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Abstract: The reuse and valorization of olive mill by-products, among others, is getting attention in 

the food and drugs-cosmetics sectors, due the recovery of their essential bioactive compounds in 

order to incorporate them as ingredients in functional foods, cosmetics, and pharmaceuticals. Olive 

pomace represents olive mill’s main residue (by-product), and it is a sustainable and of low-cost 

renewable source of several bioactive compounds, while its valorization can reduce its 

environmental impact and make it an additional economic resource for food industries in a circular 

economy design. In this article, the natural bio-functional compounds of olive pomace with 

antioxidant and anti-inflammatory bioactivities are thoroughly reviewed. The incorporation of such 

bioactives as ingredients in functional foods and cosmetics is also discussed in detail. The limitations 

of such applications are also presented. Thus, promising techniques, such as encapsulation, and their 

applications for stabilizing and masking undesirable characteristics of such compounds, are also 

exhibited. The so far promising in vitro outcomes seem to support further in vivo assessment in 

trials-based setting. 
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1. Introduction 

The by-products of food industry constitute a huge problem both for environmental and 

economic impacts [1–3]. For this purpose, there is an increasing interest in reusing food industry 
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by-products, as they may represent potential energy and/or bioactives’ sources. Food by-products 

bioactive compounds may be used for the fortification of several foods, pharmaceuticals, and 

cosmetics [4,5]. In the Mediterranean region, olive oil is the main plant-based edible oil, consumed 

lavishly, as a source of several bioactives with health effects worth mentioning [6]. Nowadays, the 

production of olive oil represents a main income for the Mediterranean countries, as only 2% of the 

world’s production is located away from this area. The production of virgin olive oil is a chain that 

leads to huge amounts of wastes, namely olive leaves and wooden parts and by-products, namely 

olive pomace and wastewater; they represent a crucial issue for the Mediterranean countries, since 

the increasing of olive oil production leads to the simultaneous increase of such wastes and 

by-products quantities in very short periods of time [7,8]. 

 For several years, these olive mill “wastes” were treated according to waste management rules, 

and, as a result, countless environmental issues among with a huge economic loss and a 

consequential loss of significant amounts of bioactives were unavoidable. Recently, a novel 

economic concept, namely the circular economy, has the ambitious purpose of expanding product 

lifespan, promoting recycling and re-using, and closing the product lifecycle [9]. It focuses on 

economic and environmental sustainability, arguing that agri-food by-products are not waste, but 

resources to be valorized [9]. Thus, researchers are paying more attention to the reuse of olive mill 

by-products, among others, via the recovery of their essential bioactive compounds in order to 

incorporate them in functional foods, cosmetics, and pharmaceuticals [10,11], aiming in the 

production of final products with health promoting properties. 

According to the literature, the Mediterranean diet, an integral part of which is virgin olive oil, 

is a diet pattern with several beneficial effects on the prevention of chronic non-communicable 

diseases, namely cancer, diabetes, hypertension, and neurodegenerative diseases, while the risk 

factors of the cardiovascular diseases were positively affected by olive oil consumption. Such 

findings demonstrate that the bioactive compounds, namely lipids, including tocopherols (lipid 

vitamin E) and phenolic microconstituents, presented in virgin olive oil and thus in olive oil 

by-products, are responsible for several health promoting and well-being properties. Interestingly, 

according to the literature, olive pomace is a significant source of bioactive compounds, since, for 

example, it retains most of the phenolic content of the olive fruit (only 1–2% of the phenolic content 

is found in olive oil) [11,12]. On the other hand, the amounts of bioactives, organic load along with 

low pH, make olive pomace phytotoxic and non-biodegradable [13,14]. Thus, since olive pomace 

represents a matrix rich in bioactives, is a potential raw ingredient for the production of sustainable 

functional products in the food, pharmaceutical, and cosmetics sectors [14].  

The present study intends to examine the utilization of olive oil pomace in food, pharmaceutical, 

and cosmetic products, as well as provide evidence of the potential in the prevention of several 

diseases, health promotion, and thus, well-being. 

2. Materials and methods 

During the process of selecting the digital libraries for the automated search strategy, we chose 

to utilize the widely recognized Scopus database for the following reasons: (i) its extensive coverage 

of research across various scientific fields, and (ii) the availability of robust tools for systematic 

searches [15,16]. The final search query comprised the following terms: “olive”, “by-products”, 

“olive pomace” AND “food” AND “cosmetic” AND “applications”, as well as “tocopherols” or 
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“hydroxytyrosol” AND “effects, “antioxidant”, “antiaging”, “sunscreen”, “antimicrobial”, 

“anti-inflammatory”, “cardiovascular diseases”, “diabetes”, “cancer” “hypertension” or 

“neurodegenerative diseases”. “Sustainability” AND “food” or “cosmetic” AND “by-products” were 

also searched as well as “extraction” AND “olive oil by-products”. Articles on “nanoformulations” 

or “encapsulation” AND “olive pomace” were part of this research, too. This query was applied to 

the titles, abstracts, and keywords of articles, and the search process was concluded in January 2024. 

2.1. Inclusion Criteria 

The selection criteria were determined by considering the metadata available from Scopus, with 

the eligible studies meeting the following criteria: (i) be exclusively research articles; (ii) be written 

in English; and (iii) be published between 2014 and 2024. A limited number of important articles 

prior to 2014 were also included since they were not previously reviewed thoroughly. 

2.2. Exclusion Criteria 

Conference papers, books, and short surveys, as well as publications written in languages other 

than English, were excluded. 

2.3. Quality Assessment 

To evaluate the articles’ quality and relevance, we first reviewed their titles and abstracts, 

excluding those unrelated to the topic. Subsequently, the remaining articles were thoroughly read to 

determine whether they met the predefined inclusion criteria and provided pertinent information for 

this review. 

2.4. Intended Audience 

The findings of this study are targeted towards academic and industrial scientists in the general 

fields of functional foods, cosmetics, chemistry, drugs, pharmaceutics, medicine and pharmaceutical 

chemistry, biochemistry, environmental chemistry, waste management, biology, or even molecular 

biology, as well as towards healthcare professionals and policymakers. The research offers insights 

into the potential multifaceted use(s) of olive mill by-products, such as olive pomace, as functional 

ingredients of novel foods and cosmetics, with health promoting properties, and their role(s) against 

inflammation since they exhibit significant anti-inflammatory, antithrombotic, and antioxidant 

activities. 

3. Olive mill wastes and by-products 

Olive oil is the main product of olive mills along, with a huge amount of waste and by-products. 

The production of virgin olive oil can be done when mechanical processes are applied, while the next 

phase may be different and it depends on the olive mill type; there are olive mills that apply 

two-phase or three-phase centrifugal extraction, or discontinuous extraction with extra pressure [17]. 

These different applications are followed by differences in the quality and quantity of olive oil, while 
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the amounts of the by-products are also affected. Specifically, when the three-phase procedure is 

applied, a quantity of water is added to the olive paste, which in the final step are separated into the 

oily phase, the water phase, and the olive pomace, while in the two-phase olive mills, no water 

addition is applied in the first olive paste [18]. It is well known that the three-phase procedure 

produces a higher amount of wastewater due to the extra water addition as compared to the 

two-phase method, where the wastewater is minimized along with the pomace, which has a higher 

moisture content [7,19]. 

Up to 10% of olive mill waste is of olive leaves contained in the raw material that comes to the 

mills [4,20–22]. It has been demonstrated that olive leaves are sources of bioactive microconstituents, 

namely phenolics, which play a pivotal role either as food ingredients for the increasing of the 

shelf-life and the antioxidant capacity of the food products [23–28], or as anti-carcinogenic, 

anti-inflammatory, and health beneficial agents [29]. Wastewater represents the liquid by-product of 

the olive mill, and its disposal management is of significance due to its phytotoxic environmental 

effects [7,30,31]; however, it has been demonstrated that wastewater may improve the properties of 

soil, since it is a source of potassium, lipids, and organic acids [32]. Interestingly, the utilization of 

wastewater for the production of biogas has also been proposed from some authors [31,33,34].  

The olive pomace represents the main by-product from both the aforementioned separation 

procedures, while it consists of shattered olive stones, water, and all the remaining from the olive 

drupes, except for its oil. It should be mentioned that for each ton of olives processed, 0.62 

(three-phase, dry weight) and 0.87 (two-phase, wet weight) tons of olive pomace are produced, with 

a moisture content of 50–65%, depending on the method applied [35]. Currently, the two-phase 

procedure is preferred by up to 90% of the olive mills [36], since through this method a vertical 

decrease in the olive mill wastewater is achieved [2]. According to Moubarik (2015) and 

El-Sheikh (2004), the crushed olive stones that are included in the olive pomace may be used either 

as fuel, or for the production of activated carbon [37,38].  

Olive pomace content in bioactives, the procedures for the extraction/recovery of such 

bioactives from the matrix and their incorporation for the production of functional, novel products, 

are extensively discussed in the following paragraphs, since researchers have aimed to find out 

alternative and sustainable ways to use olive pomace. 

A  
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E  

Figure 1. Olive pomace main bioactives. Structures were obtained from 

https://molview.org/ (assessed on 31st of January 2024). Source: A ([2,39,40]); B 

([11,41–43]); C ([44–48]); D ([11,49,50]); E ([11,40,49]). 

4. Olive pomace 

4.1. Olive and olive pomace constituents 

Several parameters affect the olive oil content in bioactives, and therefore the composition of the 

olive pomace in these microconstituents; irrigation, storage time, and the extraction process are 

potentially the key factors [18,39–42]. Olive fruit, and thus olive pomace, is a source of several nutrients, 

namely lipids, dietary fiber, minerals, and oligosaccharides [43], while its content in microconstituents, 

such as phenolic compounds and lipid soluble vitamins, is remarkable [11,44,45]. Among others, 

phenolic alcohols of olive fruit, namely tyrosol and hydroxytyrosol [30], numerous flavonoids, namely 

apigenic, hesperidin, anthocyanins and quercetin [46,47]; phenolic acids, namely chlorogenic, caffeic, 

sinapic, protocatechuic, cinnamic and ferulic acid [41,48]; secoiridoids, such as comselogoside, 

hydroxytyrosyl acyclodihydroelenoate, and dialdehyde, and 3,4-dihydroxyphenyl-ethanol-elenolic ether 

linked to hydroxytyrosol, which is produced during the malaxation of the olive drupes [46,49–52], while 

other polyphenols, namely oleuropein, verbascoside [11,46,53–55], p-cresol, and dimethyl-oleuropein, 

have also been identified and quantified in olive fruits [56–60] (Figure 1). Additionally, olives are rich in 

tocopherols, tocotrienols, carotenoids, and squalene [11,43,61–63]. 

4.2. Olive pomace bioactives and their general health promoting properties 

Significant amounts of these bioactives remain in the olive pomace and thus can be recovered, 

while their elicitation and recovery from the olive pomace are key factors for their utilization; thus, 

https://molview.org/
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olive pomace is a by-product that deserves scientists’ attention due to its potential health improving 

properties [64]. Additionally, it is well-known that olive pomace phenolic compounds exhibit 

significant antioxidant activities, and thus their utilization in functional, novel products has been 

suggested [65]. Olive-related by-products’ phenolics have been reported to be great free radicals’ 

scavengers in both in vitro, and also in cell cultures and in vivo models, in which radical-generator 

compounds, namely ABTS+ (2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid), DPPH• 

(1,1-diphenyl-2-picrylhydrazyl), FRAP (ferric anion reducing antioxidant power), TEAC (trolox 

equivalent antioxidant capacity), and ORAC (oxygen radical absorbance capacity), have been tested 

for these antioxidant properties [47,66]. Additionally, olive phenolics’ antibacterial activities against 

several bacteria, namely Bacillus cinerea, Bacillus subtilis, Escherichia coli, and Staphylococcus 

aureus have also been demonstrated [67]. 

Hydroxytyrosol (HT) is by far the most investigated among olive pomace polyphenols, and it 

has been demonstrated that it exhibits antiradical activities rather similar to those of vitamins in 

different sample types, namely plasma and rats’ liver [47,68]; HT has been exhibited to have 

cardioprotective properties on human cells, while it has been demonstrated that HT, along with 

oleuropein and caffeic acid, exhibit respective protective effects against low-density lipoprotein (LDL) 

oxidation [69]. In addition, HT appears to be effective even in low amounts in securing human DNA 

and red blood cells from oxidation damage, while it has also been proven that HT is a crucial 

hypoglycemic agent since it acts protectively via strengthening enzymatic actions in rats with 

diabetes [69]. It is worth mentioning that hydroxytyrosol-rich olive oils have been certified for their 

ability to maintain consistent levels of lipid antioxidants and LDL cholesterol by the European Food 

Safety Authority (EFSA) [70].  

Also, there are studies that have shown that polar lipids retained in the olive pomace possess 

anti-thrombotic [71–73] and anti-atherosclerotic activities [73–76] by inhibiting platelet aggregation. 

The cardio-protective health promoting properties of olive pomace polar lipids seems to be related to 

their capacity to inhibit the activities of the thrombo-inflammatory mediator, platelet activating 

factor (PAF), as well as on their ability to reduce PAF-synthesis and induce its catabolism toward 

reduced PAF-levels and the inflammatory status. Interestingly, olive pomace’s polar lipids revealed a 

higher potency than olive oil’s polar lipids in inhibiting PAF-induced aggregation of platelets, as 

well as against specific PAF binding, while they have also shown regression of formed 

atherosclerotic plaques and thus strong anti-atherosclerotic cardio-protection.  

Consequently, the interest of scientists in the recovery of these bioactives from olive-related 

by-products, such as olive pomace, and the incorporation of these compounds for the production of 

functional, novel products has increased. Thus, numerous studies have documented the creation of 

different functional foods that have been produced by the addition of olive pomace or olive pomace 

bioactives. On the other hand, very recently the interest of the scientific community has turned to the use 

of olive pomace or olive pomace extracted bioactives in the cosmeceutical and pharmaceutical sectors. 

4.3. Applications in the food industry 

A plethora of studies have conducted investigations on the application of olive pomace or olive 

pomace bioactives in the production of functional foods (Table 2). There is a trend to fortify several 

food matrices with olive pomace or olive pomace bioactives, since antioxidant and 

anti-inflammatory properties of these bioactive compounds represent key agents against several 



750 

AIMS Agriculture and Food  Volume 9, Issue 2, 743–766. 

chronic disorders, namely type II diabetes, cancer, and cardiovascular diseases [77–81], while at the 

same time, an increase of the nutritional value of the final food products is achieved. Recipes for the 

production of bread and biscuits fortified with 6%–10% (w/w) olive pomace powder were used, 

resulting in products richer in dietary fiber and better antioxidant capacity, and thus a higher 

prevalence of phenols [82–84]. It is worth mentioning that consumption of fortified biscuits led to a 

significant increase of the amounts of homovanillic acid and 3,4-dihydroxyphenyl acetic acid, as 

compared to the control samples, which may consequently minimize oxidative LDL cholesterol; 

additionally, the raising levels of phenolic acids in urine have suggested a boost of these bioactives’ 

modifications in the intestine [83,84]. Other studies aimed to fortify pasta, respectively, with either 

olive pomace powder or fermented olive pomace [85,86]. 5% and 10% replacement of durum wheat 

semolina with olive pomace powder led to increase of the total phenolic content and antioxidant 

activity in vitro of the products [82,87,88]; when olive paste powder (10–15%) was added in pasta, 

the final products were richer in fiber, phenols, carotenoids, and tocopherols compared to the control 

samples [89]. Although such products were accepted by the consumers, the overall output from the 

organoleptic tests was lower than that of the regular ones [82], suggesting that further studies are needed. 

Olive pomace is also added in the diet of fisheries [90–93], rabbits [94], ewes [95,96], 

buffalos [97], lambs [98], chickens [99], broilers [90], and laying hens [100], with remarkable 

results (Table 1). Olive pomace-enriched fish diets have increased the bioactive lipids, which exhibit 

antiaggregatory activity and cardioprotective properties [91,92]. Olive pomace-enriched diets 

enhanced the activity of lysozyme, which is an important enzyme of the fisheries’ innate immune 

system [93]. When rabbits, lambs, chickens, and broilers were fed with olive pomace-enriched feeds, 

higher oxidative stability of their meat compared to control was observed [90,94,98,99]. A decrease in 

atherogenic and thrombogenic indexes and milk with higher content of hydroxytyrosol and tocopherols 

were observed when ewes and buffalos were fed with olive pomace-enriched feeds [95–97]. 

Additionally, laying hens fed with olive pomace-enriched feed produced eggs with lower cholesterol 

levels than the control hens. Meanwhile, genes’ downregulations and expressions affected by such 

supplementation may lead to anti-inflammatory results and have a positive impact on cholesterol [100].  

Additionally, a functional yogurt fortified with olive pomace lipid bioactives, administered in 

92 overweight but otherwise healthy volunteers in a randomized double-blind, three-arm trial, 

resulted in reduced activities of the main regulatory enzymes of Platelet-Activating-Factor (PAF) 

-biosynthesis. Thus, consumption of yogurt fortified with olive pomace may optimize 

PAF-biosynthesis and catabolic routes [101]. 

Thus, olive pomace is not merely an undesirable by-product, but rather a source of functional 

bioactives. It can be utilized for fortifying foods and animal feeds, leading not only to eco-friendly 

functional final products, but also to potential health promotion. 

4.4. Applications in cosmeceuticals and pharmaceuticals 

Food industry by-products, such as olive pomace, are a means of bioactive compounds, and thus 

they represent potential fortification agents, not only for the food industry, but also for the 

pharmaceutical and cosmetics industries, for the creation of high-added value final products with 

potential health promoting properties [13,102,103]. The application of olive pomace in these sectors 

has only recently been investigated. Thus, it is necessary to summarize the results of these few 

studies in this review. 
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Table 1. Applications of olive pomace or recovered functional compounds as ingredients in foods. 

Functional 

Food 

Bio-Functional Ingredients 

(olive pomace and/or its 

Bioactives) 

Amount Aims Results References 

P
a
st

a
 

Dried olive pomace 7 & 10% 

 

➢ Shelf-life and 

quality evaluation 

• Improvement of oxidative 

stability and quality parameters 

[88,104] 

Olive pomace powder 5–15% ➢ Nutritional 

evaluation 

• Increase of phenolic content 

and antioxidant activity increased 

[86,89] 

B
re

a
d

 

Olive pomace 5 & 

10% 

➢ Nutritional and 

sensory evaluation 

• Increase of antioxidant 

activity & fiber content Color, 

smell and taste were affected 

[82,88] 

B
is

cu
it

s 

Olive pomace powder 5–20% ➢ Nutritional and 

quality evaluation 

• The metabolic output of the 

gut microbiota was increased 

• Increase of polyphenols and 

dietary fiber and decreasing of 

glycemic index 

• Some physicochemical and 

sensorial characteristics were 

modified 

[83,84,88,105] 

Fermented olive pomace 20% ➢ Shelf-life and 

quality evaluation 

• Increase of polyphenols 

content and shelf-life 

[85] 

F
is

h
er

ie
s 

Olive pomace 8% ➢ The effect of olive 

pomace in fish feed 

• Increased the bioactive lipids [91,92] 

Y
o
g
u
rt

s 

Olive pomace polar lipid 

bioactives 

0.23% ➢ Evaluation of the 

potential impact of the 

enriched with olive 

pomace PAF inhibitors 

functional yogurt against 

PAF metabolism 

• Reduced activities of the 

main regulatory enzymes of 

PAF-biosynthesis 

[101] 

4.4.1. Skin care 

Olive pomace bioactive compounds are categorized as hydrophilics and lipophilics since they 

have different structures and properties. For lipophilic compounds, namely fatty acids, squalene, and 

lipid-soluble vitamins, the hydrophilic fraction consists mainly of polyphenols. Some of the bioactive 

compounds obtained from the olive pomace and their uses in the most common cosmetic 

applications are listed in Table 2. According to the literature, macronutrients found in the olive 

pomace, namely, pectins and oligosaccharides, have been shown to improve the physical properties 

and structure of final products. They also contribute to enhanced oxidative stability, viscosity, and 

sensory characteristics in skincare products [2,13]. Meanwhile, cellulose, mannitol, hemicellulose, 

and other sugars found in olive pomace increased oil holding capacity of skincare products [2,13,103]. 
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As for the micro-constituents found in olive pomace, namely polyphenols, squalene [13,104–106], 

maslinic acid [107–109], and minerals such as K, Ca, and Na [2,13], recent studies have been carried 

out to investigate their contribution to skincare products [13,103,110–113]. 

Thus, according to the available literature, polar phenolics have demonstrated several activities, 

namely antioxidant [2,104,105], antiplatelet aggregation, anti-cancer, antimicrobial, cardioprotective 

activity, free radical scavenging, and fibroblast proliferation [13,109,111,112] activities. Squalene 

exhibits emollient and moisturizing activities, and it acts as a biological filter of singlet oxygen and 

as a sink for lipophilic xenobiotics [13,112,113]. Additionally, maslinic acid has acted as antioxidant 

agent, and exhibited antiproliferative effects of the murine melanoma cells [107–109]. 

Table 2. Olive pomace bioactive compounds and some of the more common cosmetic uses. 

Bioactive Compounds Activity References 

Polar Lipids • Wide range of biotechnological applications include the feed, 

pharmaceutical, nutraceutical, and dermo cosmetic industries 

• Diverse technological uses in the soap, cosmetics and 

pharmaceutic industries 

• Several biomedical applications relevant to cosmetics and 

pharmaceuticals, for instance, as emulsifiers in pharmaceuticals and 

for the preparation of liposomes for cosmetics and drug delivery 

• Anti-inflammatory, antiplatelet, anti-cancer, cardio-protective 

Antiatherogenic, neuroprotective 

[114,115] 

 

[114,116] 

 

[114,117,118] 

 

 

[71,74,119,120] 

A distinctive fatty acid 

profile 

• Anti-ageing and anti-inflammatory  [121] 

Phenolics, including 

oleuropein and 

hydroxytyrosol 

• Protective effects for human dermal fibroblasts and keratocytes, 

due to skin anti-ageing and anti-inflammatory properties 

• Anti-aging, antioxidant, anti-inflammatory, antiplatelet, 

anti-cancer, anti-microbial, cardio-protective, and free radical 

scavenging activity 

• Protection and reduction of skin thickening and wrinkles 

• Fibroblast proliferation 

[2,13,102,103,106,109–

111,121] 

Pectins and 

oligosaccharides 

• Improvement of the physical and structural properties of 

emulsions 

• Oxidative stability, viscosity, texture, sensory characteristics, 

and shelf-life of products 

[2,13] 

Mannitol, cellulose, 

hemicellulose 

• Physical and structural properties of hydration 

• Oil holding capacity 

[2,13,103] 

Squalene • Oil emollient, moisturizing, biological filter of singlet oxygen 

• Absorption site for lipophilic xenobiotics 

[13,112,113] 

Maslinic acid  • Antioxidant, antiproliferative effect of murine melanoma cells 

• Anti-inflammatory 

[107–109] 

K, Ca, Na • Hydration 

• Stiffness 

• pH controlling pH 

[2,13] 
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Antioxidant agents, such as polar phenolic compounds found in the olive pomace, are 

commonly used in dermatological products for anti-aging purposes, too. Aging represents a rather 

sophisticated process, and involves intrinsic and extrinsic factors. Several extrinsic factors, namely 

radiation (UV, IR, visible and blue light) [122–125], smoking, and alcohol consumption have 

synergistic effects on the skin, such as signs of hyperpigmentation and deep wrinkles [126–129]. 

These parameters are contributors in the generation of reactive oxygen species (ROS) and reactive 

nitrogen species (RNS), which cause DNA and protein damage, lipid peroxidation, and extracellular 

matrix degradation [130,131]. Polyphenols are strong antioxidants since they may contribute in the 

prevention of skin damage caused by ROS and RNS [13,132,133] and improve skin elasticity, 

thickness, and moisture when used topically [128,131,134,135]. Thus, polyphenols’ activity results 

in satisfactorily antiaging results [77,136–138]. Additionally, olive polar phenolic compounds, also 

act as lubricants, result in soft, elastic, and lubricated skin, providing a feeling of well-being. 

Additionally, a cream for atopic dermatitis, containing chitosan nanoparticles loaded with 

hydrocortisone and hydroxytyrosol (HC-HT CSNPs) have been tested in a double-blind, 

vehicle-controlled study in humans, in terms of in vivo tolerability and safety [139]. According to 

this study, ten subjects were randomly assigned to receive either the test product or a vehicle sample 

cream on their arms for 28 days, while no local toxicity or irritation was observed according to the 

measured trans-epidermal water loss, erythema, Draize scores, and skin biopsies. Blood analysis 

showed no significant changes in the serum cortisol levels, indicating non-systemic toxicity. Another 

subsequent 6-week, randomized, double-blind, vehicle-controlled study was conducted to assess the 

safety and effectiveness of HC-HT CSNPs in the treatment of mild to moderate atopic dermatitis [140]. 

The topical use of the HC-HT CSNP cream proved to be safe when administered twice daily to the 

affected region. Notably, there was no significant increase in liver enzymes, indicating that the drug 

did not enter the systemic circulation or affect the liver [140]. 

According to Nunes et al. (2021), another cream beneficial for skin health containing extracts 

from olive oil industry by-products was developed [141]. The olive leaf extract (OLE) containing cream, 

which had a total phenolic content of approx. 5800 mg GAE/L, was tested in vitro for skin enzyme 

inhibition, cytotoxicity, and for antioxidant and photoprotection capacities, among others [141]. The 

integration of OLE into cream formulations at a 5% concentration underwent assessment for 

acceptability and antioxidant efficacy among 10 healthy female volunteers aged 18–65 years. No 

adverse reactions were noted following application of the formulations to the skin. Furthermore, the 

cream exhibiting the highest phenolic concentrations displayed the most significant antioxidant 

effectiveness [141]. 

Additionally, a prospective pilot study, involving 36 participants with photoaging skin reported 

facial rejuvenation benefits of a 1% OLE-containing cream (SUPERHEAL™ O-Live Cream, USA 

Patent 6743449; PhytoCeuticals, Inc, New Jersey, USA), was conducted by Wanitphakdeedecha 

et al. (2020) [142]. In this study, all the participants applied 0.6 g of the cream to their whole face 

twice daily for 2 months. The study assessed various biophysical skin properties, including melanin 

and erythema index, water loss, pH, texture, hydration, wrinkles, and sebum level. Improvements 

in wrinkles were noticeable after just 1 month of treatment, while enhancements in skin barrier 

function, hydration, and texture were observed after 2 months. However, despite the fact that 

promising findings emerged, the study had limitations, including its short duration and the 

absence of a control group [142]. 

Even though the human studies that have been published regarding the application of olive mill 
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waste (OMW) components in cosmetics are limited, several recent preliminary studies in this field 

have reported promising results. In this context, some recent in vitro studies have demonstrated the 

cosmeceutical potential of hydroxytyrosol extracted from OMW, with protective effects for human 

dermal fibroblasts and keratocytes [143–145]. Additionally, according to another study, the effects of 

a phenol-rich olive mill wastewater extract (Patent 8815815) on skin cells were evaluated, and an 

inhibitory impact on cell proliferation as well as anti-inflammatory and anti-oxidative properties in a 

HaCaT (a human epidermal keratinocyte line that has been used for investigation of multistep 

carcinogenesis in human cells) model was reported by Schlupp et al. (2019) [146]. 

Another study has demonstrated that, in cell cultures, for the photoprotective potential of OLE in 

sunscreen formulations, used in combination with organic ultraviolet (UV) filters [147], the bioactivity of 

two oleuropein-enriched extracts from O. europaea fruits and leaves was comprehensively assessed and 

remarkable results regarding the antioxidant activity were observed [148]. 

4.4.2. Other applications in cosmetics 

Hydroxytyrosol (HT), among others, has been studied extensively due to its ability to scavenge 

free radicals and stabilize ROS [149], which resulted in the reduction of lipid peroxidation, the 

enhancement of anti-inflammatory actions, and the promotion of cell proliferation [150]. Thus, HT 

along with oleuropein and other olive pomace polyphenols can be incorporated into emulsions and 

cleansing products, such as liquids, lotions, and serums.  

Olive products are incorporated in several hair care cosmetic products, too. They contribute in 

the replacement of natural lipids, and they facilitate combing and provide shine to the hair. They 

form an oily phase of emulsions, and can act as over-greasing agents in detergents for the hair. They 

can also be found in other cosmetic formulations, such as emulsions, oils, suspensions, and gels. 

As emphasized in Sections 4.4.1 and 4.4.2, there are only a few human studies examining the 

efficacy of olive oil by-products as bioactive ingredients in beauty products. These studies are further 

limited by their lack of robustness, characterized by short treatment durations (1–2 months), small 

sample sizes, predominantly female participants, and the absence of a control group in some cases, 

making them preliminary in nature. Therefore, despite the considerable potential of olive oil processing 

by-products in cosmetics, there is a clear need for more comprehensive research in this area. 

4.4.3. The benefits of encapsulation 

Unfortunately, the utilization of some olive by-products or their extracts in cosmetics may lead 

to several undesirable results regarding sensory characteristics. One serious problem of such 

applications is the stability of the extracts or the by-product itself, since phenolics, vitamin E, 

squalene, and some fatty acids are rather unstable compounds [151,152]. Another important issue is 

the smell of some bioactive compounds, which may be unpleasant for the consumers.  

For all these reasons, the encapsulation of olive and olive by-products bioactives could be a 

promising alternative. Encapsulation is a method capable to preserve the bioactive products against 

oxidation, changes in environmental conditions, and interactions with other active products in the 

formulation, while at the same time it is an efficient way to mask their smell.   

Even though data regarding the encapsulation of olive pomace bioactives are scarce, there are a 

few recent studies investigating the microencapsulation of olive-derived extracts for cosmetic 
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purposes [153]. In the study of Aliakbarian et al. (2017), a method to encapsulate phenolic 

compounds extracted from olive pomace is presented [154]. According to the authors, the 

polyphenol-rich nanoparticles produced can be potentially used in the formulation of novel 

nutraceutical and cosmeceutical products. Panagiotopoulou et al. (2022) used microencapsulation to 

protect the sensitive bioactives and to favor the product’s stability [155]. The aim of this study was to 

incorporate the microparticles into a cosmetic cream and the evaluation of several parameters, such 

as rheology, thermal stability, microbiological, and sensory characteristics [155]. Additionally, a 

study on the development of cosmetic cream formulation with polyphenols encapsulated by 

spray-drying with maltodextrin, aiming to incorporate them into sunscreen formulations, has also 

been evaluated by Galanakis et al. (2018) [65]. 

5. Conclusions 

Olive pomace is a low-cost source of several bioactive compounds, and its valorization can 

reduce its environmental impact and become an additional economic resource for food industries. At 

the same time, industries should be more aware of sustainability issues, such as environmental 

degradation and the exhaustion of natural resources. The use of olive mill by-products, such as olive 

pomace, in the food and cosmetic sectors represents a promising way to reduce their environmental 

impact. Enrichment of food products with olive pomace bioactives has been extensively studied with 

rather positive results. On the other hand, only a few studies have been reported regarding the 

application of olive pomace bioactives in the cosmeceutical sector. Nowadays, cosmetics are 

commonly used in everyday life, and so they have a significant effect in the promotion of sustainable 

practices. Eco-innovation involving the utilization of raw materials, such as food industry 

by-products, can serve as an alternative to cosmetics. Even though olive pomace bioactives are rather 

promising health promoting agents, studies on their recovery, feasibility, and application in 

cosmetics are scarce. The anti-aging and anti-inflammatory properties of olive pomace bioactives are 

the key factors for its application in cosmetics, pharmaceuticals, and nutraceuticals, with the aim of 

improving skin protection and skin care health, among others. 

All in all, the development of cosmetics with food by-products as raw materials is a rather 

challenging process, while aspects such as efficacy, stability, appearance, and overall acceptance 

from the consumers represent crucial factors for the achievement of high-quality products. 

Interestingly, encapsulation techniques that allow the incorporation of bioactives from several 

by-products in cosmetics may significantly influence their acceptance by consumers. Even though 

preliminary research in vitro shows rather promising effects, in vivo studies are still necessary. 
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