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Abstract: This study aimed to explain the crop yield prediction system as a way to address the 

challenges posed by global warming and climate change in Saudi Arabia, while also taking into 

account socio-economic factors. Machine learning models were trained using crop yield prediction 

data to provide recommendations for future crop production. Climate change poses significant 

challenges, with rising temperatures and extreme weather events being increasingly evident. 

Agriculture, contributing 14% of greenhouse gas emissions, plays a crucial role in exacerbating this 

issue. This study introduced a crop yield prediction system leveraging machine learning models trained 

on comprehensive datasets. Recommendations derived from these models offer insights into optimal 

crop rotation strategies, particularly relevant for regions like the Kingdom of Saudi Arabia. 

Collaboration between farmers and governments, informed by data-driven approaches, is crucial in 

this endeavor. Utilizing a customized dataset, this study analyzed a machine learning model performance 

and identified optimal hyperparameters. XGBoost ensemble emerged as the top performer with an R2 

score of 0.9745, showcasing its potential to advance crop yield prediction capabilities. By integrating 

machine learning into agricultural decision-making processes, stakeholders aim to enhance crop 

production and soil health and contribute to climate change mitigation efforts. This collaborative effort 

represents a significant step toward sustainable agriculture and climate resilience in Saudi Arabia.  
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1. Introduction 

Climate change poses one of the most significant challenges confronting humanity. The 

repercussions of climate change are becoming more obvious day after day [1]. The average 

worldwide temperature and precipitation levels are predicted to rise due to climate change (by 1.4 to 

5.8 °C by 2100) [2]. Droughts, storms, flooding, and wildfires are becoming increasingly severe and 

frequent [3]. If nations with limited water resources cannot adapt, there will be significant impacts on 

both the quantity and quality of water, posing serious risks to public health. Global ecosystems are 

evolving, as are the natural and agricultural resources on which humans rely. According to the 2018 

UN report on climate change, catastrophic consequences await if worldwide greenhouse gas emissions 

are not halted within the next thirty years [4]. Yet, each year, these emissions increase. 

Approximately 14% of greenhouse gas (GHG) emissions are attributed to agriculture [5]. As 

plants absorb carbon dioxide from the atmosphere, this statistic may appear unexpected. However, 

modern industrial agriculture encompasses more than merely plant cultivation. Initially, to release 

stored carbon, the area undergoes deforestation. Subsequently, tilling disrupts soil-dwelling organisms 

that are crucial for sequestration by exposing topsoil to the atmosphere and releasing carbon trapped 

in soil aggregates. Lastly, nitrogen-based fertilizers must be reintegrated into the system due to the 

depletion of soil nutrients resulting from these farming practices. Approximately 2% of the world’s 

energy is used in the vast quantities required to synthesize these fertilizers [6]. Furthermore, some of 

this nitrogen is transformed into nitrous oxide [7], a greenhouse gas that is around 300 times more 

powerful than CO2, while the remainder is absorbed by plants or held in the soil. 

Farmers are increasingly seeking sophisticated technologies that enable them to labor at scale 

while adapting to their land’s demands. This strategy is commonly referred to precision agriculture. 

Precision agriculture can minimize soil carbon emissions while increasing crop yields. There are 

numerous other ways in which machine learning might contribute to precision agriculture. Within the 

field of artificial intelligence (AI), machine learning is the study and creation of computer systems that 

learn automatically from data and experience. Machine learning allows computers to learn from data 

and develop predictions or judgments without the need for explicit programming. Irrigation systems 

can conserve water and reduce pests that thrive in high-moisture environments [8]. Machine learning 

may also aid in disease diagnosis, weed identification, and soil sensing [9–11]. Machine learning may 

aid in agricultural production prediction [12] and macroeconomic models, assisting farmers in 

determining what to plant at the start of the season [13]. 

Climate change mitigation includes lowering emissions as well as adaptation (preparing for 

unavoidable repercussions). Both are intricate concerns. To reduce GHG emissions, improvements 

must be made to electrical systems, transportation, structures, industry, farming, and land use practices. 

Adaptation necessitates endurance and disaster management planning, as well as knowledge of climate 

and severe occurrences. Such a wide range of issues might be viewed as an opportunity—there are 

many methods to make a difference. In the past few years, AI has emerged as a significant tool for 

technological advancement. Despite the growing number of initiatives using machine learning and AI 

to address social and global problems [3], there is still a need for a concentrated effort to determine 

how these technologies may be best deployed to combat climate change. Many machine learning 

practitioners want to intervene but are unsure how. On the other hand, several sectors have started 

actively soliciting feedback from the AI community. 

Climatic factors include rainfall and temperature. These abiotic components, together with 
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pesticides and soil, are environmental factors that influence plant growth and development. Rainfall 

has a dramatic effect on agriculture. For this project, information on total rainfall per year was gathered 

from the World Data Bank. Crop rotation, which involves growing different crops in the same area at 

different times, increases soil health as many plants utilize different mixes of nutrients in the soil. 

Rotating crops helps to maintain an even amount of nutrients, which is key for optimal soil health. 

Studies have shown that these practices not only capture more carbon dioxide from the air but also 

help farmers improve their crops in terms of health and yield, enabling them to grow more nutrient-

dense food. 

This research answers the question of how can machine learning-based crop yield prediction 

systems aid in optimizing crop rotation and mitigating climate change impacts in Saudi Arabia. 

Reduced tillage intensity or no tillage at all and plant residue preservation have the potential to help 

mitigate climate change by lowering soil GHG emissions [14]. Hence, this study proposes a crop yield 

prediction system aimed at addressing the challenges posed by global warming and climate change, 

while also taking into account socio-economic factors. Machine learning models were trained using 

crop yield prediction data to provide recommendations for future crop production. These 

recommendations offer valuable insights for implementing crop rotation strategies tailored to specific 

soil conditions. Emphasizing the Kingdom of Saudi Arabia, collaboration between farmers and the 

government can facilitate the adoption of reformed agricultural practices and policies informed by the 

proposed system. The main contribution of this study lies in the development and training of a resilient 

machine-learning model. Its purpose is to accurately forecast crop yields for forthcoming seasons, 

facilitating farmers in seamlessly rotating their crops between seasons without the need for tilling. This 

collaborative effort aims to enhance crop production and soil health and contribute toward mitigating 

global warming. 

The remainder of the paper is structured as follows. Relevant works are discussed in Section 2. 

The dataset used is described in Section 3. The methodology of the study is presented in Section 4, 

along with an explanation of the regression and data preparation methods applied. The acquired 

regression findings are shown, and their reliability is justified in Section 5. The study’s theoretical and 

practical implications are presented in Section 6. In conclusion, Section 7 offers insights into the study, 

a summary of the whole work, and suggests areas for further investigation. 

2. Literature review 

Since the beginning of the 1980s, because of the significant rise in carbon dioxide levels and other 

trace gases in the atmosphere, several climatologists projected that future decades would see major 

global warming. As an initiative to deal with such a problem, the United Nations Environmental 

Program (UNEP) and the World Meteorological Organization (WMO) jointly established the 

Intergovernmental Panel on Climate Change (IPCC) to examine and evaluate the scientific, technical, 

and socioeconomic information pertinent to the understanding of human-created climate change, its 

possible effects, and options for adaptation and mitigation [15].  

2.1. Impact of climate change on agriculture 

The impact of climate change and variability on agriculture has been well documented in the 

literature. The prevalent belief is that variations in temperature and precipitation will cause changes in 
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the land and water regimes, which will then have an impact on agricultural output [16]. 

Trends of increasing average temperature and more volatile rainfall patterns have been found by 

the National Academy of Science (2001). Additional evidence from [17] indicates that global climate 

systems are changing more quickly than anticipated, increasing the likelihood of more severe and 

abrupt changes. For the main crops (wheat, rice, and maize) in temperate and tropical regions, climate 

change without adaptation is likely to have an adverse effect on production, as local temperature has 

increased by 2 °C or more than late 20th century levels, according to the Fifth Assessment Report of 

IPCC (2014) [18]. Another prediction suggests that the average global temperature will rise by 2.4 °C 

between 1990 and 2100, with a 95% possibility that the increase will be between 1.0 °C and 4.9 °C [19]. 

Other studies expect that the average global temperature may rise by 0.3 to 1.3 K during the coming 

30 years [20], which will ultimately have an adverse impact on the agricultural output. 

It is believed that most high temperatures and global warming that we are going to experience 

during the next 40 years will be due to emissions that have already happened. This means that, in the 

longer term, the pace and degree of global warming heavily rely on currently occurring and near-future 

emissions. There is a greater than 50% chance that the increase in temperature over time will exceed 

60 °C. The impacts of climate change amount to 5% of the global GDP, which grows regionally 

by up to 20%, and such climate change is anticipated to represent an annual loss in the future [21]. 

More importantly, several studies indicate that the impact of global warming and climate change 

is different from one context to another, making it important to focus on a particular context. In this 

study, the focus is on Saudi Arabia. 

2.2. The impact of climate change on agriculture: the case of Saudi Arabia 

Saudi Arabia has been emitting more CO2 on a consistent basis, which contradicts the global 

mandate for the mitigation of GHG for sustainable development. The United Nations Climate Change 

Conference, or COP 21, held in 2015, strengthened the global movement to keep global warming to 

less than 2 °C compared to pre-industrial levels. This challenging objective necessitates a significant 

reduction in GHG emissions, especially CO2. According to the most recent estimates from 2022, the 

Kingdom is currently one of the largest emitters of greenhouse gases in the world, and its emissions 

reached more than twice the G20 average [22]; given the rate at which emissions are increasing, this 

is likely to rise quickly. 

The climate of Saudi Arabia is hot, arid, and harsh, and any slight change in climate can have a 

significant impact on agriculture and water resources and availability. Keeping in mind the importance 

of this possible danger, an assessment study was conducted in [23]. Based on the analysis of four 

decades’ data, authors reported that a decrease in precipitation and an increase in temperature could 

have a major adverse impact on water supplies and agriculture. 

Saudi Arabia is known and considered to be one of the top three date-producing nations in the 

world. According to the latest report (2020) of The Ministry of Environment, Water, and Agriculture 

(MEWA), date manufacturing in Saudi Arabia reached 1.54 million tons in 2020. Nevertheless, despite 

the enormous government support and awareness of date palm cultivation in the country, exports of 

dates have not reached the expected level because the date-productivity level is still low compared 

with other date-producing countries [24]. This decline could be due to several factors, such as insect 

pests and plant diseases as well as environmental stress factors including salinity, drought, and 

temperature extremes due to climate change. Hence, it can be anticipated that climate change will have 
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a significant influence on Saudi Arabia’s agriculture and food production, particularly through reduced 

water availability and direct effects on crop yields. For instance, during the 2010 season, several 

farmers recognized the strange early flourishing of date palms as a direct result of climate change [25]. 

However, to deal with such changes, according to the regional competitive advantage, the 

Kingdom considered the optimization of the cropping model to adapt to the unfavorable effects of 

climate change [26]. 

With the current harsh climate challenges and water scarcity in the production of many important 

crops in Saudi Arabia, such as dates, and to penetrate the business of sustainable agriculture, the 

Kingdom’s agricultural sector is going through a period of great change, trying to develop new 

technologies and farming techniques that are suitable for dry climates, as reported by the Sustainable 

Agriculture Development Research Centre (SADRC) [27]. It is important to note that, since dates are 

one of Saudi Arabia’s most important crops, it is urgent to investigate further research options in this 

area [28]. More importantly, given the high sensitivity of the agricultural sector to climate change, applying 

adaptation strategies rather than just mitigation ones is crucial to the country [29]. 

2.3. Climate change adaptation strategies 

Many alternative working definitions of climate adaptation have naturally emerged as a result of 

the broad and diversified interest in adaptation. Adaptation is defined by IPCC as “initiatives and 

measures to reduce the vulnerability of natural and human systems against actual or expected climate 

change effects” [17] and “the adjustment in natural or human systems in response to actual or expected 

climatic stimuli or their effects, which moderates harm or exploits beneficial opportunities” [30]. 

2.3.1. Adaptation techniques to climate change in Saudi Arabia 

The adaption techniques that are suitable to climate change worldwide have been investigated by 

some researchers, while other studies have recommended some techniques that can be used in Saudi 

Arabia in particular. 

The hydroponic green fodder production technique has been reported to only need between 2% 

and 10% of the water needed to grow the same amount of food in a soil culture [31]. Furthermore, 

compared to fodder produced in field circumstances, the hydroponic technique requires only 3%–5% 

of water to produce the same amount [32]. Hence, a hydroponic system is a promising technique to 

produce food using a lower amount of water, with particularly great potential in countries where there 

is water scarcity in agricultural production, such as Saudi Arabia. 

Possible adaptation strategies to achieve food security and self-sufficiency have been examined 

by [33]. Authors suggested that the agricultural industry and the government should support and be 

willing to implement innovative water-saving technologies such as hydroponics, greenhouse farming, 

and seawater harvesting. The authors also emphasized the significance of the extension agent’s role in 

promoting these technologies and educating farmers about effective water-saving agricultural 

techniques. In [23], the potential impacts of climate change and global warming on Saudi Arabia’s 

agricultural industry and water supply were investigated using general circulation models (GCM). The 

findings suggested that a rise in temperature and a fall in precipitation might be damaging for the 

Kingdom’s agricultural and water supply. Some adaptation strategies to climate change that could be 

used in Saudi Arabia were also suggested. First, the use of rechargeable or replenished deep aquifers, 
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which could be done through well-built holes that link reservoirs with the water tables of the aquifers. 

Second, more effective irrigation methods and systems including sprinklers and drip irrigation. To 

support such an adaptation method, they referred to a practice from some areas in the US with similar 

climate to Saudi Arabia (Arizona and Nebraska) where the usage of groundwater pumping for 

irrigation has been replaced with more efficient irrigation systems [34]. Third, an increase in the usage 

of greenhouse farming, as the total percentage of such greenhouses to total agricultural production is 

considered to be very low in the Kingdom. Greenhouses are very effective in using much less water 

due to lower evaporation rates. Fourth, stopping overgrazing was suggested, as it leads to soil erosion 

and a reduction in soil quality. Authors also recommended applying stricter water usage policies in the 

Kingdom. The final recommendation was that more research on climate change and agriculture is 

needed in Saudi Arabia, which increases the importance of the current study. The findings of our study 

are expected to support the country’s sustainability and provide policymakers with some 

recommendations to reduce the impact of climate change on their agricultural productions; all of which 

will support the achievement of Vision 2030 goals, which have agricultural sustainability at its top list. 

[29] evaluated how climate change affects agricultural crop production using historical data in 

Saudi Arabia. The main findings show that an increase in the temperature by 1 °C results in a 7%–25% 

reduction in crop yields. Due to this high risk of future yield production in the Kingdom, they identified 

some adaptation strategies. Particularly, as an agronomical and technological adaptation, they 

suggested planting and growing drought-tolerant crops (such as planting dates palms), using mixed 

cropping and intercropping, as well as the use of sustainable agriculture. They also suggested the use 

of micro-irrigation techniques including drip and sprinkler irrigation, which will help in conserving 

the water and using it more efficiently. They also recommended that the Kingdom urgently needs to 

adopt modern agricultural technology such as hybrid varieties, less water-intensive crop varieties, and 

breeding for stress tolerance. Additionally, the authors noted the high need to provide farmers with better 

loans/credit delivery and crop insurance to encourage them to implement climate adaptation strategies. 

2.3.2. Socioeconomic factors of farmers and their impact on climate change in Saudi Arabia 

There is a serious need to increase the awareness of sustainable agriculture practices among 

farmers [35]. Therefore, [36] suggested that the introduction of successful sustainable agriculture 

programs would need the support of the Extension Service and its employees. [37] also recognized the 

need to develop sustainable agriculture programs to educate and train farmers on sustainable 

agriculture technologies. Sustainable agriculture is a production system that has the possibility of 

addressing many constraints and issues faced by resource-poor farmers while also being widely 

accepted by society. It refers to how agriculture can, over time, contribute to the general welfare of the 

communities by ensuring that they have access to enough food and other goods and services in ways 

that are financially feasible, socially acceptable, and environmentally sound. Social sustainability, on the 

other hand, refers to the quality of life of both farmers and the communities in which they operate [38]. 

From a socioeconomic perspective, the focus primarily lies on the examination of the social, 

political, and economic aspects pertinent to specific individuals or social groups within the society [39]. 

Generally, the socioeconomic approach focuses on identifying the individuals’ and communities’ 

adaptive capabilities based on their inner characteristics such as education, gender, health status, 

wealth, access to technology and information, political power, and formal and informal (social) capital. 

The differences in strength levels between localities are caused by variations in these elements 
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concerning climate change. For instance, agriculture is a primary source of income for farmers. When 

agricultural productivity and output are reduced, their earnings also decrease. Hence, the sustainability of 

the farmers’ social and economic systems is impacted by all of these elements, either directly or indirectly. 

As documented by the 2030 strategic plan of the Ministry of Environment, Water, and Agriculture 

(MEWA), there is a significant lack of knowledge in Saudi Arabia regarding how climate change 

affects people’s livelihoods and the need to build local capacity to adapt to it [40]. Some studies aimed 

to fill this gap. For instance, [41] took a bottom-up approach by investigating how farmers in Southern 

Saudi Arabia (Jazan) with different characteristics perceive climate change. They also investigated the 

farmer’s perception of the role of extension services in improving their capacity to adapt to climate 

change. Based on interviews with 164 farmers in the Jazan region, they found that farmers who believe 

that climate change is due to natural change are more than those who believe that climate change is 

due to human activities. More than 70% of farmers are concerned about insects and the prevalence of 

weeds on their farms. They also found that farmers who are more inclined to believe in climate change 

also agree with the importance of extension services in fostering capability. In terms of the variables 

that influence the farmers’ beliefs on climate change, [42] found that loan availability, use of extension 

services, membership in agricultural cooperatives, age, soil fertility, and farm size all had a big impact 

on farmers’ views on climate change. However, their results show that loan availability is the only 

statistically significant factor that explains the variation in farmers’ concerns. They suggested that 

there is a high demand for actions to be taken to enhance farmers’ capability to manage climate 

variability. [43] empirically investigated how different socioeconomic indicators influenced farmers’ 

worries and highlighted several measures to enhance community capacity for effective adaptation in 

Jazan, Saudi Arabia. Results from ordered logit models revealed a significant association between 

some different variables. The farmers’ level of income and age were significantly and positively 

associated with their concerns about drought. The level of income and education of farmers had a 

negative association with their worries about insect infestations. A significant inverse association 

between income level and farmers’ worries about a rise in disease frequency was also evident. 

Surprisingly, farmers who have access to credit facilities reported higher concern regarding all three 

effects of climate change-related concerns (drought, insect infestation, and diseases). In contrast, the 

availability of information about climate change greatly lowered farmers’ worries about increased 

disease occurrence and insect infestation. Aside from climate change worries, farmers identified three 

key capacity-building initiatives as effective for enhancing climate change adaptation, including the 

use of the information and communication technologies (ICT) tools to raise farmers’ awareness of 

climate change issues and pertinent adaptation practices, capacity development of extension personnel 

to improve their knowledge, and connecting smallholder farmers with agricultural researchers to create 

farm-based climate adaptation strategies [43]. [44] investigated the farmers’ socioeconomic 

characteristics impact on their perceptions and awareness about the negative effects of pesticides on 

the environment. Applying a questionnaire to 204 farmers in Dawadmi Province of Saudi Arabia, they 

found that 5% of farmers depend less on agricultural extension and instead look for information from 

other reliable sources. The farmers are eager to learn about the harmful impacts of pesticides on the 

ecosystem. The study additionally demonstrated that spraying with axis sprayers or portable sprayers 

is the most typical method of applying pesticides. The authors suggested that there is a high need for 

establishing extension programs on proper and secure pesticide handling and application techniques. 

Moreover, similar to [43], they recommended a connection between the farmers and the agricultural 

researchers.  
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[44] investigated the climate change and the global warming impact on date production in the Al-

Hassa region of Saudi Arabia, which is one of the largest date-producing regions with around 3 million 

date palms. Based on numerous models [i.e., general circulation models (GCM)], regional climate 

models (RCM), and emission scenarios on the climate in Al-Hassa, the author found that climate 

change effects will put pressure on date production in the Al-Hassa region by the end of the 21st 

century (2071–2100). [45] also argued that water shortage and a labor force lacking knowledge and 

skills are the two key resources that prevent farms from surviving. The author suggested that to 

preserve date production in Al-Hassa, adaptive and mitigating action must be taken. Particularly, [45] 

suggested that new technology, more productive farming methods, financing for ongoing research and 

development, and more effective regulations must be implemented. It was also recommended that a 

multilevel governance framework should be in place to promote procedural equity, helping to 

overcome institutional and cultural barriers leading to a higher rate of adoption. All stakeholders, 

including farmers, the community, and all governmental levels, should be involved. Obstacles and 

limits related to the environment that prevent the adoption of new practices may exist, but they can be 

overcome with enough assistance, education, and awareness [45].  

[41] examined the farmers’ awareness of environmental agri-environmental legislation that 

intends to protect the environment. They particularly tested Saudi farmers’ perceptions of several 

components of environmental protection legislation—knowledge of legislation, penalties for 

violations, and the negative impact of non-compliance. The study was based on interviews with 312 

farmers of Al Kharj governorate of Riyadh region in the center of Saudi Arabia. They found that around 

20% of the farmers have an awareness of the environmental regulations. Also, they found that among 

the various types of regulations, farmers’ knowledge of pesticide regulations received the lowest score. 

Additionally, knowledge of penalties had a lower score than knowledge of legislation and negative 

environmental impacts. They recommended that policymakers should address the issue of low 

legislative awareness by focusing on each component of legislation. Particularly, they recommended 

that integrated extension messages should be developed, in which the meaning of each piece of 

legislation, the penalties associated with it, and the environmental risks associated with non-

compliance are explained. [31] criticized the massive production of wheat in the Kingdom in recent 

years, highlighting that such a surplus in the production of wheat not only drained the Kingdom’s water 

resources, which are primarily drawn from non-renewable aquifers, but also necessitated the use of 

massive amounts of chemical fertilizers to boost yields, which was not sustainable. They claimed that 

this type of agricultural production does not meet the definition of sustainability. Hence, they 

recommended that only segments that are sustainable and capable of improving crop yields and rural 

livelihood of farming communities should be prioritized by the Kingdom. Particularly, they 

recommended that greenhouse agriculture, aquaculture, poultry, dairy production, and technology to 

produce more diverse crops with less water must all be prioritized. More importantly, they 

recommended that there is a growing need to educate farmers in Saudi Arabia in the use of agricultural 

input as efficiently as possible and view natural resources such as land and water as non-renewable. 

The literature review shows that researchers recognized the importance of applying adaptation 

strategies in Saudi Arabia to mitigate the impact of climate change on agriculture. However, most of 

the studies only provide recommendations for some adaptation techniques and very limited studies 

have empirically examined their effects. Moreover, studies showed that the socioeconomic factors of 

farmers and their awareness of climate change do have an impact. However, the socio-economic 

factors are very wide and not all factors have been investigated. More importantly, studies that 
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examined such an aspect are very limited in the first place. Hence, the current study aims to shed light 

on these areas. Moreover, since the Vision of 2030 is giving significant attention to the growth of the 

non-oil sector, this study is considered to be an essential opportunity for farmers and stakeholders (i.e., 

government) to jointly work on the reformation of agricultural practices and policies. 

3. Dataset description 

A standardized benchmark dataset for agricultural research has yet to emerge, primarily due to 

regional variations, crop types, climates, and irrigation techniques [46,47]. Hence, researchers in this 

field employ datasets customized to their research objectives, aligning precisely with the specific 

purposes of their studies. Therefore, in this study, the crop yield prediction [48] dataset was used, 

where pesticides and yield data were collected by FAO (Food and Agriculture Organization), and 

rainfall and average temperature were sourced from the World Bank Open Data. The final dataset was 

cleaned and merged to include pesticides, yield, rainfall, and average temperature in one file. This 

dataset comprises 10 of the most consumed crops worldwide: maize, potatoes, rice/paddy, sorghum, 

soybeans, wheat, cassava, sweet potatoes, plantains, and yams [48]. Among these, following thorough 

cleaning and integration, the finalized dataset spans 23 years, encompassing 101 nations from 1990 to 2013.  

Table 1 displays the variables used in this dataset along with brief descriptions. The variable 

“ha/hg yield” was utilized as the label. The data in this study was collected from 101 countries. It 

encompasses numerous Middle Eastern and North African (MENA) nations, such as Bahrain, Saudi 

Arabia, Iraq, Egypt, Turkey, Libya, Algeria, and Morocco. These countries have been chosen for their 

weather characteristics, close to Saudi Arabia’s weather. Figure 1 illustrates that there is no noticeable 

correlation among the columns of the dataset variables. Table 2 shows a sample of the crop yield 

prediction dataset, where each row represents a specific entry in the dataset with data recorded for a 

particular combination of variables. 

Table 1. Variables description of the dataset. 

Variable  Description Source 

Area Area based on different nations [49,50] 

Item Planted crops name [49,50] 

Avg temp Average temperature in Celsius [49,50] 

Pesticides tons Pesticides used in tons [49] 

Average rainfall per year Average rainfall per year [50] 

Year Planted crops time (1990–2013) [49,50] 

hg/ha yield Production value of crops yield in 

hectogram per hectare (Hg/Ha) 

[49] 
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Figure 1. Correlation between dataset columns. 

Table 2. A sample of crop yield prediction dataset. 

Index Area Item Year Hg/ha_yield Ave. rainfall. 

mm/year 

Pesticides 

tons 

Ave. Temp 

24320 Saudi Arabia Potatoes 2012 253,233 59.0 4996.2 26.83 

24321 Saudi Arabia Sorghum 2012 26,056 59.0 4996.2 26.83 

24322 Saudi Arabia Wheat 2012 59,254 59.0 4996.2 27.02 

24323 Saudi Arabia Maize 2013 61,024 59.0 5412.5 27.57 

24324 Saudi Arabia Potatoes 2013 256,547 59.0 5412.5 27.57 

4. Methodology 

Figure 2 illustrates the general approach for describing the impact of climate change on crop yield 

prediction. First, the dataset was extracted from FAO and World Data Bank. Furthermore, the Saudi 

Arabia area data were extracted from the primary dataset [48] and underwent a thorough preprocessing 

procedure to refine its quality and ensure its relevance to the model’s convergence. This preprocessed 

data was then used for training multiple machine learning models to forecast crop yield. This way, 

precise predictions regarding the yield of all ten crops can be obtained. This will provide farmers with 

invaluable insights into their crop rotation strategies. By leveraging these predictions, farmers can 

optimize their crop production cycles. 
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Figure 2. The general scheme outlining the proposed system. 

4.1. Data preprocessing 

Eighty percent of the crop yield prediction data was used for training, with the remaining portion 

used for testing. The categorical variables of two columns (Item and Area) in the dataset were initially 

encoded using one-hot encoding. Categorical data consists of label values rather than numerical values. 

In many cases, the number of potential values is limited to a specific set, such as the values for objects 

and nations. Many machine learning and deep learning algorithms cannot directly process labeled data, 

requiring all input and output variables to be numerical. Hence, categorical data were translated into a 

numerical format. One-hot encoding facilitates the conversion of categorical data into a form usable 

by machine learning and deep learning algorithms, thereby enhancing prediction accuracy. 

The dataset contains features with widely varying magnitudes, units, and ranges. Features with 

high magnitudes exert a greater influence on distance estimates compared to those with low 

magnitudes. To mitigate this effect, it was necessary to standardize all characteristics to the same 

magnitude, a process achieved through feature scaling. As the dataset has a small standard deviation, 

the Min-Max scaling algorithm was chosen for scaling. The scaling algorithm transformed the features 

into a range of 0 to 1. This process involves subtracting the mean of the column from each value and 

then dividing by the range: 

𝑥𝑖−min(𝑥)

max(𝑥)−min(𝑥)
          (1) 

4.2. Crop yield prediction 

Several machine learning algorithms were trained on the crop yield prediction dataset. These 

include random forest (RF), K-nearest neighbor (KNN), XGBoost ensemble, decision tree (DT), and 

a Bagging regressor ensemble meta-estimator. The models were trained and tested using optimal 

hyperparameter values. Fine-tuning was conducted throughout the manual search process, selecting 

various combinations of hyperparameter values to assess the models’ performance during training. The 

hyperparameters tuned included the number of estimators for the Bagging regressor, random forest 

regressor, and XGBoost ensemble model, the max-depth value for the decision tree regressor, and the 

K-value for KNN. The peak performance achieved through fine-tuning is illustrated in Figures 4–6. 

Jupyter Notebook version 7.2 was used to train the models, utilizing Python version 3.12.0 and an 

NVIDIA T4 GPU. 
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4.2.1. Random forest regressor 

A random forest is a meta-estimator that uses averaging to increase prediction accuracy and 

manage over-fitting. It fits several decision tree regressors on different subsamples of the dataset. The 

optimal split method is employed by forest trees. Individually, every decision tree shows a considerable 

variance. However, the variance decreases by combining every decision tree simultaneously. This is 

due to the fact that every decision tree is meticulously trained on a particular sample of data, 

guaranteeing that the result is reliant on the combined predictions of several decision trees rather than 

just one. 

Figure 3 illustrates the process where the primary training dataset is split into n samples using 

bootstrapping. A random forest of decision trees Tk was grown to the bootstrapped data by recursively 

repeating the following processes for each terminal node until the minimal node size was achieved: 

1. Select ri variables arbitrarily from the R-set of training variables.  

2. Select the optimal variable/split point from the ri.  

3. Divide the node into two daughter nodes. 

The mean of the results from each individual decision tree is calculated to obtain the final output 

for regression tasks. This process is commonly referred to as aggregation. Following aggregation, a 

final prediction is generated: 

1

𝑘
∑ 𝑇𝑖(𝑥)𝑘

𝑖=1            (2) 

4.2.2. K-nearest neighbors regression 

K-nearest neighbors (KNN) is a non-parametric machine learning method. For numerical 

regression, predictions are made by locating the K closest data points to an input value and averaging 

their target values. First, a hyperparameter K value is selected. K is the number of nearby neighbors 

that must be taken into account during prediction. Next, the Euclidean distance (Eq. 3) is used to 

calculate how similar the target and training data points are to each other. 

𝑑(𝑥, 𝑋𝑖) = √∑ (𝑥𝑘 − 𝑋𝑖𝑘)2𝑑
𝑘=1         (3) 

Here, the training dataset X contains n data points. Each n is represented as a d-dimensional vector 

of features xi, with Y denoting the label for each x. Every data point in the dataset has its distance from 

the target point estimated. The closest neighbors are the k data points that have the least distances to 

the target position. The projected value for the new data point is calculated as the means of the desired 

values of the K nearest neighbors. This can be expressed as an arithmetic mean. The method computes 

the weighted mean of y of the K nearest neighbors and applies it to the projected value for x. 
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Figure 3. Random forest regressor architecture. 

4.2.3. XGBoost ensemble 

Extreme gradient boosting (XGBoost) is a highly regarded machine-learning technique renowned 

for its efficiency, speed, and precision. It is classified within the boosting algorithm family as an 

ensemble learning methodology that combines the predictions of numerous weak learners. It adopts a 

boosting strategy to create an exceptionally accurate ensemble model, with each weak learner tasked 

with correcting the errors made by its predecessors. The gradient optimization approach aims to 

optimize a cost function by adjusting the model’s parameters based on erroneous gradients. This 

technique introduces the concept of “gradient boosting with decision trees”, wherein the objective 

function is systematically minimized by evaluating the importance of each decision tree added to the 

ensemble. Additionally, by incorporating a regularization term and employing a more sophisticated 

optimization technique, XGBoost enhances both accuracy and efficiency. 

4.2.4. Decision tree 

A decision tree is a nonparametric supervised learning technique employed in both classification 

and regression tasks within the field of machine learning. This method is distinguished by its 

hierarchical tree structure, which encompasses essential elements such as a root node, branches, 

internal nodes, and leaf nodes. There are usually several types of decision trees, i.e., ID3, C4.5, and 

CART. This work is based on CART, which uses Gini impurity to choose which attribute to split on. 

Gini impurity indicates how frequently a random machine learning selected property is misclassified. 

It creates binary splits, and a lower value of Gini impurity is ideal. 

The decision tree begins working from the root node S with the complete training dataset. It then 

determines the optimal attribute in the dataset either employing the information gain or the Gini index 



993 

AIMS Agriculture and Food  Volume 9, Issue 4, 980–1003. 

criterion. Subsequently, S is partitioned into subsets (s1, s2, . . . , si) containing feasible values for the 

identified best attributes. Afterward, a decision tree node is generated to encapsulate the optimal 

attribute. The process recurs as new decision trees are constructed recursively using the subsets (s1, 

s2, . . . , si) of the previously derived dataset. This iterative process persists until further classification 

of the nodes is unattainable, culminating in the identification of leaf nodes. 

4.2.5. Bagging regressor ensemble meta-estimator 

A bagging regressor serves as a meta-estimator that employs base regressors on random subsets 

of the original dataset, subsequently aggregating their individual predictions through voting or 

averaging to produce a final forecast. This meta-estimator is frequently utilized to mitigate the variance 

of a black-box estimator by introducing randomization into its construction process, ultimately forming 

an ensemble model. 

5. Results and discussion 

The trained models were evaluated using several performance metrics, including 𝑅2score, RMSE, 

and MAE. To define the metrics, we use Equations 4–6: 

𝑅2 = 1 −
∑(𝑦𝑖−𝑦𝑖̂)2

∑(𝑦𝑖−𝑦̅𝑖)2          (4) 

𝑅𝑀𝑆𝐸 = √∑ (𝑦𝑖−𝑦𝑖̂)2𝑁
𝑖=1

𝑁
         (5) 

𝑀𝐴𝐸 =
|(𝑦𝑖−𝑦𝑖̂)|

𝑁
           (6) 

Here, 𝑦𝑖 represents the actual value, 𝑦𝑖̂ represents the predicted value, 𝑦𝑖̅ represents the mean 

value of the i-th data point, and N is the total number of data points. 

The ablation study depicted in Figure 4 presents various hyperparameter tunings for different 

machine learning models in terms of their R2 scores. The R2 scores measure the proportion of the 

variance in the crop yield that is predictable from the input features. Higher R2 scores indicate better 

predictive performance. As observed, in Figure 4(a), increasing the number of estimators did not lead 

to an improvement in the performance of the Bagging regressor. Notably, the optimal number of 

estimators ranging between 20 and 40 yielded an R2 score of 0.9738. Figure 4(c) illustrates that the R2 

score for KNN reached its peak at a K value of 8, achieving a score of 0.9573, while deviations from 

this optimal K value led to a decline in performance. Additionally, Figure 4(b) highlights that an 

optimal decision tree depth value of 20 resulted in an R2 score of 0.9628, with performance saturation 

observed beyond this value. Similarly, Figure 4(d) and (e) shows that the optimal values of the number 

of estimators are 140 and 320, with R2 scores of 0.9740 and 0.9745 for random forest and XGBoost 

ensemble models, respectively. 

Figure 5 exhibits the comparison between actual and predicted values produced by the machine 

learning models employed in this study, optimized with optimal hyperparameters. The closer the points 

are to the blue straight line with a slope of 1, the more accurate the predictions are. Table 3 shows the 

R2 scores, root mean square error (RMSE), and mean absolute error (MAE) with optimal 
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hyperparameter tuning of the different machine learning models used in this work for the crop yield 

prediction test dataset. Previously, [51] worked on this dataset and achieved a R2 score of 0.9570. Our 

KNN model could not surpass their score, but the decision tree regressor (DT) trained in this work 

slightly outperformed the model developed by [51] with an R2 score of 0.9628. The model had an 

RMSE value of 16697.12 and an MAE of 3751.65. The Bagging regressor performed even better, with 

an R2 score of 0.9738, RMSE of 14010.27, and MAE of 3294.23. The random forest regressor (RF) 

had a slightly better performance with an R2 score of 0.9740, RMSE of 13781.94, and MAE of 3076.19. 

The XGBoost ensemble clearly outperformed all other models with an R2 score of 0.9745, RMSE of 

15803.15, and MAE of 2681.33. Finally, Figure 6 presents the progression curve of number of 

estimators hyperparameter value and accuracy (𝑅2 score) in XGBoost ensemble. 

 

Figure 4. Progression curve of (a) number of estimators hyperparameter value vs. accuracy 

(𝑅2 score) in Bagging regressor; (b) Max depth hyperparameter value of decision tree 

regressor vs. accuracy (𝑅2 score). 
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Figure 5. Progression curve of (a) K-value vs. accuracy (𝑅2 score) in KNN; (b) number 

of estimators hyperparameter value vs. accuracy (𝑅2 score) in random forest regressor. 

Table 3. R2 score, RMSE, and MAE achieved using machine learning models for the crop 

yield prediction test dataset. 

Model R2 score RMSE MAE 

KNN 0.9573 17603.76 4650.21 

AdaBoost regressor with decision tree [51] 0.9570 - - 

Decision tree regressor (DT) 0.9628 16697.12 3751.65 

Bagging regressor 0.9738 14010.27 3294.23 

Random forest regressor (RF) 0.9740 13781.94 3076.19 

XGBoost ensemble 0.9745 15803.15 2681.33 
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Figure 6. Progression curve of number of estimators hyperparameter value vs. accuracy 

(𝑅2 score) in XGBoost ensemble. 

The performance of various machine learning models in predicting crop yields across different 

crop types was also evaluated. The models trained on the crop yield prediction training dataset were 

tested for every crop in the test dataset. The results presented in Table 4 display the prediction R2 scores 

obtained for each crop using different models. Each row within the table corresponds to a specific crop, 

while each column represents a machine-learning model employed for prediction. Analysis of the 

results reveals that certain models exhibit superior performance for specific crops. For instance, the 

Bagging regressor, random forest regressor, and XGBoost ensemble consistently achieve high R2 

scores across multiple crops, showcasing their effectiveness in yield prediction. Conversely, for crops 

such as rice/paddy and sweet potatoes, the XGBoost ensemble model demonstrates superior 

performance compared with other models, suggesting its suitability for these particular crops. These 

findings offer valuable insights into the selection of appropriate machine learning models for crop 

yield prediction, thereby facilitating the optimization of agricultural practices and resource allocation.  

Table 4. Prediction R2 scores of each crop for different models. 

Crop KNN DT regressor Bagging regressor RF regressor XGBoost ensemble 

Maize 0.9686 0.9378 0.9815 0.9141 0.986 

Potato 0.9778 0.9227 0.9940 0.9421 0.994 

Rice/paddy 0.9437 0.9452 0.9470 0.9482 0.9737 

Sorghum 0.9539 0.9912 0.9950 0.9970 0.964 

Soybean 0.9559 0.9627 0.9377 0.9956 0.9668 

Wheat 0.9477 0.9845 0.9750 0.9831 0.9652 

Cassava 0.9790 0.9660 0.9557 0.9746 0.9459 

Sweet potato 0.9478 0.9904 0.9576 0.9902 0.9999 

Plantain 0.9406 0.9820 0.9960 0.9999 0.968 

Yam 0.9580 0.9431 0.9998 0.9989 0.9733 
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Hence, by utilizing the crop yield predictions from the best-trained model, the XGBoost ensemble, 

farmers can anticipate the upcoming season’s crop yield. Armed with this information, farmers can 

determine which crops are likely to have the highest production in the upcoming season. Consequently, 

they can rotate their crops without the need for tilling. 

While the dataset used in this study lacks specific date crop data, it does encompass some of the 

most widely consumed crops globally. Notably, a few of these crops align with the top-grown crops 

in MENA nations. Consequently, the findings from this study hold promise for date crop prediction as 

well, utilizing transfer learning techniques and a tailored dataset that includes date-related data. 

Figure 7 compares the actual crop yield values with the predicted values using two machine 

learning models: the Random Forest Regressor (Figure 7a) and the XGBoost Ensemble (Figure 7b). 

The two models reveal the predictions closely align with the actual yields as it shows a high degree of 

accuracy indicating by the closeness of points to the diagonal line. 

 

Figure 7. Actual vs. predicted data using (a) random forest regressor and (b) XGBoost ensemble. 

Figure 8 indicates the comparison between actual and predicted crop yield values for two 

additional machine learning models such as K-Nearest Neighbors (KNN) as shown in figure 8a and 

the Decision Tree Regressor as shown in figure 8b. The performance of these models shows some 

variance from the actual values but is still relatively accurate, with some divergence from the diagonal 

line, indicating slightly lower prediction accuracy compared to the Random Forest and XGBoost 

models. 
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Figure 8. Actual vs. predicted data using (a) KNN and (b) decision tree regressor. 

Figure 9 shows the actual versus predicted crop yield values using the Bagging Regressor model. 

The points are close to the diagonal line, indicating that the Bagging Regressor is also highly effective 

in predicting crop yields, similar to the Random Forest and XGBoost models, though its performance 

might be slightly less optimal compared to XGBoost. 

 

Figure 9. Actual vs. predicted data using Bagging regressor. 
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6. Theoretical and practical implications 

The scientific community can benefit from this study in several ways. First, the research offers 

methodological insights into the development and training of machine learning models for crop yield 

prediction, providing a framework for similar research endeavors. By understanding how machine 

learning-based systems can optimize crop rotation and mitigate climate change impacts, researchers 

can identify practical applications for their work, tailored to different agricultural contexts. The 

collaborative nature of the research underscores the importance of interdisciplinary collaboration, 

providing researchers with opportunities to engage with stakeholders from various sectors to co-create 

knowledge and develop innovative solutions to agricultural challenges. 

In practice, this study offers valuable insights for policymakers, agricultural practitioners, and 

stakeholders in Saudi Arabia. By leveraging machine learning models for prediction, farmers can make 

informed decisions about crop rotation without tilling their land, thereby reducing carbon emissions. 

Additionally, the integration of sustainable finance mechanisms can support this initiative by providing 

financial incentives for farmers who adopt eco-friendly practices. Specifically, microfinancing options 

or green loans can be made available to farmers who invest in sustainable technologies, such as those 

developed in this study. These financial products could lower the barrier to entry for adopting 

innovative agricultural practices that enhance productivity while also promoting environmental 

stewardship. Furthermore, a mobile application can be developed containing the best model to facilitate 

easy access to the system for farmers. Overall, the implementation of the proposed system and aligning 

it with sustainable finance strategies has the potential to significantly improve crop production and soil 

health and contribute to the broader goal of climate change mitigation in Saudi Arabia. 

7. Conclusion 

This study proposed a novel strategy for crop rotation without tilling through crop yield prediction 

and machine learning to address the pressing need for proactive measures to mitigate the challenges 

of climate change in agriculture. By evaluating the performance of various machine learning 

algorithms and combining multiple data sources, the study achieved improved accuracy. Optimization 

of hyperparameters and assessment of crop-wise prediction performance for random forest, K-nearest 

neighbor, XGBoost ensemble, decision tree, and a Bagging regressor ensemble meta-estimator 

demonstrated the effectiveness of machine learning in informing crop rotation strategies and resource 

management decisions, offering practical solutions for climate resilience and sustainable agriculture 

in Saudi Arabia. This underscores the promising role of machine learning in improving crop yield 

forecasts and guiding sustainable agricultural methods. Leveraging the machine learning models 

trained on the crop yield prediction dataset, stakeholders can gain valuable insights into optimal crop 

rotation strategies and resource management techniques. Collaboration between farmers, researchers, 

and policymakers is paramount in translating these insights into actionable strategies for climate 

resilience and sustainable agriculture. As the global community continues to grapple with the impacts of 

climate change, initiatives like these offer hope for a more resilient and sustainable agricultural future. 

The dataset used in the study does not include data on date fruit, a significant crop in Saudi Arabia. 

This limitation hinders the applicability of the findings to date production, a critical agricultural output in 

the region. While the dataset includes some widely consumed crops, it does not cover all crops grown in 

Saudi Arabia, restricting the study’s scope in providing comprehensive crop yield predictions for the region. 
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In the future, a benchmark dataset tailored for Saudi Arabia could be developed. This dataset 

would offer deeper insights, aiding in the creation of a precise crop yield prediction system. By 

incorporating a broader range of climatic and soil factors, this system would facilitate more effective 

crop rotation strategies, crucial for mitigating the impacts of climate change and ensuring sustainable 

agricultural practices. 
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