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Abstract: Integrating artificial intelligence (AI) into agriculture is a pivotal solution to address the 

pressing challenges posed by rapid population growth and escalating food demand. Traditional 

farming methods, unable to cope with this surge, often resort to harmful pesticides, deteriorating soil 

health. However, the advent of AI promises a transformative shift toward sustainable agricultural 

practices. In the context of the United States, AI's historical trajectory within the agricultural sector 

showcases a remarkable evolution from rudimentary applications to sophisticated systems focused 

on optimizing production and quality. The future of American agriculture lies in AI-driven 

innovations, spanning various facets such as image sensing for yield mapping, labor management, 

yield optimization, and decision support for farmers. Despite its numerous advantages, the 

deployment of AI in agriculture does not come without challenges. This paper delved into both the 

benefits and drawbacks of AI adoption in the agricultural domain, examining its impact on the 

agro-industry and the environment. It scrutinized the emergence of robot farmers and AI's role in 

reshaping farming practices while acknowledging the inherent problems associated with AI 

implementation, including accessibility, data privacy, and potential job displacement. Moreover, the 

study explored how AI tools can catalyze the development of agribusiness, offering insights into 

overcoming existing challenges through innovative solutions. By comprehensively understanding the 

opportunities and obstacles entailed in AI integration, stakeholders can navigate the agricultural 

landscape adeptly, fostering a more sustainable and resilient food system for future generations. 
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1. Introduction  

Over the 20th century, the United States has witnessed a remarkable evolution in its agricultural 

landscape, marked by a substantial increase in population alongside significant shifts in land use 

patterns [1]. Despite a population surge of approximately 255 million since the early 1900s, data 

from authoritative sources like the Economic Research Service (ERS), the National Agricultural 

Statistics Service (NASS), and the National Land Cover Database (NLCD) reveal a decline of 

around 3% in the proportion of cropland relative to the total national land area since the 1970s [2]. 

This reduction, primarily occurring over the past four decades, underscores a pivotal transformation 

in agricultural practices. Paradoxically, while the nation's cropland has diminished, overall 

agricultural production has more than doubled since 1948, a parallel growth mirrored by the 

exponential rise in the U.S. population. The capacity of the agricultural industry to sustainably feed a 

significantly larger populace today, despite utilizing less farmland compared to sixty years ago, owes 

much to relentless advancements in agricultural productivity [3]. Embracing cutting-edge technology 

like AI, from historical to contemporary times, the United States remains at the forefront of 

agricultural innovation, fortifying its agricultural sector for present and future challenges [4]. 

AI is a dynamic discipline within computer science that delves into algorithms to mimic various 

aspects of nature and human cognition, physiology, and evolutionary processes. Unlike traditional 

problem-solving approaches, AI does not rely on predetermined paths for resolving issues; rather, it 

harnesses the power of data, solution examples, and their interrelationships to tackle diverse 

challenges. Through its capacity to exhibit intelligent behaviors akin to those of human experts in 

certain tasks, AI has evolved into a powerful tool for constructing solutions to problems 

characterized by large, evolving datasets prone to inaccuracies and contradictions [4]. Presently, the 

predominant techniques within AI, namely machine learning and deep learning, leverage iterative 

methods and interconnected neural network architectures to address complex problems [5–7]. This 

redirection of focus within AI has broadened its applications, with a common thread being the 

analysis of voluminous and temporally dependent datasets with inherent uncertainties. As a 

multidisciplinary field encompassing science, engineering, and economic dimensions, AI has not 

overlooked agriculture. Numerous studies have been dedicated to leveraging AI techniques to 

enhance various aspects of agricultural practices, marking its integration into this vital sector [8,9]. 

The application of AI in precision agriculture presents a promising avenue for transforming 

farming practices and enhancing sustainability. By harnessing data from sensors, drones, and 

satellites, AI can optimize various facets of agriculture, such as irrigation, fertilization, and pest 

management, leading to increased yields, cost reduction, and minimized environmental impact [10,11]. 

Additionally, AI-powered cameras and sensors enable real-time crop monitoring, facilitating the early 

detection of diseases, pests, and nutrient deficiencies, thereby averting potential crop losses [12,13]. 

Additionally, AI systems can predict agricultural yields and market demand by using historical data, 

soil conditions, and weather patterns. This allows farmers to plan planting and harvesting timetables 

and adjust pricing tactics appropriately [14]. In the realm of supply chain optimization, AI aids in 

predicting demand, optimizing logistics, and reducing waste, exemplified through the optimal timing 
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of crop harvests, efficient truck routing, and inventory management [15,16]. Despite the significant 

potential benefits, the adoption and implementation of AI in agriculture face challenges and potential 

issues that necessitate careful consideration and mitigation strategies to ensure its effective and 

sustainable integration. 

Therefore, the review aims to outline the benefits and drawbacks of integrating AI in agriculture, 

highlighting its potential to enhance productivity and sustainability while addressing challenges such 

as infrastructure requirements and ethical concerns. Despite obstacles, AI holds promise for 

revolutionizing farming practices and addressing food security issues, provided efforts are made to 

overcome limitations and ensure equitable access to technology. A notable research gap identified in 

the literature is the limited exploration of AI applications tailored specifically for small-scale and 

resource-constrained farmers. Most existing studies primarily focus on large-scale, technologically 

advanced farming operations, often overlooking the unique challenges faced by smaller farms, such as 

limited access to high-quality data, inadequate technological infrastructure, and financial constraints. 

This gap suggests a need for more inclusive research that develops AI solutions accessible to all 

farming scales and explores how tailored AI innovations can be effectively implemented in diverse 

agricultural contexts, particularly in developing regions. 

This paper is organized as follows: Section 2 provides a comprehensive review of the 

background and current state of the agro-industry in the United States. Section 3 delves into the 

integration and impact of AI within this sector. In Section 4, we explore the concepts of robotic 

farming and other AI-driven innovations. Section 5 presents real-world case studies that illustrate the 

application of advanced AI technologies in U.S. agriculture. Section 6 discusses the advantages and 

disadvantages of incorporating AI into agricultural practices. Finally, Section 7 concludes the paper 

with a summary of our findings and outlines potential directions for future research in this field. 

2. Background of the agro-industry in the USA 

The agricultural industry in the USA has undergone significant transformation with the 

integration of AI. Historically reliant on manual labor and traditional methods, AI technologies have 

revolutionized farming practices. AI-driven solutions enhance efficiency, productivity, and 

sustainability by enabling data-driven decision-making. Further progress in AI promises even greater 

advancements, ensuring resilience and food security amidst evolving challenges [17].  

2.1. Past conditions without AI 

Before the advent of AI, the agro-industry in the USA was heavily reliant on manual labor, 

making farming labor-intensive and often inefficient. Tasks such as planting, harvesting, and pest 

control required significant human effort, resulting in limited precision and efficiency. Fertilizers and 

pesticides were typically applied by hand or with basic machinery, leading to uneven distribution, 

potential crop damage, and resource wastage [18]. This reliance on manual processes introduced 

constant risks of human error and made achieving uniformity in agricultural practices challenging. 

Predicting weather patterns, pest outbreaks, and crop yields relied on rudimentary methods and 

guesswork, leaving crops vulnerable to adverse conditions [19]. 

Resource utilization was inefficient, with water, fertilizers, and pesticides often used in 

suboptimal quantities due to the lack of precise control and monitoring, increasing costs and causing 
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environmental harm. Agricultural data was fragmented and difficult to integrate, with crucial 

information scattered across various sources, hindering data-driven practices and comprehensive 

analysis. Consequently, farmers' decision-making was less informed and more error-prone, 

impacting productivity and sustainability. Traditional farming methods did not adequately leverage 

technological advancements, leading to slower innovation and adaptation. Farmers relied on 

generational knowledge and experience rather than scientific data, which, while valuable, could not 

match the precision and efficiency of modern technology [20]. As a result, the agro-industry faced 

significant challenges in maximizing crop yields, ensuring food security, and maintaining 

environmental sustainability [21]. The transition to AI and advanced technologies has since 

transformed these practices, making farming more efficient, precise, and sustainable. 

2.2. Present conditions with AI 

The agro-industry is transforming significantly by integrating AI technologies, fundamentally 

enhancing various aspects of agricultural practices. Precision agriculture leverages AI tools such as 

drones, sensors, and satellite imagery to monitor crops in real-time. This allows for optimized resource 

usage and data-driven decision-making, thereby increasing efficiency and reducing input costs [22]. 

Predictive analytics further revolutionize decision-making by analyzing extensive data on 

weather patterns, soil health, and crop characteristics. These predictive insights help farmers 

anticipate risks and refine planting, irrigation, and pest control strategies. Akkem et al. [23] provided 

a comprehensive overview of machine learning and deep learning approaches. They proposed that 

crop datasets be utilized to classify soil fertility, crop selection, and a variety of other factors using 

machine learning algorithms. Deep learning algorithms can be used on farming data to do time series 

analysis and crop selection. Jha et al. [24] discussed various automation practices, including the 

Internet of Things (IoT), wireless communications, machine learning, artificial intelligence, and deep 

learning, which address advancements in the agriculture field. These advancements help manage 

crop diseases, improve storage management, control pesticide use, manage weeds, and enhance 

irrigation and water management. Additionally, automation and robotics are streamlining 

labor-intensive tasks like planting, weeding, and harvesting. This reduces reliance on manual labor 

and addresses labor shortages. Shamshiri [25] worked with robotic harvesting, developing an 

autonomous framework with several simple-axis manipulators and claimed it can be faster and more 

efficient than the currently adapted professional, expensive manipulators. Nath et al. [26] 

investigated cutting-edge AI methods, focusing on machine learning, neural networks, and deep 

learning. The implementation of AI in the agri-food business, as well as quality assurance throughout 

the production process, is comprehensively examined, with a focus on existing scientific knowledge 

and future prospects. 

AI-driven supply chain optimization is transforming the logistics of food distribution by 

increasing transportation efficiency and reducing waste. Beyond logistics, AI is advancing genetic 

improvement techniques, enabling the creation of crop varieties with enhanced traits such as drought 

resistance, pest resistance, and higher nutritional value. Jung et al. [27] highlighted the use of sensing 

and AI to bolster the resilience of agricultural production systems, resulting in improved output. 

Rejeb et al. [28] discussed developing developments in the link between AI and the agricultural 

economy. The study found three unique growth periods and the most common AI techniques in the 

sector. Javaid et al. [29] determined and evaluated significant papers on AI in agriculture. Farmers 
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may now use AI to gain access to advanced data and analytics tools that will promote better farming, 

increase efficiency, and minimize waste in biofuel and food production, all while minimizing 

negative environmental impacts.  

These technological advancements collectively contribute to more sustainable and resilient 

agricultural systems, ultimately boosting productivity and ensuring food security. The integration of 

AI in agriculture not only leads to higher yields and cost savings but also plays a vital role in tackling 

global challenges like food scarcity and environmental sustainability. Embracing AI in agriculture is 

essential for securing a sustainable and abundant food supply for the future. Table 1 summarizes the 

domains and equipment created by different AI methods. 

The growth of AI in the U.S. agricultural sector has been remarkable, with the global AI in the 

agriculture market valued at approximately $1.1 billion in 2021 and expected to grow at a CAGR of 

25.5% from 2022 to 2030. About 15–20% of large U.S. farms have adopted AI technologies like 

precision agriculture, autonomous machinery, and predictive analytics. AI-driven precision farming 

increases crop yields by up to 30% through optimized resource use. Robotics and automation are 

projected to reduce labor needs by 20% in the coming decade, addressing labor shortages, while 

predictive analytics can cut input costs by 15–20% [30,31]. Venture capital investment in agri-tech 

startups, particularly those focusing on AI, exceeded $6 billion in 2022, highlighting the strong 

financial backing and growing confidence in AI's transformative impact on agriculture, driving 

efficiency, sustainability, and profitability [32]. 

Table 1. Advanced products and equipment created by different AI technologies.  

References Sector Technology Equipment 

1. Chukkapalli et 

al. & Dhanaraju et al. 

[33,34] 

Smart farming • Soil monitoring: IoT 

• Robocrop: SVM 

• Predictive analysis: ML 

algorithms 

Learning models are developed to 

track and predict various 

environmental impacts like climate 

variation during crop production, 

utilizing NPK soil sensors, 

temperature sensors, moisture 

sensors, and an adaptive robotic 

chassis (ARC) equipped with a 

dual-arm harvesting robot 

2. Wang et al. & 

Xiong et al. [35,36] 

Supply chain 

quality data 

integration method 

• Blockchain technology Logistics of agriculture products 

raising water availability 

3. Dewi et al. & 

Kumar et al. [37,38] 

Product 

sorting/packaging 

• Sensor-based sorting system 

• Tensor flow ML-based system 

TOMRA 

4. Pérez-Gomariz 

et al. & Sobuz et al. 

[39,40] 

Fruit safety and 

quality 

• Gaussian mixture mode and IR 

vision sensor 

• Fourier separation model  

• Multi-resolution wavelet 

transform and AI (classifier) of 

SVM and BPNN 

• FNN and SVM 

Smart refrigerator; Intelligent 

refrigerator 

Continued on the next page 
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References Sector Technology Equipment 

5. Phimolsiripol et 

al. [41] 

Food quality • ANN Use ANN to predict the quality loss 

of frozen dough by measuring its 

weight loss. 

6. Haff & 

Toyofuku [42] 

Quality control • X-ray detection  

• MRI 

X-ray imaging identifies defects and 

contaminants in agricultural 

commodities. 

7. Benouis et al. & 

Medus et al. [43,44] 

Image processing • NN  

• Hyperspectral imaging 

• PCANet 

Food tray packaging system with 

integrated food tray sealing fault 

detection. 

8. Sharma and 

Patil & Sobuz et al. 

[45,46] 

Forecasting of food 

production 

• Fuzzy logic 

• ML 

Use ANN, SVM, GP, and GPR to 

predict the future production and 

consumption of rice as well as milk 

yield. 

9. Cheraghalipour 

et al. & Ketsripongsa 

et al. [47,48] 

Supply chain 

optimization 

• Evolutionary ML Scheduled transportation helps 

reduce held inventory and lower 

costs in the supply chain. 

10. Sharma et al. 

[49] 

Preparing and 

dispensing food 

• Robotics Food applications, drone and robotic 

deliveries, and autonomous cars are 

all innovative technologies 

transforming modern life. 

11. Wardah et al. 

[50] 

New food product 

development 

• ML 

• Deep learning algorithms 

Self-serve soda station. 

12. Bo et al. [51] Identification of 

taste characteristics 

• Convolutional neural networks 

(CNN) 

• Multi-layer perceptron 

(MLP)-descriptor 

• MLP fingerprint 

The MLP-fingerprint model 

demonstrated the best prediction 

results for distinguishing between 

bitterant and non-bitterant, 

sweetener and non-sweetener, as 

well as bitterant and sweetener. 

2.3. Potential future development with AI 

The agro-industry stands on the brink of a transformative revolution with the integration of AI 

technologies, promising to enhance efficiency and sustainability. AI-driven predictive analytics can 

maximize crop yields and guide precision farming methods by examining past data, soil conditions, 

and weather patterns. Artificial intelligence-equipped autonomous drones and robots can do jobs like 

planting, watering, and harvesting, saving labor and raising output. Furthermore, AI-powered 

monitoring systems can detect diseases and pests early, enabling timely interventions that minimize 

crop damage and reduce reliance on chemical pesticides [52]. By harnessing AI, the agro-industry 

can not only boost food production to meet the growing global demand but also do so in an 

environmentally responsible and economically viable way. Enhanced automation, such as 

AI-powered robotics and autonomous machinery, will continue to evolve, enabling fully automated 

farming operations. This includes tasks such as planting, harvesting, and even crop monitoring and 

management, leading to increased efficiency and reduced labor costs. 
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Figure 1. (a) Advanced AI technology used in modern technology; (b) Concept of 

genetic research using AI technology [27]. 

Advances in AI and sensor technology will enable even greater precision in farming practices, 

giving rise to hyper-precision farming. Farmers will have access to highly detailed data about soil 

health, crop conditions, and environmental factors, allowing for precise and targeted interventions to 

optimize yields while minimizing resource usage and environmental impact. Future AI systems will 

offer more sophisticated decision support capabilities, leveraging vast amounts of data from multiple 

sources to provide actionable insights in real-time. By combining AI and remote sensing, Jung et al. [27] 

strengthened agricultural systems and opened the door to new possibilities for the prescription tools 

that will be necessary to solve the food security and farming problems of the coming decade (see 

Figure 1(a)). AI will also accelerate genetic research and crop breeding programs, developing more 
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resilient and nutritious crop varieties tailored to specific environmental conditions. Figure 1(b) 

illustrates the concept behind cutting-edge AI-based genetic research. Additionally, AI-powered 

supply chain management systems will optimize the entire agricultural value chain, from production 

to distribution. Predictive analytics and machine learning algorithms will streamline logistics, 

minimize waste, and ensure the efficient allocation of resources, ultimately improving food security 

and affordability [53,54]. As AI advances, emerging technologies such as quantum computing and 

synthetic biology will further revolutionize agriculture, heralding a new era of innovation and 

sustainability. 

3. Role of AI in the agriculture industry 

AI integration in crop management has transformed US agriculture through sensors, drones, 

robots, and advanced algorithms, optimizing farming practices. Real-time monitoring, resource 

efficiency, and predictive analytics enhance productivity and sustainability while improving raw 

material quality for the food industry. AI's role in agriculture addresses key challenges and positively 

impacts the agro-industry, shaping its future with innovation and efficiency as follows.  

3.1. Seeding and weeding 

The new era of efficiency and precision has been brought about by agricultural technology 

developments, which is especially noticeable in the field of seed and weed management. Robots and 

autonomous tractors powered by AI algorithms and equipped with sophisticated seeding and 

weeding mechanisms are revolutionizing farming practices. Through the integration of computer 

vision and machine learning, these machines can accurately identify crops and weeds, facilitating 

targeted seed placement and weed control without human intervention. Modern methods, including 

counter propagation-artificial neural networks (CP-ANN) and unmanned aircraft systems (UAS), 

make it possible to precisely identify weed species like Silybum marianum, guaranteeing successful 

eradication [28]. Similarly, the fusion of multispectral and hyperspectral imaging technologies with 

ML algorithms enables the recognition and classification of various plant species, enhancing the 

efficacy of weed management strategies [55]. Further potential options, even in demanding settings 

like greenhouses, are emerging technologies like robotic weed management systems, which utilize 

computer vision and machine learning algorithms to identify and eradicate weeds [56,57]. 

Additionally, the prospect of equipping cultivars with specialized tools for intra- and inter-row weed 

control highlights the potential for tailored, site-specific weed management within the framework of 

precision farming. The capacity to remotely change weed removal procedures depending on soil 

conditions, weed density, and crop output highlights the dynamic character of contemporary 

agricultural practices as intelligent mechanical weed management continues to develop. 

3.2. Precision farming 

A paradigm change in contemporary agricultural methods, precision agriculture, is typified by 

smart farming methods. This approach harnesses cutting-edge technologies such as sensors and 

drones, which gather intricate data on various aspects, including crop health, soil moisture levels, and 

environmental conditions [58]. Through sophisticated AI analysis, this data is transformed into 
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detailed field maps, empowering farmers with actionable insights to optimize input utilization and 

tailor farming practices to individual field segments. By strategically deploying resources like water, 

fertilizer, and weed control, precision agriculture maximizes yields and minimizes resource wastage, 

thus promoting sustainability. Industry leaders like Yield Technology and Bosch have been 

instrumental in advancing this field, developing a suite of technologies ranging from drones to data 

analytics tools [59]. Ultimately, precision agriculture enhances agricultural productivity and 

minimizes environmental impact, heralding a more sustainable future for global food production. 

3.3. Crop monitoring and disease detection 

In the realm of agricultural innovation, the integration of AI-powered drones and sensors has 

revolutionized crop management practices. These sophisticated drones take high-resolution photos of 

crops and use multispectral cameras and sensors to do real-time analysis to find indications of stress, 

illness, or pest infestation [60]. Leveraging machine learning algorithms trained on extensive datasets, 

these technologies can accurately identify disease symptoms and provide early warnings to farmers, 

facilitating timely interventions to prevent crop loss [35]. Furthermore, the application of AI and ML 

technologies goes beyond the identification of pests to tackle important issues in crop selection and 

increase output. Especially helpful in agricultural planning, these technologies help choose 

appropriate crops with higher yield potential by considering various variables like weather patterns, 

soil quality, water availability, and the frequency of pests and diseases. Through the use of machine 

learning (ML) algorithms and genetic data from different crop varieties, plant breeders can create 

new crop varieties that are more suited to particular environmental conditions, thus increasing 

agricultural productivity and promoting global food security. 

3.4. Autonomous farming 

Advancements in AI and automation technologies are revolutionizing the agricultural sector, 

particularly in the realm of autonomous machinery and robotics. Sophisticated navigation and 

control systems on autonomous tractors and harvesters are revolutionizing farming methods by 

remarkably, accurately, and efficiently carrying out chores like plowing, harvesting, and 

transportation. This integration of AI-driven automation is streamlining operations and significantly 

reducing labor costs while boosting productivity levels. In addition, specialized robots like Harvest 

Croo Robotics' Berry 5 Robot are designed to tackle complex and time-consuming jobs, such as 

strawberry harvesting. Leveraging computer vision and machine learning algorithms, these robots 

can swiftly identify and pick ripe produce at a pace surpassing human capabilities. The "Robocrop" 

is just one example of how technological advancements have met niche demands in farming, such as 

the requirement to remove strawberry blossoms [61]. By harnessing image-processing technology, 

these robots enhance agricultural processes' speed, efficiency, and cost-effectiveness, offering 

farmers the opportunity to optimize yields and operational efficiency while minimizing labor 

expenses. 

3.5. Supply chain optimization 

Smart logistics and inventory management in agriculture are revolutionized by AI, leveraging 
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advanced data analytics to optimize supply chain operations [62]. By scrutinizing variables such as 

inventory levels, market demand, and transportation routes, machine learning algorithms forecast 

demand fluctuations and adjust inventory stocking levels accordingly. Simultaneously, route 

optimization algorithms minimize transportation costs and enhance delivery efficiency, facilitating 

the seamless flow of agricultural products from farm to market. Further improving product quality 

and prolonging shelf life are AI algorithms' analysis of product characteristics, environmental 

conditions, and other relevant elements to identify the best packaging materials and designs. 

Moreover, by improving transparency and traceability throughout the supply chain, AI makes a 

substantial contribution to food safety. Retailers can proactively handle possible food safety issues 

by following products from their farm of origin to their consumption at the table. However, more 

contributions leveraging various data sources are urgently needed to realize the potential of an 

expanded agri-food supply chain that encompasses several stakeholders throughout its whole 

lifecycle. Additionally, to achieve a sustainable agri-food ecosystem, AI support must intensify its 

utilization of contextual information, focusing on food consumption patterns and devising strategies 

for minimizing food waste [63]. 

3.6. Smart irrigation and resource management 

Smart farming leverages the integration of AI with sensor networks and IoT devices to 

revolutionize agricultural practices. Machine learning algorithms optimize irrigation scheduling and 

resource management by combining data from soil and crop canopy sensors with weather forecasts 

and historical climate data [33]. Initiatives like the Specialty Crop Research Initiative-Managing 

Irrigation and Nutrients with Distributed Sensing (SCRI-MINDS) project focus on enhancing plant 

production efficiency while curbing excessive water and nutrient usage [64]. Microsoft has also 

created an AI-based sowing program that forecasts crop yields and identifies the best times to sow 

using imagery gathered using geostationary satellite photos. This application, accessible through 

feature phones, eliminates the need for farmers to install sensors, thereby reducing capital 

expenditure. Such innovations optimize resource usage and contribute to global food safety, 

sustainability, and societal well-being. Moreover, eco-friendly techniques that highlight the 

dedication to protecting natural resources and promoting sustainable agriculture include minimal 

elevation spectrum photography to diagnose insect infestations and nutrient shortages. With sensors 

monitoring farm conditions and airborne hyperspectral imaging, smart farming epitomizes a 

proactive approach toward agricultural sustainability and food security [65]. 

3.7. Farm management software 

AI-powered farm management software is transforming agriculture by giving farmers 

sophisticated analytics and decision-support capabilities. These systems combine information from 

gadgets, drones, and climate predictions, among other sources, to provide useful insights for raising 

output and profitability. London's National Physical Laboratory (NPL) is advancing this cause by 

creating robotics with machine learning and computational sensing skills [64]. These robots can 

manage weeds, detect the levels of water and nutrients, and carry out autonomous sorting and 

packaging jobs. Furthermore, scientists have developed novel approaches, such as image processing 

technologies integrated with MATLAB and Adobe Photoshop CC 2021, to use X-ray CT to evaluate 
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plant water retention and investigate soil behavior. Moreover, robotic chassis are being designed 

with specific tasks in mind, such as navigation through fields and robotic arms for weed elimination, 

showcasing the integration of hardware and software in agricultural automation. Moreover, research 

like those by Agboka et al. [66] demonstrated how well agroecological breeding techniques like 

push-pull technology (PPT) and maize-legume intercropping (MLI) may lower insect-related losses 

and increase productivity. These approaches, coupled with the utilization of hybrid fuzzy logic and 

genetic algorithms for forecasting maize production, demonstrate the multifaceted approach to 

sustainable farming enabled by AI and advanced technologies. 

3.8. Productivity improvement 

AI technology has revolutionized the agricultural landscape by empowering farmers with 

data-driven decision-making capabilities. Various agricultural data are gathered and analyzed 

through the integration of sensors, drones, and various data collection sources. Leveraging 

sophisticated machine learning algorithms, farmers can discern patterns and correlations within this 

data, leading to optimized farming practices and enhanced productivity. By harnessing AI insights, 

farmers can mitigate risks associated with unpredictable weather patterns, soil conditions, and pest 

infestations, enabling them to make proactive adjustments and maximize yields. This data-driven 

approach fosters sustainability and cultivates a more efficient and resilient agricultural sector poised 

for future challenges. 

3.9. Climate resilience 

In the face of escalating climate challenges, integrating AI tools offers a transformative solution 

for enhancing climate resilience in agriculture. Farmers gain access to invaluable real-time weather 

forecasts and predictive analytics through AI-driven platforms, enabling them to make informed 

decisions crucial for adapting to changing environmental conditions. For instance, platforms like 

Climate Corporation's Climate FieldView utilize AI algorithms to analyze vast amounts of weather 

data, providing farmers with actionable insights tailored to their specific locations [67]. These 

insights empower farmers to adjust planting schedules, optimize irrigation practices, and even 

diversify crop selection based on projected climate trends. Moreover, drones and other AI-driven 

precision agriculture technology enable fine-grained monitoring of crop health, soil moisture levels, 

and insect infestations, enabling prompt actions to reduce the dangers linked to severe climate like 

heatwaves, floods, and droughts. By leveraging AI, farmers are better equipped to navigate the 

uncertainties of climate change and poised to enhance the sustainability and productivity of their 

operations in the long run. 

4. Robot farmers and AI 

Robot farmers and AI are catalyzing a profound transformation in agriculture across multiple 

fronts. Primarily, they expedite labor-intensive tasks like growing, cleaning up, and picking through 

automation. These sophisticated devices, including robotic arms and AI-driven vision systems, 

reduce the need for human labor, resolving labor shortages and greatly increasing farm productivity 

and efficiency [68]. This automation boosts operational speed and accuracy and reduces operational 
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costs, making farming more sustainable and economically viable. 

Moreover, AI algorithms harness data from an array of sources, including sensors, drones, and 

satellites, to offer profound insights into soil health, crop growth dynamics, and environmental 

conditions. This facilitates the adoption of precision farming methodologies, enabling farmers to 

optimize resource allocation such as water, fertilizers, and pesticides to maximize yields while 

minimizing ecological footprints [69]. Using quickly identifying symptoms of anxiety, illness, or 

insect infestation, real-time crop monitoring using AI-powered systems further improves agricultural 

resilience and enables prompt interventions, hence preventing possible production loss. By 

synthesizing predictive analytics with actionable insights, AI equips farmers with the foresight 

needed to navigate climatic variability, market dynamics, and pest outbreaks, ensuring informed 

decision-making and bolstering agricultural sustainability in the face of evolving challenges. 

5. Case studies 

5.1. An artificial neural network (ANN)-based crop predictor using smartphones 

Ravichandran and Koteeshwari [70] pioneered a groundbreaking method for crop prediction 

using artificial neural networks (ANN) tailored specifically for smartphones (Figure 2). Their 

innovative approach culminated in the development of a prediction model comprising three distinct 

layers, the efficacy of which was contingent upon the judicious selection of hidden layers. 

Employing an array of algorithms, including Silva and Almeida's Delta-bar-delta and Rprop, 

alongside diligent trial and error, researchers sought to optimize the model's configuration. Central to 

their investigation was the critical role of hidden layers in dictating the system's predictive accuracy. 

Through meticulous experimentation, it became evident that augmenting the number of hidden layers 

corresponded to enhanced prediction precision. Figure 2 is a firm representation of step by step 

artificial neural network based crop estimator using smartphone. 

To ensure widespread accessibility among farmers, the system was meticulously crafted for the 

APK platform, featuring a user-friendly interface for seamless smartphone integration. The 

researchers meticulously orchestrated the system's architecture by leveraging Java codes within 

Eclipse and harnessing the power of MATLAB and the ANN toolbox for algorithm development. 

The resultant amalgamation of cutting-edge technology and agricultural expertise yielded a 

multifaceted tool capable of recommending suitable crops and providing invaluable guidance on 

fertilizer selection. This holistic approach underscores the system's potential to revolutionize farming 

practices, empowering growers with actionable insights at their fingertips. 

5.2. Automated harvester 

The integration of automation and AI technologies has revolutionized the agricultural industry, 

particularly in crop harvesting. Let us consider the case of lettuce farming, where the Vegebot 

developed by the University of Cambridge showcases the transformative potential of automated 

harvesters [71]. Traditionally, harvesting iceberg lettuce requires significant manual labor due to the 

delicate nature of the crop. However, Vegebot's sophisticated computer vision capabilities enable it 

to accurately identify ripe lettuce heads amidst foliage. Leveraging machine learning algorithms, 

Vegebot can distinguish between ripe and unripe lettuce based on various factors, ensuring precise 
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harvesting while minimizing damage to the produce. By automating lettuce harvesting, Vegebot 

addresses labor shortages and enhances overall efficiency in lettuce farming, marking a significant 

advancement in modern agriculture. 

Another compelling example is the development of strawberry-picking robots by companies 

like Harvest CROO Robotics and Octinion [72]. Harvesting strawberries manually is labor-intensive 

and requires careful handling due to the fruit's delicate nature. However, these robots utilize 

advanced technologies such as high-resolution cameras and sensors to identify ripe strawberries 

accurately. With gentle suction or gripping mechanisms, the robotic arms harvest strawberries 

without causing damage, significantly reducing labor costs associated with this task. By automating 

strawberry harvesting, these robots ensure consistent quality in harvested fruits while improving 

overall efficiency in strawberry farming operations. This case illustrates how automated harvesters 

are reshaping agricultural practices, offering scalability, precision, and sustainability to meet the 

growing demands of modern food production. 

 

Figure 2. ANN-based crop estimator employing smartphones [70]. 

5.3. Grape disease detection with ML 

In 2016, amidst the pivotal socio-economic landscape of Indian agriculture, researchers Patil 
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and Thorat [73] pioneered a groundbreaking system aimed at bolstering the vitality of grape 

cultivation (Figure 3). Recognizing the detrimental impact of disease outbreaks on vineyards, they 

devised an innovative predictive tool capable of preempting grape afflictions. The system, 

meticulously crafted, integrated a network of advanced sensors strategically positioned throughout 

the vineyard. These sensors, including temperature gauges, leaf wetness detectors, and humidity 

monitors, operated in tandem to continuously collect crucial data. A brief diagram for Grape disease 

detection with Machine Learning is shown in Figure 3. This data was swiftly transmitted to a central 

repository housed within a Zigbee server, leveraging the open global standards established by the 

Zigbee Alliance. Comprising four distinct layers—physical, medium access control, network, and 

application—Zigbee compliance ensured seamless integration and interoperability. Within this 

wireless sensor network (WSN) framework, three key devices played pivotal roles: the Zigbee 

Coordinator (ZC), responsible for orchestrating communication among all devices; the Zigbee 

Router (ZR), facilitating data transmission across the network; and the Zigbee End Device (ZED), 

tasked with sensing and relaying critical environmental metrics. Through the harmonious synergy of 

cutting-edge technology and agricultural expertise, Patil and Thorat's visionary system not only 

averted potential crop devastation but also heralded a new era of precision farming in India's 

agricultural landscape. 

 

Figure 3. Machine learning-based approach for detecting grape diseases [73]. 

6. Advances and disadvantages of AI in agriculture 

There are environmental benefits and drawbacks to incorporating AI into farming. Sustainable 

practices can be advanced through AI-driven precision farming by increasing resource efficiency and 

protecting biodiversity [74]. Energy usage, digital inequality, and the loss of traditional knowledge are 

some of the worries that have emerged. Balancing these factors is crucial to realizing AI's potential for 

environmentally sustainable farming. 
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6.1. Positive effects 

Precision agriculture methods driven by AI have completely changed resource management in 

agriculture, bringing in a sustainable and efficient period. By harnessing data from sensors and drones, 

AI algorithms meticulously analyze factors such as soil moisture levels, crop health indicators, and 

pest threats. This granular analysis allows for precise targeting of inputs like water, fertilizers, and 

pesticides, minimizing waste and environmental impact. Moreover, by detecting early signs of pest 

infestation or disease, AI-enabled monitoring systems enable farmers to intervene swiftly with targeted 

treatments, reducing reliance on broad-spectrum chemical pesticides and fungicides. Consequently, this 

approach leads to reduced chemical usage and environmental contamination fostering healthier 

ecosystems and promoting biodiversity conservation through precision land management practices. 

In addition to resource efficiency and environmental benefits, AI in agriculture significantly 

enhances operational cost-effectiveness through automation and optimization. By automating 

labor-intensive tasks such as planting, harvesting, and crop health monitoring, farmers can streamline 

operations and reduce their dependency on human labor; a major component of operational expenses. 

Moreover, AI-driven predictive analytics optimize resource management by providing real-time 

insights into soil conditions, weather patterns, and crop health, enabling farmers to make data-driven 

decisions that maximize yields and profitability. Furthermore, AI's role extends beyond the field, 

facilitating predictive maintenance of machinery and equipment, thereby minimizing downtime and 

maintenance costs. Additionally, AI-powered data analysis offers invaluable market insights and risk 

management strategies, empowering farmers to make informed decisions about crop selection, timing, 

and marketing, ultimately reducing the risk of financial losses and ensuring long-term sustainability in 

agriculture. 

6.2. Negative effects 

In the realm of agriculture, the integration of AI technologies presents both promising 

opportunities and significant challenges. One of the foremost concerns revolves around data privacy 

and security. The sheer volume of agricultural data being collected and analyzed raises apprehensions 

among farmers regarding potential breaches or misuse by third parties. This hesitancy to share 

sensitive operational data can hinder the development and implementation of AI solutions. 

Furthermore, obstacles are created by the availability and cost of AI technologies, especially for 

modest and resource-limited farmers, which exacerbate inequality in the agricultural industry. These 

difficulties emphasize the need to resolve problems with data confidentiality, availability, and cost to 

provide fair utilization of AI-driven agricultural developments.  

Furthermore, the complexity and technical expertise required to deploy and operate AI systems 

present additional hurdles. Many farmers lack the necessary skills and resources to effectively harness 

the potential of AI technologies, limiting their adoption and impact. Additionally, concerns regarding 

the reliability and accuracy of AI algorithms loom large. Biases or inaccuracies within training data 

can compromise the trust and confidence of farmers in AI-powered solutions, highlighting the 

necessity for rigorous validation and transparency measures. Addressing these challenges calls for 

collaborative efforts among policymakers, stakeholders, and agricultural practitioners to develop 

regulatory frameworks, enhance technical capabilities, and promote ethical standards that facilitate the 

responsible integration of AI in agriculture while safeguarding privacy, equity, and sustainability. 
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7. Conclusions and future work 

With so many uses in cultivation, control of pests, processing food, presentation, control of 

quality, shelf-life implication, and logistic system management, AI technology is about to transform 

the agriculture sector completely. These innovations promise to enhance efficiency, productivity, and 

sustainability, ushering in a new era of agricultural practices. However, the possible advantages must 

be carefully balanced with important legal, moral, and economic ramifications. Concerns include the 

potential exacerbation of inequality, job displacement in rural areas, and the high cost of implementing 

AI systems, which may pose challenges for smaller businesses. Furthermore, there are legitimate 

worries about the precision and dependability of AI systems, especially in crucial decision-making 

procedures linked to food safety and crop management. Therefore, even if AI has a lot of potential to 

revolutionize the agriculture industry, its creation and application must be carried out ethically, 

inclusively, and sustainably, putting the long-term interests of all those engaged first. 

The sustainability of AI hinges on a multifaceted framework encompassing technological 

advancement, regulatory frameworks, and societal adaptation. Essential to this sustainability is the 

cultivation of a skilled workforce capable of responsibly developing and deploying AI solutions. This 

necessitates substantial investments in educational initiatives to equip individuals with the requisite 

expertise. Though data security issues, moral quandaries, and the need for specialized training remain 

obstacles, AI's future looks bright. As evidenced by the increasing adoption of AI technologies in 

agriculture, there is potential for substantial improvements in food production and distribution. Future 

research could focus on comparing the predictive performance of various machine learning algorithms 

within the agriculture sector, facilitating informed decision-making and enhancing operational 

efficiency. 

AI-driven precision agriculture techniques, such as soil monitoring and crop health analysis, are 

being widely adopted in states like California and Iowa, where optimizing water usage and 

increasing crop yields are critical. Furthermore, the U.S. faces distinct challenges like labor shortages 

and the need for sustainable farming practices, which have led to the development of AI-powered 

solutions such as automated harvesting robots and predictive analytics for resource management. 

Additionally, U.S. government initiatives, like the USDA’s investments in smart farming 

technologies, provide a supportive framework that accelerates AI adoption in the agricultural sector. 

By focusing on these U.S.-specific dynamics, the manuscript can better articulate how AI shapes the 

future of agriculture in the United States, distinguishing it from broader, more generic discussions of 

AI in agriculture. 
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