

bacteria are very important. These genes help the bacteria to adhere to and invade cells and tissues as 

0

2

4

6

8

Milk products
Red meats

Sea foods
Poultry

products Vegetable

2009 2010 2011 2012 2013 2014
2015 2016 2017 2018 2019 2020
2021 2022 2023 2024

N
u

m
b

e
r 

o
f 

st
u

d
ie

s
in

 y
e

ar
 



112 

AIMS Agriculture and Food  Volume 10, Issue 1, 97–128. 

well as escape and neutralize the host’s immune system [98]. They are crucial for L. monocytogenes 

to produce infections [99]. Knowledge of these genes is critical in formulating an effective means to 

contain and prevent foodborne diseases caused by L. monocytogenes. Thus, further elucidation of 

bacterial pathogenicity and stress factors at the molecular level must be established [19]. 

L. monocytogenes is a pathogen that leads to a foodborne illness known as listeriosis. The ability 

of L. monocytogenes to cause disease is largely attributed to its virulence genes, which play crucial 

roles in its interaction with the host [38]. Some of these genes involve the adhesion of the bacterium 

to host tissues, invasion of tissues, evasion of the host immune response, and general pathogenicity of 

the bacterium [100]. Internalin A (inlA) and Internalin B (inlB) are encoded surface proteins that 

promote adhesion and invasion of the bacteria to host cells. inlA binds to the E-cadherin receptor, 

which is present on the epithelial cell surface and inlB, binds to the Met receptor to facilitate the uptake 

of bacteria into the host cells [101]. The hly gene product is called Listeriolysin O, which facilitates 

the escape of the bacteria from the phagosome to the cytoplasm after being engulfed by host cells. 

This escape is essential for the bacterium not to be destroyed by the lysosomes of the host cell it 

has invaded [102]. Phospholipase enzymes (plcA and plcB) are involved in the action that breaks the 

phagosomal membrane and helps in the escape of the bacterium in the cytoplasm [103]. The actA 

encodes a protein that promotes actin polymerization, enabling the bacterium to move within the host 

cell's cytoplasm and spread to neighboring cells. The movement of these microorganisms is required for 

spreading the infection within tissues and this is achieved through the use of actin structures [104]. The 

PrfA gene encodes a transcriptional regulator that controls the expression of several virulence genes. PrfA 

is pivotal in orchestrating the bacterial response to environmental signals and ensuring the coordinated 

expression of virulence factors [105]. While these virulence factors provide a foundational understanding 

of L. monocytogenes pathogenicity, it is essential to analyze additional references and incorporate other key 

virulence gene clusters, such as Listeria pathogenicity islands (LIPI-1, LIPI-2, LIPI-3, and LIPI-4) [11,106]. 

These elements are essential for fully elucidating the complexity of L. monocytogenes virulence and its 

interaction with host systems. Expanding future studies to incorporate these components will provide a 

more comprehensive overview of the bacterium’s mechanisms in causing listeriosis. 

The study of virulence genes of L. monocytogenes is important to enhance the approach to listeriosis. 

Since the processes of bacterial pathogenicity can be described at the molecular level, researchers can 

develop specific strategies to prevent the effectiveness of bacterial actions [38]. For example, 

abstraction might temporarily inactivate enzymes or proteins that are important for bacterial 

attachment to and invasion of host cells and, thus, lower virulence. Information derived from virulence 

genes helps strategize on how to contain diseases within the populace. Improved techniques about the 

utmost view of virulence genes aid in watching and combating L. monocytogenes within the food chain 

system [107]. Moreover, it can assist in the development of vaccines that stimulate immune defenses 

against L. monocytogenes, this is because knowledge of the virulence factors enables the exclusion of 

related molecules and cells [108]. Knowledge of the roads and processes of invasiveness and 

cytopathogenicity also contribute to designing new anti-microbial compounds effective against 

particular bacterial processes [109]. 

The distribution of virulence genes of the L. monocytogenes isolates in food and human samples 

of the North African countries is depicted in Table 2. Several researches conducted in the last decade 

in Egypt aimed at detecting virulence genes in L. monocytogenes isolated from different foods. Since 

2019, there has been an increase in the detection of virulence genes, including hlyA and inlA, B, C, and 

J in L. monocytogenes from milk products, red meat, seafood, and poultry products. This rise in 
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virulence gene detection coincides with an increase in human listeriosis cases, caused by L. 

monocytogenes carrying these genes, as illustrated in Figure 4. Other virulence genes such as prfA, 

actA, and iap have also increased during this period, with milk products being the main source of these 

genes (Figure 5). Researchers have detected the virulence genes in Morocco from red meat, milk 

products, seafood, and poultry products in 2020 and 2021, the studies found high levels of the hlyA, in 

actA, inlA, inlJ, inlC, plcB, and prfA. In Tunisia, Hmaïed et al. [97] detected plcA, plcB, iap from red 

meat, seafood and human listeriosis cases in the same geographical area and time. 

Table 2. Distribution of virulence genes among L. monocytogenes in food and human 

samples across North African countries. 

Country Tested Food Samples 

or human 

Total Number of L. 

monocytogenes isolates 

Gene (%) * References 

Milk Products 

Egypt Milk products 3 hlyA (66.7), inlA (66.7) [58] 

  Meat products 7 hlyA (57), inlA (100) 

 Poultry products 1 hlyA (100), inlA (0) 

 Milk products 25 hlyA (100), inlB (0), perfA (0) [110] 

 Milk products 1 inlB (100) [111] 

 Milk 20 hylA (100), inlB (100), prfA (100) [112] 

 Raw Milk 22 hlyA (100), inlA (50), inlB (100) [65] 

 Milk  9 iap (100), hylA (56), actA (22) [67] 

 Milk 33 hylA (85), prfA (85), iap (0) [61] 

 Milk products 36 inlA (100), hlyA (97), plcA (0), inlB (42), prfA (56) [66] 

 Milk products 7 iap (100), hlyA (86), actA (71) [68] 

 Milk products 16 iap (100), hylA (81), actA (69) [69] 

 Ice cream 11 hylA (91), Iap (27), prfA (46), InlA (82), LuxS (82), 

flaA (73) 

[70] 

 Milk of dairy cows 8 inlA (88), inlB (38) [37] 

 Mastitis milk 1 inlA (100), inlB (100) 

 Feces of dairy cows 4 inlA (75), inlB (25) 

 Raw milk 3 inlA (100), hlyA (100), actA (100), prfA (100) [113] 

 Milk products 8 

 

hlyA (100), flaA (100), inlA (88), inlB (100), inlC 

(100), inlj (75) 

[48] 

 Milk, Milking 

equipment and Farm 

workers  

69 hlyA (61), prfA (61), inlA (61), inlB (61) [76] 

 Milk products 3 plcB (100), actA (100), hlyA (100), iap (100) [48] 

Morocco Milk products 6 actA (100), hlyA (83), inlJ (83), inlA (100), inlC 

(100), plcB (83), prfA (83) 

[92] 

Red Meats 

Egypt Meat products 7 hlyA (57), inlA (100) [58] 

 Animal organs 31 inlA (100), inlB (100) [114] 

Continued on the next page 
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Country Tested Food Samples 

or human 

Total Number of L. 

monocytogenes isolates 

Gene (%) * References 

 Meat 9 hlyA (100), pIcA (0), iap (0), prfA (0), inlA [73] 

 Intestine 12 hlyA (100), pIcA (0), iap (0), prfA (0), inlA (25), inlB 

(0) 

 Sheep 16 hlyA (100), iap (0) [115] 

 Minced meat 9 inlA (100), hlyA (100), actA (100), prfA (100) [113] 

 Meat products 10 inlA (100), hlyA (100), prfA (90) [50] 

 Meat products 16 iap (100), hlyA (75) [42] 

 Goat fetal liver 1 hlyA (0), flaA (0), inlA (66.7), inlB (66.7), inlC (33), 

inlj (33) 

[48] 

 Rabbit (brain) 1 hlyA (100), flaA (100), inlA (0), inlB (0), inlC (33), 

inlj (0) 

 Ewe blood 

(Septicemia) 

1 hlyA (100), flaA (100), inlA (100), inlB (100), inlC 

(100), inlj (100) 

 Processed meat 10 hylA (60) [78] 

 Beef luncheon 6 inlA (33), inlC (33), inlJ (33) [82] 

 Frankfurter beef 1 inlA (0), inlC (0), inlJ (0) 

 Meat products 23 inlA (100), inlC (100), inlJ (100) [116] 

Morocco Red meats 7 actA (100), hlyA (100), inlJ (71), inlA (71), inlC 

(71), plcB (100), prfA (100) 

[92] 

 Beef meat 10 actA (100), hlyA (100), inlJ (100), inlA (100), inlC 

(100), plcB (100), prfA (100) 

[93] 

Tunisia Meat products 1 plcA (100), plcB (100), iap (100) [97] 

Sea Foods 

Egypt Fish 4 inlA (100), hlyA (50) [44] 

 Fish container 2 inlA (100), hlyA (50) 

 Fillet fish 5 hlyA (100) [72] 

 Tilapia fish 3 inlA (100), hlyA (100), actA (100), prfA (100) [113] 

 Seafoods 3 hlyA (100), flaA (100), inlA (66.7), inlB (66.7), inlC 

(33), inlj (33) 

[48] 

 Seafoods 7 prfA (100), hlyA (100), actA (100), inlA (100),  

prs (100) 

[85] 

 Blue crab 4 inlA (100), inlC (75), inlJ (75) [43] 

 Shrimp 6 inlA (100), inlC (83), inlJ (83) 

 Bivalve mollusks 6 inlA (100), inlC (83), inlJ (83) 

 Mullet 2 inlA (100), inlC (50), inlJ (50) 

 Tuna 2 inlA (100), inlC (50), inlJ (50) 

Morocco Seafoods 1 actA (100), hlyA (100), inlJ (100), inlA (100), inlC 

(100), plcB (100), prfA (100) 

[92] 

Tunisia Seafoods 1 plcA (100), plcB (100), iap (100) [97] 

Poultry Products 

Egypt Poultry products 1 hlyA (100), inlA (0) [58] 

Continued on the next page 
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Country Tested Food Samples 

or human 

Total Number of L. 

monocytogenes isolates 

Gene (%) * References 

 Chicken carcass 24 hylA (83), iap (100), actA (71) [57] 

 Poultry meat 5 inlA (100), hlyA (100), actA (100), prfA (100) [113] 

 Poultry and poultry 

products 

9 hlyA (89), flaA (89), inlA (56), inlB (67), inlC (33), 

inlj (56) 

[48] 

 Poultry 6 inlA (100), hlyA (100), prfA (100), plcA (0) [75] 

 Table eggs 4 inlA (100), hlyA (50) [81] 

 Chicken luncheon 4 nlA (25), inlC (25), inlJ (25) [82] 

Morocco Poultry products 1 actA (100), hlyA (100), inlJ (100), inlA (100), inlC 

(100), plcB (100), prfA (100) 

[92] 

Vegetables 

Egypt Vegetables 1 inlA (100), hlyA (100) [44] 

Human 

Egypt Human stool 1 inlB (100) [111] 

 Human 5 inlA (100), hlyA (20) [44] 

 Human 5 inlA (100), inlB (100) [114] 

 Women 11 hylA (91), Iap (46), prfA (73), InlA (73), LuxS (82), 

flaA (64) 

[70] 

 Hand swab 3 hlyA (100), pIcA (0), iap (0), prfA (33), inlA (33), 

inlB (33) 

[73] 

 Stool 5 hlyA (100), pIcA (0), iap (0), prfA (0), inlA (20), inlB 

(0) 

 Stool of pregnant 

women 

2 inlA (50), inlB (50) [37] 

 Woman blood 

(Septicemia) 

1 hlyA (100), flaA (100), inlA (100), inlB (100), inlC 

(100), inlj (100) 

[48] 

 Human 5 inlA (40), hlyA (40) [81] 

 Human stool 1 inlA (0), inlC (0), inlJ (0) [82] 

Tunisia Human 5 plcA (100), plcB (100), iap (100) [97] 

 

 

Figure 4. Studies where hlyA and inlA, inlB, inlC, and inlJ in L. monocytogenes were 

detected in foods and humans in Egypt. 
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Figure 5. Studies where prfA, actA, and iap in L. monocytogenes were detected in foods 

and humans in Egypt. 

The possible reasons and causes for the growing incidence of virulence genes, techniques of 

diagnosis, and surveillance activities have been enhanced to enable more frequent and efficient 

identification of virulence genes in foods. Such differences in food handling, processing, and storage 

may lead to the survival and multiplication of L. monocytogenes hence increasing its chances of getting 

into the food chain. The potential development of antibiotic resistance in L. monocytogenes could make 

it more resilient and harder to eliminate from food products, leading to higher rates of contamination. 

Globalization arising from the global trade and improved supply chain means that there is a wider 

dispersal of contaminated foods and this may lead to extensive circulation of virulence strains of L. 

monocytogenes. Temperature and relative humidity, which are some of the factors that determine the 

growth and spread of L. monocytogenes may change in the course of food production and their natural 

ecosystems. These factors together may explain the observed increase in virulence gene detection and 

the corresponding rise in human listeriosis cases. 

This study shows that the increase of the virulence genes in L. monocytogenes obtained from food 

sources and its subsequent detection in isolates of human listeriosis suggests that there is a need for 

constant monitoring and improved food safety practices. Addressing the factors contributing to the 

spread of this pathogen is crucial to mitigate public health risks and reduce the incidence of listeriosis. 

6. Antibiotic resistance 

Antibiotic resistance in L. monocytogenes is a growing concern globally, including in North 

Africa [51,117]. Commonly used antibiotics for treating listeriosis include gentamicin, ampicillin, and 
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trimethoprim-sulfamethoxazole [118–120]. However, resistance to these antibiotics has been reported 

in various studies [121,122]. Ampicillin and penicillin are traditionally the first line of treatment for 

listeriosis, as resistance to these antibiotics in L. monocytogenes remains relatively rare [123]. However, 

isolated cases of resistance have been reported, necessitating close monitoring [121,124]. Gentamicin 

is often used in combination with ampicillin, and resistance to gentamicin has also been observed [123]. 

Resistance to tetracyclines (such as doxycycline), macrolides (such as erythromycin), and 

trimethoprim-sulfamethoxazole has been reported in studies across North Africa [41,125]. This 

resistance is concerning as these antibiotics are sometimes used as an alternative treatment for 

listeriosis. The presence of multidrug-resistant (MDR) L. monocytogenes strains has been identified, 

complicating treatment options. These strains often show resistance to multiple antibiotics, including 

those mentioned [57,126]. 

Some genetic relatedness has been observed in North African investigations between invasive 

resistant strains of Salmonella, Campylobacter jejuni, and pathogenic Escherichia coli isolated from 

humans and those from foods [10,11]. These facts mean that the analyzed food production systems are 

involved in the spread of multidrug-resistant bacteria [127,128]. Additionally, investigations have 

established the prevalence of resistance determinants such as β-lactamases in both Salmonella as well 

as the pathogenic E. coli within the same region, which are known to confer resistance to β-lactam 

antibiotics [129,130]. The same may apply to L. monocytogenes even though it has been less 

investigated, this pathogen has been known to be frequently recovered at different stages along the 

food processing and production. This stresses the ability of L. monocytogenes to acquire and transfer 

resistance determinants contributing to the need to establish more on the role of L. monocytogenes in 

AMR within the region [131,132]. 

According to Zakaria and Sabala [57], poultry meat can be a source of antibiotic-resistant L. 

monocytogenes strains, high resistance was detected in 24 isolates obtained from poultry meat, 

penicillin (17 isolates, 70%), tetracycline (22 isolates, 91.7%), and amoxicillin-clavulanic acid (14 

isolates, 58%). There was less resistance to erythromycin (5 isolates, 20%), gentamicin and 

vancomycin (7 isolates, 29%), and chloramphenicol (4 isolates, 17%). In another study by Elsayed et 

al. [61], the strains obtained from Egyptian dairy cattle farms showed phenotypic resistance to most of 

the antibiotics tested, except for netilmicin and vancomycin. The strains from animal samples 

demonstrated high resistance to amoxicillin (95.2%, 80 of 84) and cloxacillin (92.9%, 78 of 84). In 

contrast, the strains from environmental samples exhibited significant resistance to cefotaxime 

(86.95%, 20 of 23). Additionally, 25 multi-antibiotic resistance patterns were identified in L. 

monocytogenes strains. All strains had a multi-antibiotic resistance index ranging from 0.22 to 0.78 and 

contained antibiotic resistance genes, including extended-spectrum β-lactamase genes (blaCTX-M [92.7%] 

and blaDHA-1[66.4%]), quinolone resistance genes (qnrS [91.2%], qnrA [58.4%], parC [58.4%], and 

qnrB [51%]), macrolide resistance genes (erm[B] [76.6%], erm (C) [1.5%], and msr (A) [27%]), 

trimethoprim resistance gene (dfrD [65.7%]), and tetracycline resistance genes (tet (M) [41.6%], tet 

(S) [8%], and int-Tn [26.3%]).   

Saleh et al. [44] highlighted that many commonalities were observed among locally resistant L. 

monocytogenes isolates from tilapia, catfish, fish containers, cauliflower samples, and human samples. 

Among the listeriosis cases in humans, two isolates showed multi-antibiotic resistance, the first 

member to gentamicin, amoxicillin-clavulanic acid, tetracycline, ciprofloxacin and the second member 

to gentamicin, sulfamethoxazole-trimethoprim and ampicillin. Further, two other human isolates are 

resistant to gentamicin and ampicillin. In the same study, several isolates demonstrated resistance to 
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multiple antibiotics across sources: From hand swabs, one isolate was resistant to ampicillin, whereas 

one from a fish container swab was resistant to both ampicillin and tetracycline. One tilapia sample 

was resistant to gentamicin, sulfamethoxazole-trimethoprim, and ampicillin; another from tilapia was 

resistant to ampicillin alone; one from catfish showed resistance to both tetracycline and ampicillin; 

another from catfish was resistant to gentamicin and ampicillin; and one isolate from vegetables 

exhibited resistance to sulfamethoxazole-trimethoprim and ampicillin. 

Antibiotic-resistant L. monocytogenes in North Africa have an impact on health and food safety. 

In this regard, enhanced monitoring and surveillance systems are necessary for establishing the levels 

of this pathogen and taking into account the resistance levels detected. Measures such as proper food 

hygiene and sanitation rules and policies formulated in admitting centers can go a long way in 

controlling contamination and potential infections. Furthermore, the role of educating the public and 

officials on the responsible usage of antibiotics in the treatment of human and animal diseases is 

essential to curb the spread of resistance. The threat of antibiotic resistance in L. monocytogenes in 

North Africa is gradually evolving, which necessitates the collaboration of health organizations, food 

safety departments, and the agricultural industry. Further investigations and monitoring of the literature 

are also required to determine the existing resistance trends and to design successful containment 

measures for this realized public health menace. 

7. Conclusions 

In summary, in this elaborate discussion, we establish the necessity of enduring research and 

monitoring of L. monocytogenes infection pathways in North Africa with a particular focus on milk 

products as a primary source. The rise of virulence genes in L. monocytogenes from dairy products and 

their subsequent identification in human L. monocytogenes isolates highlights that dairy products are 

the main sources of this pathogen in North Africa. Moreover, the discussion on antibiotic resistance 

underscores the urgency for enhanced surveillance, prudent antibiotic practices, and the development 

of comprehensive strategies to combat antimicrobial resistance in L. monocytogenes strains. It is 

crucial to take preventive steps to approach potential dangers that threaten the population’s well-being 

and observe the efficacy of the treatment methods used in eradicating bacteria. Combating these 

challenges as a single entity supports the integrated initiatives towards enhancing improved health and 

safety conditions in the North African nations. Thus, it is crucial to establish a fixed system for 

pasteurizing milk on farms and ensure it is packaged cleanly and quickly immediately after 

pasteurization. Moreover, establishing robust surveillance networks is crucial for effectively 

controlling infections through a multi-sectoral approach that integrates laboratory diagnostics, 

epidemiological investigations, collaborative efforts, public awareness campaigns, and capacity 

building. Such an approach is essential for preventing diseases caused by L. monocytogenes within the 

region's populace. By leveraging these strategies, North African countries can mitigate the impact of 

L. monocytogenes infections, enhancing overall public health outcomes and ensuring the safety of food 

supplies and environments. 
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