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Abstract: Conventional methods of data sampling in agriculture are time consuming, labor intensive, 

destructive, subject to human error and affected by field conditions. Thus, remote sensing technologies 

such as unmanned aerial vehicles (UAVs) became widely used as an alternative for data collection. 

Nevertheless, the big data captured by the UAVs is challenging to interpret. Therefore, machine 

learning algorithms (MLs) are used to interpret this data. However, the operational efficiency of those 

MLs is yet to be improved due to different sources affecting their modeling certainty. Therefore, this 

study aims to review different sources affecting the accuracy of MLs regression and classification 

interventions in precision agriculture. In this regard, 109 articles were identified in the Scopus database. 

The search was restricted to articles written in English, published during 2013–2020, and used UAVs 

as in-field data collection tools and ML algorithms for data analysis and interpretation. This systematic 

review will be the point of review for researchers to recognize the possible sources affecting the 

certainty of regression and classification results associated with MLs use. The recognition of those 

sources points out areas for improvement of MLs performance in precision agriculture. In this review, 

the performance of MLs is still evaluated in general, which opens the road for further detailed research. 

Keywords: unmanned aerial vehicle; machines learning algorithms; precision agriculture; 

agricultural interventions; uncertainty sources 
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1. Introduction   

According to the 2018 food-insecurity estimates (FIES), 9.2 percent of the world’s population 

was exposed to hunger and 17.2 percent were exposed to limited access to food [1]. Meanwhile, the 

world’s population is expected to increase from, currently, 7.7 billion to 9.7 billion in 2050 and 

eventually reach 11 billion in 2100 [2]. Therefore, boosting food production to meet the growing 

population’s demand for food should be a concern. 

The conventional sampling methods in agriculture are labor intensive, cost inefficient, time 

consuming, prone to human error, destructive, and environmentally harmful [3,4]. Therefore, recent 

studies have explored precision agriculture as a substitute. Precision agriculture includes the 

application of remote sensing technologies, such as unmanned aerial vehicles (UAVs), and computer 

vision, such as machine learning algorithms (MLs), to collect and analyze aerial data, respectively, for 

the management of crop production [5]. UAVs are one of the effective remote sensing technologies 

used for data collection; UAVs are non-destructive, time efficient, not expensive, less laborious, and 

less prone to human error [6]. MLs are then used for UAVs’ image object detection, patterns 

classification, and the regression of its linear and nonlinear interrelationships [7,8].  

The use of UAVs and MLs in smart agriculture has enabled farmers to monitor crops health, detect 

their invasive pests, and predict their yield and biomass [9,10]. UAVs can capture high-resolution 

spectral images of crops and their surrounding fields, providing valuable information about crops’ 

biochemical and physiological properties, such as the amount and vigor of vegetation, biomass and 

yield growth, and vegetation health. These properties have different spectral signatures over time and 

under different biotic and abiotic conditions. MLs can process these images to detect the relation 

between the change in spectral signature and its corresponding change in crops’ biochemical and 

physiological properties, allowing them to detect crop health, measure crop biomass and yield growth, 

and detect the presence of pests. By leveraging UAVs and MLs, farmers can make cost effective 

decisions that increase the contribution to sustainable agriculture practices. Thus, the integration of 

UAVs and MLs in agriculture is expected to keep growing in the coming years [11]. 

In precision agriculture, various popular algorithm types and families are being used [12–15]. For 

example, support vector machines (SVM) [16,17], K-means [18], multiple linear regression 

(MLR) [19,20], and stepwise multiple regression (SMR) [21]. Advanced algorithms such as random 

forest (RF) [17,22–24], random forest regression (RFR) [25,26], neural network (NN) [16,17], and 

convolutional neural network (CNN) [27] are also used. These advanced algorithms are built on basic 

ones with enhanced functionality ideas [28]. Overall, the conventional and advanced algorithms extract, 

interpret, and categorize the data patterns following different learning methods such as supervised, 

unsupervised, semi-supervised, reinforcement, multi-task learning, instance-based learning, and neural 

networks [29].   

Despite of the widespread use of MLs in precision agriculture, these algorithm-generated models 

are prone to uncertainty, which disserves the generalisability of the modelling results. The uncertainty 

may come from technical sources such as model training and evaluation methods, learning methods, 

algorithm sensitivity to multilinearity, model depth (e.g., for CNNs), the fluctuation of statistical 

evaluation metrics, algorithm parameterization, and technical restrictions [30–34]. The uncertainty 

may also be induced by the dataset dimension, data balance and cleaning, data augmentation methods, 

huge difference between the training and testing sets size, change in data type, low dependency 

between the input and target variables, highly noised data, biased data, the incompleteness of training 
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datasets, image labelling and annotation, and features selection [12,35–43]. In addition, the uncertainty 

may also be due to farm management, cropping systems, and field conditions, such as the field location 

and area, soil properties variation, farmland topology, farmland fragmentation, land preparation, tillage 

methods, the influence of human activities on soil compaction, crop-surrounding vegetation, cultivar 

variation, fertilization rates, fertilizer application dates, replication, plant density, intercropping, plant 

phyllotaxis, and plant structure [27,34,36,41,44–56]. Additionally, uncertainty may also relate to 

sensor specifications, ground data collection methods, aerial data acquisition conditions, imagery 

resolution, image registration, alignment, and stitching [35,41,55,57–59]. Generally, the performance 

of MLs depends on the quality of the data. The sources of uncertainty increase the occurrence of noise, 

bias, outliers and confounding factors, as well as the redundancy of visual information and high 

dimensionality in data samples, which lowers data quality and forces the MLs to generate weak 

models.  

Overall, the operational efficiency of algorithms depends on methodological, technical and data-

type factors [12]. The non-consideration of these factors’ impact lead to misleading, biased, and 

uncertain modeling [60–63] and classification results [34,64–69]. Optimal modeling allows the 

assessment of crop performance under field conditions in terms of health status, yield productivity, 

yield quality, and tolerance to biotic/abiotic stress. Additionally, it allows the end-user to select the 

optimal cultivars, adequate farm management, and cropping practices according to their needs. This 

study aims to review different uncertainty sources affecting the operational efficiency of MLs in 

regression and classification interventions examined among the crops of interest in UAV-based 

precision agriculture.   

The remainder of this study is arranged into four sections: 1) methods adopted to select study 

sources, study selection criteria, data extraction, study quality assessment, and strategy for data 

synthesis, 2) results of detailed included studies, detailed findings and data sensitivity analysis, 3) 

discussion of the study’s findings, and 4) Section 4 for the conclusion.  

2. Materials and methods   

The review process follows the selection of scope-related studies, the data extraction, and then 

the interpretation and synthesis of results according to the review guide in [70] and the Cochrane 

handbook for systematic reviews of interventions, chapter on planning a Cochrane review [71]. 

The Scopus database was used to search for literature because the database entails the most 

refereed journals belonging to major publishers such as Elsevier, Taylor & Francis, IEEE, Emerald and 

Springer [14]. For the selection of studies, the search was launched according to this string: 

(“phenotype*” OR “crop” OR “plant” AND “unmanned aerial” AND “deep learning” OR “machine 

learning” OR “computer vision”). The search was restricted to the years 2013–2020. 
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Figure 1. Review flowchart. 

The studies considered as scope related in this review were the already-published English journal 

articles that applied the UAVs for the field data collection and the MLs for the data analysis. 

Conference papers, reviews, book chapters, letters, books, notes, editorials, conference reviews, short 

surveys, in-press articles, and studies conducted in greenhouses or laboratories were excluded. Yet, the 

related studies underwent further screening of the abstract and text body to meet the study aim. The 

eligibility criteria were defined using this question: “Why are ML algorithms used for regression and 

classification susceptible to uncertain modelling in precision agriculture?”. 

For the data extraction, the main items of the final included studies were extracted and then 

recorded in an Excel sheet file by one reviewer and three peer reviewers. No redundancy of studies 

was found as the search was conducted in one database. The main items extracted from included studies 



691 

AIMS Agriculture and Food  Volume 8, Issue 2, 687–719.  

were the Population for crop traits of interest, Intervention for the regression and classification 

modelling, Comparators for the UAV-image features used for the modelling, and Outcomes for the 

results of the modelling (PICO) [72]. After the extraction of the main items, the outcomes related to 

sources increasing the modelling uncertainty, within regression and classification interventions, were 

prioritized for interpretation and synthesis, and the remaining were excluded.  

A total of 442 papers were found in the Scopus database responding to the above-defined search 

strings. Conference papers (i.e., 155), conference review (i.e., 10), review (i.e., 6), book chapters (i.e., 

4), letter (i.e., 2) and note (i.e., 1) were eliminated committing to the exclusion criteria, 210 English 

articles remained. However, 3 articles in press were subtracted, resulting in 207 articles. From those, 

131 were all open access that fit the inclusion criteria. After title and abstract screening, 27 articles 

were omitted to reach the final number of 109 filed articles suitable for results synthesis to meet the 

review’s aim. Details are shown in Figure 1.    

3. Results 

104 studies reported potent sources that induce model uncertainty. Those sources were mainly 

related to: 1) technical settings of algorithms, 2) data quality, 3) data dimension, 4) features selection 

and ranking, and 5) field conditions, farm management, and cropping systems. The sources of 

uncertainty are explained in detail as follows. 

3.1. Technical settings of ML algorithms    

The performance of ML algorithms depends on the selection of their optimal hyperparameter 

values, or so-called algorithm parameterization [73]. Generally, algorithm design, training, testing, 

model learning strategies, and technical restrictions are of the same importance.  

3.1.1 Conventional and advanced algorithms  

The scientific literature shows that advanced MLs may outperform conventional MLs [42] 

because of their ability for extracting optimal features, saving time and reducing the requirements for 

expertise. A deep semantic segmentation based on pixel-wise classification outperformed a support 

vector machine (SVM), the latter is considered a conventional ML, to map plastic mulched farmland 

for high resolution images [34]. On the contrary, the SVM resulted in a comparable performance and 

better than that of random forest (RF) and deep learning algorithms such as convolutional neural 

network (CNN) for cabbage crop classification. The SVM is less affected by data sample size 

considering the proper combination of spatial, contextual, and spectral features [32]. Moreover, the 

SVM exhibited a comparable performance to the RF and outperformed the traditional multi-variable 

linear regression model (OLS) and backpropagation neural network (BPNN) for estimating maize 

aboveground biomass (AGB) using high-resolution imagery and plant height [74]. A stepwise multiple 

linear regression (SMLR) found to be susceptible to overfitting when compared to an RF, SVM, and 

extreme learning machine (ELM) for estimation of wheat AGB given a high number of variables as 

input [75]. Compared to an RF, a multiple linear regression (MLR) was highly sensitive to 

multilinearity for canopy nitrogen (N) prediction while an SVM was less sensitive [76]. Possibly, 

conventional MLs overfit with small data size, weaken with large data sizes and perform better with 

high quality data.  
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3.1.2 The restriction of algorithm design  

The effect of different designs of deep convolutional neural networks’ (DCNN) model depth, 

width, and filter size on network performance was investigated from several experiments. The results 

showed that increasing the network width and using multi-scale filters could improve the classification 

performance on high-resolution hyperspectral imagery, but not for model depth, which was found to 

be ineffective [77]. The ineffectiveness of increasing model depth may be due to various factors, such 

as limited data, model architecture, hyperparameters and data complexity. Algorithm patch restrictions 

could weaken the classification accuracy because the image input variability given different spectral, 

spatial, and temporal qualities may degrade the information gain. For instance, a UAV image was 

divided into small patches of 50 × 50 and 25 × 25 pixels for the 8 mm and 16 mm resolution, 

respectively, to feed a CNN for spinach plant counting. The patch sizes were raised to fit the CNN 

input size. The size-rise method forced the lowest patch resolution to lose much spectral detail [78]. 

Moreover, clipped patches with an excessively small window size would miss sufficient features, 

which would augment the risk of over-fitting [79]. Window patching hardens image labeling, as the 

model may count a single tree twice or count the unlabeled objects as trees (e.g., false positives as true 

positives) [33].  

3.1.3 Algorithm parameterisation  

The algorithm parameterization method proves its robustness widely as in [30]. For example, the 

quality of texture features depends on different kernel sizes; as the kernel size increases the noise is 

removed and the extracted features become more significant. However, the combination of texture 

with multi-temporal spectral information was less affected by the changes in kernel size. 

Parameterization is found to be more meaningful for SVM than RF [32]. However, generally, the 

significance of algorithm parameterization differs following extracted feature, temporal data collection 

and classifier.  

3.1.4 Learning methods  

Transfer learning is important to save the model training time and improve its performance. The 

utility of transfer learning was examined for rice panicle count, whereby the accuracy of the proposed 

CNN model was compared to four pre-trained models from ImageNet and scratch. The results revealed 

a difference of 5% to 15% in initial accuracy. After a series of image training processes, the accuracy 

difference diminishes to 1%, suggesting that the method may not be of remarkable significance [80]. 

Model training and testing strategies used to build models are found to be imperfect and prone to loss 

error. Generally, Markov Chain Monte Carlo (MCMC) and cross validation (CV) are used to train and 

evaluate models for convergence [65], overfitting, reliability, performance, and accuracy [81]. For 

example, the cross-validation training that is based on a large epoch number does not necessarily 

decrease the loss error [82]. Additionally, testing the model on different subsets (folds) of the same 

dataset produces a lower root mean squared error (RMSE) [41]. Six You Only Look Once v3 (YOLOv3) 

backbones (i.e., DarkNet53, 251 using DenseNet121, 374 using ResNet50, 346 using MobileNetv2, 

and 276 using ShuffleNetv2) were tested within different training epochs to test the algorithm 

convergence speed. DenseNet-121 yielded the fastest convergence performance. Overall, rising the 

training number of epochs was found to be significant but only to a certain extent [83].   



693 

AIMS Agriculture and Food  Volume 8, Issue 2, 687–719.  

3.1.5 The restriction of image labelling  

Image labelling is still the bottleneck of modelling and is manually done. Manual image 

annotation (labelling) is very time consuming, laborious and exhaustive [84] yet crucial to achieve 

high model accuracy. Data labelling requires a correct delineation of feature, otherwise the algorithms 

would overestimate objects [85]. In a study conducted on banana disease detection, the results show 

that false positives were higher than true positives for the detection of banana and their major diseases 

due to two reasons; the ability to label all individual and clustered banana in the images and the 

possibility that the ML algorithms recognized the nonlabelled predictions as the true datasets [36].   

3.2. Data quality 

In precision agriculture, ground data are used to develop classification or regression models and 

evaluate the accuracy of aerial-data-based predictivity. Poor methods used for measuring ground data 

can lead to many uncertainties.   

3.2.1 Experiment design, sampling, and ground measurement  

Properly designed experiments should provide a platform to systematically address the 

experimental errors. Experimental design that lacks in-field crop variations and multi-temporal data 

collection is considered another source contributing to the results uncertainty. Ground data should be 

variable enough to represent variable conditions, and thus, multi-temporal and zonal data acquisition 

are prerequisites for robust, generalizable models [37]. However, highly mixed fields could affect the 

ability of models to learn from aerial data due to the possibility of data noise and outliers occurrence. 

Sampling techniques, area and field visit frequency are other factors consider for result accuracy. The 

directed sampling technique was found to be insightful for N grapevine spatial variability compared to 

conventional random sampling, grid sampling, and sampling based on vineyard history [73]. 

Additionally, the selection of sampling areas in the field could affect the accuracy of detecting sheath 

blight severity in rice due to the cluster distribution of the disease in infected fields [86]. The estimation 

accuracy of juniper canopy cover and density were subject to the sampling techniques and timing of 

data collection [47]. In contrast, using a CNN to map black grass in winter wheat during several weeks 

between two successive years did not show any difference in model predictive ability with respect to 

time variations [38]. The imprecision of ground truth measurement related to numbers of in-field staff 

and frequency of data collection could accentuate the model uncertainty [41]. Additionally, ground 

data measurement by averaging may lead to systematic errors and the appearance of outliers in the 

data, as highlighted by [62,87].  

3.2.2. The illumination conditions 

Illumination conditions during imagery acquisition, observation angle, sensor sensitivity to light, 

UAV auxiliaries, quality of image georeferencing, imagery resolution, quality of image pre-

processing [59] and final data preparation could lead to unclear patterns from obtained data and thus 

weaken the learning of models. For example, the estimation of maize AGB at leaf scale is impacted by 

observation angle, illumination conditions, canopy structure and leaf-morphology characteristics 
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which result in systematic error [62]. For instance, a terrain laser scanner (TLS) and a UAV were 

compared for barley plant height prediction; the UAV-images registered high variations in plant height 

but a low mean of plant height values due to the imaging’s angle selection [88]. UAV auxiliaries 

such as a gimbal, GPS unit and stabilization devices are important and can affect aerial data 

acquisition [35,57]. Furthermore, the low-cost RGB sensors are sensitive to variation in lighting 

conditions, and data augmentation could not minimize the occurring error [41]. Sunshine sensors may 

be unreliable for atmospheric calibration, and further correction is needed [37,57]. Additionally, 

changes in the weather conditions could disturb crop canopies during image acquisition, which further 

affected point cloud creation during image processing [16,33,52]. Variations in solar light within a day 

increase shaded areas on imagery, which weakens the model’s learning ability [89].  

3.2.3. Resolution requirements 

The high-resolution imaging is favorable for optimal phenotyping results [48,55]. However, high-

resolution images can make the stitching process hard to achieve as the image contains many 

details [35]. Spatial resolution settings are found to be dependent on crop plants and traits. As for 

wheat AGB estimation, spatial resolution correlates with plant height [74]. Additionally, the distance 

between the UAV platform and the plant organ matters. The maturity of rice panicles was visible at 

canopy level but was not for soybean pods, hindering the model from learning features acquired at 

higher flying altitudes given the variations in height of the tested crops [41]. Lowering UAV flight 

altitude is not the appropriate solution to increase resolution since the downdraft produced by the UAV 

makes the leaves sway and thus affects the image registration process [86,90]. Additionally, flight 

speed can compromise image quality, that is, cause image blurring that eventually affects model 

accuracy [37]. Besides, a suitable ground sampling distance (GSD) setting depends on the 

characteristics of the plant traits to detect [35]. For instance, the bigger size of canola and chickpea 

flowers could be detected from 30 m above ground level, but the detection of smaller flowers was hard 

due to spectral mixing [91]. Although the high spatial resolution is prerequisite for high detection 

accuracy, the use of high resolution (i.e., 150 m, 3 cm/pixel) images was not enough to detect and 

separate weed species. Therefore, selecting the suitable method for image enhancement in classifying 

plant species is more crucial than spatial resolution [92]. For example, a super-resolution convolutional 

neural network (SRCNN) method was used to generate super-resolution images from low resolution 

and deformed images for the purpose of tomato plant disease detection [93].   

3.2.4. Imagery pre-processing  

Image registration, stitching, and alignment operations require complete georeferencing 

procedures, radiometric calibration, and atmospheric correction. Otherwise, different related types of 

distortions will remain in the output orthophotos. As such, the lack of ground control points at  late 

crop growth’s stages augments the georeferencing error and further negatively affects the point cloud 

built, which could complicate the structure from motion (SFM) processing needed for plant height 

prediction [52]. For instance, it was hard to distinguish between soybean lines and various yellow-

colored leaves in case of overlapping canopies, due to the weak image stitching resulting from 

insufficient spatial resolution, weak georeferencing, and dense cropping system [31,94]. 

Multi-band alignment can provide more descriptive information, but with fewer matching points, 
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error occurrence is more possible for classification interventions. A study for vine’s disease row 

detection applied normal and dynamic band-alignment methods; the dynamic method outperformed 

the standard method, but alignment error is still present with both due to the lack of matching 

points [58]. Further, the two-matching methods make image registration across different modalities 

hard. Moreover, blurry and shadowy images can severely affect model uncertainty [95], since 

variations in light conditions and intensity may lead to variations in image-derived features [94]. The 

segmentation accuracy depends strongly on the light intensity, the resolution of the training image, the 

sensitivity to noise and the lack of high-quality labeled training samples [80]. The complex image pre-

processing methods extend algorithm runtime which hampers real-time phenotyping and the farmer’s 

in-time benefit.  

3.2.5. Data cleaning and balancing 

Data cleaning, balancing, sample size control, data augmentation, noise and outlier removal, and 

data variation are techniques used for data preparation. Preparing the optimal data may strengthen the 

model’s performance but one should consider the model’s structure and sensitivity to different data 

patterns [96].  

The unequal distribution of classes on imagery unbalances the dataset. Unbalanced data fosters 

the model uncertainty same as the extreme data variation does. For instance, plots that contained a 

higher percentage of the same classes were removed to avoid the data unbalance issue that affected the 

CNN model training [97]. The classes with more trained elements may become more sensitive to 

identification compared to classes with fewer trained elements which biases the learning results [35,84]. 

In unbalanced dataset, the large-variation shifts between the training and the test data sets might 

weaken the model’s transferability [38]. Additionally, the unbalance among classes in the image and 

sample size might lead to low segmentation accuracy, as found in a study done for rapeseed’s leaf 

segmentation using SVM and RF [79]. In a study applying a TasselNetV2+ for plant counting, the 

significant cultivar’s variation and illumination’s change hampered the model’s ability to 

generalize [98]. Moreover, one of drawbacks of data balancing is the necessity to reduce the training 

dataset’s size when the gap between classes’ density distribution is large. Reducing the dataset’s size 

will lead to an insufficient feature learning. A study aimed to map weeds at subfield scales; the dataset 

was balanced between black-grass and winter wheat by reducing one class size for training. The 

method slightly reduced the model accuracy while increasing the misclassification rate to 22.4%. 

Therefore, data cleaning (e.g., removing errors and duplicates) was applied to the unbalanced dataset; 

the accuracy of the learned model increased by 4.6%, which potentiates the efficiency of data cleaning 

methods [38]. Overall, the unbalanced data, large sample size and large-variation shift between training 

and test data gnaw at the model generalizability. Data variation may force the model to learn features 

that generalize to all conditions. Unlike, a study aimed at identifying early indicators of water stress 

found that classifiers trained by pooling images of all species of ornamental shrubs had significantly 

lower the performance than the classifiers trained with images of just one species despite having a 

larger training set. The issue raised from the fact that symptoms of water stress varied from one species 

to the another [99]. Possibly, data variation enhance the model generalization but after cleaning and 

the data classes must remain balanced when the learned model is transferred from training to testing. 

Therefore, the characteristics of each crop’s trait must also be considered.   
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3.3. Data dimension  

The efficiency of large training datasets to enhance the modeling has been proven 

[33,37,39,40,43,45,73,100]. Thus, data augmentation methods are a resort for limited access to data 

acquisition. The final performance of the DeepLabv3+, improved RF, efficient dense modules of 

asymmetric convolution (EDA) and random forest (RF), after data augmentation, were better to 

estimate the maize-leaf coverage [65]. Nevertheless, sample size augmentation has opened access to 

outliers and noise, which may reduce the model’s accuracy [56]. For instance, the synthetic data 

augmentation method and image replication are prone to redundancy related to variation in light 

intensity variation, geometric error, blur, and shadow effects in the images. A study used a CNN with 

a dropout layer to tackle the redundancy issue; the image replicates decreased the performance of the 

model due to its high dependency on color. The combination of the dropout layer and data 

augmentation created excessive randomness which reduced the effectiveness of the model training [41]. 

Whereas, both dropout and data augmentation have positive effect on disease classification, showing 

that the model has good control over the rate of training without overfitting and without going to 

algorithm parametrization [36]. Basically, data variation reflects the study field mixture, which returns 

to the farm’s management way.    

3.4. The selection of important features  

The accuracy of modelling results does not depend on the number of features to use as much as 

the feature dependency on crop variation, crop traits, growth stage [43,82], feature selection [95], 

feature combination [101], temporal variation of data acquisition [32], classifier type [102], image 

resolution, spectral bands and bandwidth used to extract such features, and the uneven importance of 

features used to predict crop agronomic traits, so-called feature ranking approach [55,103].   

3.4.1. Combination of related features    

The features’ combination is a significant method to extract more spectral information. For 

instance, an RGB, excess green index (ExG) and excess green minus excess red index (ExGR) were 

combined to capture rice lodging by using the EDA with asymmetric convolution (EDANet) [104]. 

Features’ combination improved the automated yellow rust disease detection for rice biomass 

estimation [77,105]. The combination of hue, saturation, the visual atmospheric resistance index 

(VARI), and ExG was more significant than individual features for Italian ryegrass detection in 

wheat [54]. Feature selection also improved the prediction of fresh yield and dry matter yield of grass 

swards [19]. In contrast, the combination of spectral bands (SBs) and vegetation indices (VIs) seemed 

to lower the performance of the RF model compared to reduced error pruning tree (REPT) and K-

nearest neighbours (KNN) models for leaf N content and plant height estimation in maize [19]. The 

data dimension’s variation also relates to the high variations in agronomic traits. For instance, a model 

with twelve variables was able to predict the lower ends of canopy N weight values with a very high 

degree of accuracy although it struggled to perform similarly for higher range values [76]. Possibly, 

the feature combination has same effect as the data augmentation, which increases the information 

redundancy, noise, and outliers, which increase modeling complexity and uncertainty. Thus, removing 

the unrelated variables could mitigate the error caused by high data dimensionality [76]. In a study 
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conducted to estimate the maize AGB, the datasets of highly correlated variables with maize AGB 

performed slightly better than those of all 3D-crop height features (3D-CH) [74]. On the contrary, the 

feature selection method contributes to data processing complexity and rises the results’ uncertainty 

due to the deficiency of highly intercorrelated features [75]. Furthermore, the best variable selection 

method might not be suitable for all classifiers. For instance, after combining the blue band, Vis, and 

principal component analysis (PCA) from all UAV-features, the SVM achieved lower accuracy than 

RF for that scenario [36].  

3.4.2. The multivariate dependency of vegetation indices  

The uneven importance and multi-dependency between features is crucial element to consider for 

optimal features’ selection and combination. For example, the PCA-trained model showed a better 

performance than the raw bands based one for banana disease classification [82]. Additionally, the VIs 

were better than raw bands for nitrogen (N) and plant height estimation because the VIs enhanced 

some characteristics related to biological variables such as chlorophyll content and biomass [40] and 

were better than texture features [32,69]. In contrast, band differences performed better than the 

normalized vegetation difference index (NDVI) to evaluate late blight severity in potatoes. Although 

NDVI relates to foliar coverage, the NDVI was not directly related to diseases at early stages [106]. 

Similarly, the NDVI did not perform well compared to other VIs due to the low saturation level with 

respect to canopy nitrogen weight once the canopy of the crop becomes dense [76], as found by [26]. 

In another study, the VIs’ significance was low for modelling wheat AGB since they were extracted 

just from RGB images, and they tend to saturate at high levels of biomass. The large spectral range of 

visible bands and inaccurate spectral response functions made it hard to convert digital numbers (DNs) 

to reflectance [75]. The RGB insignificance refers to the fact that RGB are informative only for some 

crops, such as banana and maize, in contrast to legumes (i.e., potato, sweat potato, and beans), due to 

their unclear aerial profile, diversity and intercropping character [35]. In another study aimed to 

determine health status of the plants and the canopy biomass found that the VIs significance depends 

on the presence of near infrared (NIR) reflectance due to leaf cell structure rather than leaf chlorophyll 

content [57]. Additionally, vegetation indices may reflect different phenology curves in relation to 

growth stages which may be suitable to phenotype specific crop traits given the VIs-crop variation 

dependence [107]. For example, for wheat yield estimation, the normalized difference red-edge index 

(NDRE) performed well at the flowering stage, the canopy chlorophyll content index (CCCI) at the 

filling stage, and the normalised difference vegetation index (NDVI) at the joining and booting 

stage [108]. In addition, VIs are sensitive to environmental conditions [36]. Additionally, the image 

resolution may strengthen the optimal extraction of specific features such as vegetation indices. A study 

compared different VIs derived from UAV, Sentinel 2 (S2), PlanetScope (PS), and WorldView-2 (WV-

2) on pixel-based banana classification under mixed-complex landscape. The results show that 

enhanced vegetation index (EVI) and triangular greenness index (TGI) were significant for medium 

resolution images, while chlorophyll index green (CIG) and ratio vegetation index green (RVI-G) 

derived from high (PS, WV-2) and very high-resolution UAV sensors are more promising for the 

detection of banana plants and their major diseases [36]. 
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3.4.3. The multivariate dependency of spatial features  

Same as the VIs, the importance of spatial features is multivariate dependent. For example, the 

hyperspectral-3D features were more significant for AGB estimation than N in barley [63]. Moreover, 

the 3D features may be significant if they complement other features combination or changes in data 

acquisition date [19]. For instance, a study observed a limited significance of 3D-based plant height; 

adding this variable to the normalized green-red difference index (NGRDI), excess green-red index 

(ExGR), and vegetative index (VEG) increased the coefficient of determination (R²) just by 0.03 for 

fresh and dry maize AGB and the root mean squared error (RMSE) by 0.02 kg m-2 for fresh maize 

AGB prediction [109]. In another study conducted to predict cover fractions of plant species, the 3D 

features did not improve the model accuracy significantly, possibly because of the redundancy of 3D 

information on the canopy structure [92]. Similarly, the 3D features exhibited a low contribution 

towards maize AGB estimation [74]. Also, the canopy height model (CHM) is of medium significance 

for model leanings since it varies across growth stages [86]. Furthermore, the PHCSM (i.e., the plant 

height extracted from crop surface model) was found to be insignificant because it hugely depends 

on the image resolution [81]. ALSCHM (i.e., a crop surface model extracted from the imagery of 

airborne laser scanning) did not give any contributions when added to spectral bands for early 

detection of invasive exotic trees because of the short height of the surrounding weeds and unmixed 

landscape [110]. Generally, the importance of 3D features strongly depends on the SFM-building of 

3D, which is impacted by the technical and field conditions Sections 3.2.1 and 3.2.5.  

3.4.4. The multivariate dependency of colour spaces  

The multivariate dependency may be applicable for color spaces. For instance, study compared 

the contributions of RGB, the hue-saturation-value (HSV) and L*a*b (i.e., L* for perceptual lightness, 

a* and b* for the four unique colors of human vision: red, green, blue, and yellow) color spaces to 

discriminate among rice, weed, and soil classes in the upland rice field using a simple linear iterative 

clustering based random forest (SLIC-RF). The results show that Rstd, Rmin and Gstd were important in 

contrast to the blue band and Smax, Vmin, Hmed, Hmax and Sstd for HSV SLIC-RF, and L*min, a*min, a*std, 

L*std and a*med for L*a*b for SLIC-RF. Although, HSV was the most significant color space for the 

study’s aim [69]. In another study, RGB bands were slightly better than RGB-based L*a*b color space 

for disease detection [111]. The hue-intensity-saturation space (HIS) extracted from RGB, and 

multispectral images could partially distinguish the canopy changes caused by the disease.  

3.4.5. The multivariate dependency of texture features  

Along the same line, texture features depend strongly on the high resolution of image [57], crop 

variation [95], crop trait and spectral band. A study investigated the potential of textural information 

to predict AGB and N fixation (NFix) in clover-grass and lucerne-grass. The texture features improved 

the model’s performance for fresh and dry matter but not for NFix. For fresh and dry matter, the RF with 

texture improved the relative root mean square error percentage (rRMSEP) for clovergrass (CG) more 

than the lucernegrass (LG), while the PLS model resulted in a higher rRMSEP. For NFix, the RF without 

texture exhibited a lower rRMSEP for CG than for LG, and the PLS with texture achieved a lower 

rRMSEP for LG than for CG without texture. Generally, the RF-rRMSEP was the lowest for the whole 
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dataset without and with texture, respectively. The red band was the best to generate optimal texture 

for fresh and dry matter compared to green, red-edge and NIR but for NFix, RE and NIR were the 

best [37]. Furthermore, the window size used to extract texture features can impact the feature’s 

importance; increasing the window size generates coarser texture, and vice versa [95]. Several bands 

also show the same impact. A study used only individual bands to generate a texture feature to segment 

plastic mulched farmland, which results in coarse segmentation due to the low information provided 

by separated bands (i.e., 490 nm, 550 nm, 680 nm, 720 nm, 800 nm, and 900 nm) [34]. Besides, texture 

features were found to be the second important input variable (complementary) to improve the SLIC-

RF model when compared and added to VIs and color spaces for weed/crop segmentation [69]. A 

similar finding is reported in [32] and [34]. In another study, the texture of canopy-structure features 

produced poor performance for N estimation when regressed alone. However, when adding them to 

the VIs, the model performance improved due to the weakening effects of soil background and 

saturation issues addressed by the VIs [26].  

3.4.6. The potential of spectral range to provide information  

As aforementioned, spectral range may determine the feature’ importance differently; each 

range’s band contributes differently in feature extraction output. For instance, a study found that the 

visible range was better than the infrared range for the detection of vine disease, but the fusion of these 

two ranges outperformed their individual use. Possibly, the visible image provides a better colorimetric 

description than the infrared image [58]. On the contrary, the near-infrared band exhibited the largest 

absolute difference between the spectral reflectance of low-N and high-N classes, followed by the red-

edge, green, red, and blue bands, which is similar to what was found in [47,73,81]. Moreover, 

hyperspectral bands may lead to rich spectral information [34], but the use of blue, green, red, red-

edge and near infrared might not be sufficient for N assessment in young leaves with less chlorophyll 

since the spectral reflectance of young leaves could be similar to leaves with less N concentration [73]. 

A similar finding is reported in [112]. The NIR range was more significant than RGB for wilt radish 

detection, and the long path for RGB processing diminish the usefulness of the RGB range unless 

considering their cost-based availability [113]. Thermal bands may be insufficient to distinguishes 

disease classes unless added to multi-spectral bands [68]. In a study done for vine-crop water stress 

index (CWSI) estimation from stem water potential (SWP) by using thermal infrared bands (TIR), the 

higher shadowed canopy levels present low temperature, which alleviate the significance of TIR to 

correlate with CWSI and SWP, leading to its combination with other spectral bands such as visible 

range bands [114]. Multi-band fusion may strengthen single bands since it could provide more spectral 

information and generate an optimal feature [115]. However, this method is prone to the impact of the 

radiation characteristics of each band and the uncertainty of remote sensing data, which requires 

studying the spatio-temporal matching of the data [116]. Furthermore, each band is sensitive to specific 

agronomic trait [117]. Additionally, a narrow band width of 10 nm in the MicaSense red-edge band 

may not be able to capture the red-edge position, which reduced the model’s performance to predict 

the corn canopy’s N in a study performed by [76].  

3.5. Field conditions, farm management and cropping systems   

Remote sensing technologies allow phenotyping crop traits by measuring the spectral reflectance 
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at different levels of plant organs. Nevertheless, the accuracy of in-field data acquisition depends on 

the crop’s surrounding field conditions such as soil color variation [49], atmospheric conditions [27], 

scene plantation landscape [36,42], presence of water [45], farm management such as field location 

and area [34], farmland topology [47], and cropping systems [21,43,44,54].  

3.5.1. The effect of field conditions on reflectance measurement   

A convolutional autoencoder (CAE)-CNN model’s robustness was tested on three conditions: two 

different soybean trials, two different field locations and two different vegetative growth stages. The 

model performed well for all experiments for the different soybean trails and vegetative growth stages 

but only for one field location [97]. In another study, the ears of winter wheat detected by deep DCNN 

and fully connected convolutional networks (FCN-8s) at the flowering stage were very similar to 

leaves because of noisy imagery captured under field conditions. The strong illumination and clutter 

background brought weak color brightness, which hindered the DCNN and FCN-8s from 

distinguishing different classes [100]. Generally, soil texture, pH value, weather, water availability and 

nutrients have a more balanced impact on crop growth which may lead to uncertain results when 

omitted from the study. As such, in a study of soil salinity inversion in winter wheat the results show 

a limited relationship between the VIs and soil salinity for different environmental conditions [116].  

3.5.2. The effect of farm management on reflectance measurement   

Fertilization management could be a good reason for increasing results uncertainty. A study 

estimated plant height and leaf N content of maize by using RF algorithms under the impact of two 

topdressing fertilization rates of N. The RF model had a low consistency for plant height prediction as 

the model fitting line was loaded with outliers. However, for the leaf N content, the high and low rates 

of N were separated by the model due to the impact of the two rate levels of fertilization. The N 

fertilization also shapes model performance differently with different agronomic traits [40]. Similarly, 

a study regressed VIs, the canopy height model (CHM), RGB, and NIR bands to estimate grass sward 

biomass under six N fertilization rates applied on four harvest dates per season. The results showed 

that both dates and rates of N applications affected the correlations between VI features and height 

features [19]. On the other hand, in a study carried on coffee crop, the correlation between N and SPAD 

was negative. This could be due to the transportation of nutrients caused by the surface runoff and 

rainfall that accumulate the nutrients in the lower parts of the farm area. In this study, the land slope 

was identified as a primary factor influencing the model’s performance [22]. On the contrary, the N 

fertilization treatment rates and seedling densities improve the universality of the model [108]. 

3.5.3. The effect of cropping methods on reflectance measurement   

Furthermore, dense cropping overlaps the canopy, which may reduce the accuracy of class 

separability [22,48,78,118,119]. Different cultivars usually share common plant characteristics that 

exhibit similar reflectance, which may hinder the optimal identification and classification of visual 

patterns [32]. For example, a U-Net CNN could separate the object boundaries between two different 

classes of sorghum, but it could not detect overlapping sorghum panicles [33]. For the density of rice 

panicle detection, the results show that plots of rice treated with N produced more panicles compared 
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to untreated plots, and thus, denser plant canopy tended to reduce the algorithm’s classification’s 

accuracy [80]. In another study, the distinction of legumes from crops such as maize was hard because 

of their unclear spectral profile due to intercropping [35]. Similarly, the accuracy of tree and tree’s gap 

count for tree cultivated on the normal spacing blocks was found low; the crop density lowered the 

model performance for the high-density spacing blocks [85]. However, trees detection and counting 

could be feasible at the late growth stages given that some trees with high yield tend to alleviate canopy 

area expansion. On the contrary, some crops tend to extend canopy density at the maturation stage, 

which requires extensive knowledge about species characteristics to differentiate [120].  

The challenges to distinguish overlapped classes may be solved via classifiers applied. For 

example, a CNN followed by a classification refinement using super pixels derived from a simple 

linear iterative clustering (SLIC) algorithm is used to detect citrus from other crop trees. The CNN-

SLIC reduced the number of misclassified citrus trees in a complex cropping farm [66]. Also, the 

performance of the DeepCount model did not degrade due to the complex canopies with a high level 

of wheat ear density [61]. Moreover, a YOLOv3 performed well when cotton plants ranged between 0 

and 14 per linear meter of row [121].  

The presence of weeds in the background may have the similar impact to that of overlapping 

crops, making it hard to distinguish crops from the background [46,66,102]. For example, a study 

applied the Otsu thresholding method to ExG to create a dataset of images devoid of weed-crop 

backgrounds. The parts of plants that were less green were considered soil, which indicates the 

weakness of the Otsu-ExG method. Further, a CNN was applied to classify spinach and bean crops. 

The inter-row and intra-row weeds were over detected at the edges of the crops where the CNN window 

could not cover the plant as whole [102]. In a study that used a CNN to map crop trees, the 

characteristics of the textural and structural differences of the target objects defined the accuracy of 

the CNN compared to the surrounding vegetation [92]. Additionally, weed height may impact weed 

crop classification [85]. In a study aimed at detecting and mapping early weed between and within 

crop rows from two flight altitudes, the RF-OBIA could generate a coarser delineation of plant objects 

from the higher altitude image but could not detect weed at an early stage given the weed’s size which 

is similar to that of young trees [46]. Therefore, the imagery resolution affecting the weed size may 

impact the model’s performance. 

Crop characteristics vary following the variation of physical and biochemical traits of plant organs. 

This is the reason why spectral reflectance changes among growth stages. In a study done for detecting 

N stress, the color of leaves showed clear variations given different growing stages, which affected the 

segmentation results based on the Hue-based segmentation algorithm (HSeg) [79]. Additionally, the 

NDVI, added to multispectral features for vegetation cover estimation, exhibited a visible variation 

from October to July imaging for all tested crops: maize, beans, bananas, cassava, potatoes, and sweet 

potatoes [47]. In a study that examined the correlation between yield and visual ratings of flower 

features, the correlation was weak for spring crops such as canola, peas, and chickpeas (r between 0.25 

and 0.48), but strong for winter canola (r up to 0.84) [35]. In another study done for wheat growth 

monitoring and yield estimation, the results show that flowering stage was the best growth stage to 

build the yield estimation model [108]. Additionally, a DCNN model provided more accurate 

detections of yellow rust disease on datasets collected at late stage of winter wheat [77]. In a study 

where the red-edge chlorophyll index CIred-edge of Sentinel-2 and UAV were used for wheat leaf area 

index retrieval, the features were correlated at advanced stages but not at an early stage due to the soil 

effects that clearly changed the reflectance and VIs values of the wheat canopy that were highly 
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heterogeneous across the field [122]. On the other hand, the correlation between cassava dry matter 

accumulation and VIs at the late growth stages was nihilistic because of leaf senescence [82]. The same 

issue was detected in [50]. The addition of plant senescence reflectance to VI calculations, as 

vegetation decreases in leaves in late stages, could enhance the correlation [16]. Another study 

compared the correlation between TLS- and UAV-derived plant height; the correlation was lower for 

later growth stages. This is possibly due to the change in canopy geometric properties at later growth 

stages [88]. Additionally, a CNN model failed to differentiate between wilt disease regions and the soil 

regions due to similarity of textures and color when the regions were imaged with RGB bands at the 

late stages [113]. 

On the other hand, one growth stage may not be able to provide enough information for 

modeling [17,34]. For instance, in a study to identify changes in wheat leaf area index (LAI), the results 

show that the error of the single-stage calibrated model (NRMSE = 17%) was the double of the two-

stage calibration (NRMSE = 8%) [122], the same was confirmed by [121] for cotton plant counting. 

On the contrary, the R2 of plant N uptake for individual rice crop growth stages was above 0.60, 

suggesting that single growth stages may perform well in some cases [43]. Overall, the selection of 

optimal growth stages for crop trait phenotyping was the best solution for plant density in maize [48].  

Land preparation such as tillage or furrow irrigation could also lead the ML algorithm to 

overestimate the results [46]. In a study examining the effect of tillage methods on the estimation of 

sugarcane aboveground fresh weight, the tillage intensification reduced the model’s potentiality to 

estimate the fresh weight. The impact rate was translated in an RMSE of 16.84 kg m-2 and 17.43 kg m-2 

for individual tillage and intensive method, respectively [123]. Furthermore, the high tillage frequency, 

trees being far from roads, non-tilled areas and absence of light limitation hinder the spreading and 

reproduction of black locust. People trampling and vehicles rolling changed the spectral signature of 

the crop being close to the road, which might weaken the estimation performance [124]. On the 

contrary, in another study for predicting within-field variability in grain yield and protein content of 

winter wheat using UAV imagery and a linear regression model (LM), an SVM, an RF and three 

artificial neural networks (ANNs), the lower yield and protein content occurred approximately 5 m 

from the edge of the fields while the higher yield occurred in strips along the tractor’s direction of 

travel [81]. Additionally, the inner-row path and vegetation leads to biased cropland assessment, that 

may be due to feet compaction [125]. Likewise, the yield loss was positively correlated with the 

severity of the wheel compaction, as the spectral reflectance might not be able to provide complete 

information in the compacted part of the field and thus reduce the yield predictive ability of the 

model [115]. In another study conducted to predict cover fractions of plant species by means of a CNN, 

the results show that the predictive accuracy increased with increasing tile size (i.e., CNN image input 

size) of training sample images; reflecting the increased spatial context captured by a tile since larger 

tile size includes more spatial information [92]. Additionally, farmlands with higher degree of 

fragmentation and scattered maize fields in small patch sizes increased the difficulty of remote-sensing 

identification compared to concentrated fields [17]. Nevertheless, the field multi mixture may include 

confounding factors and noisy data that weaken the model built as found in [27].  
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Figure 2. A scheme of the main factors affecting the efficiency of ML algorithms in UAV-

based precision agriculture. 

4. Discussion  

The basis of UAV precision agriculture is to use UAV spectral information and MLs to observe, 

measure, and analyze crop traits and their interactions with the surrounding environment. UAVs have 

been proven to provide valuable spectral analytic information. MLs are being used as efficient methods 

for spectral data analysis. However, UAVs might not provide exact data measurement, which gives a 

data of high dimension and low quality or low dimension and low quality. Thus, it’s most probable that 

MLs can lead to uncertain results in modeling.  

Generally, the uncertainty of the results in modeling may results from three main causal-phases: 

(i) field conditions, (ⅱ) farm practices, (ⅲ) data collection, preparation and analysis. In brief, soil 

salinity, content of organic and inorganic nutrients, soil types, soil density, surface and groundwater, 

solar radiation, wind, humidity, temperature, light, shadowing, cropping systems, planting density, 

weed presence in the farm, tillage time, tillage’s engine used, fertilization rates and timing, and 

irrigation time and rates directly affect the root and shoot systems of plants. The variation of these 

conditions from field to field controls the physicochemical and morphological traits of the plant. The 
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reflectance also varies accordingly. The result of an experimental design is subject to field conditions 

and farm practices. Thus, different experiments with different control factors give different results 

which might confuse the overall contribution of different studies. Overall, field conditions, farm 

management and farming practices are not controllable. Thus, the main interest should be given to how 

to improve the data collection, preparation and analysis. In other words, to improve data quality. There 

are several novelties to import into the precision agriculture domain, such as smart sensors, 

mechatronics, internet of things (IoT) and AI for high-quality data collection and data transformation 

methods for data preparation and analysis. 

4.1. Novel-imaging smart sensors  

Recently, the use of sensors such as light detection and ranging (LiDAR), computed tomography 

(CT), positron emission tomography (PET), and magnetic resonance imaging (MRI) [126] has gained 

significant attention in agriculture. However, smart sensors are an additional benefit to add. Smart 

sensors are devices that use embedded miniature electronic devices and wireless networks to monitor 

and collect information from various physical environments with high accuracy. Smart sensors can 

automate farm activities, examine the health status of plants, and monitor plant growth in hydroponics 

and aeroponics [127]. Additionally, smart sensors strengthen the early detection and diagnosis of plant-

related biotic and abiotic pressures, weed mapping, yield monitoring and mapping, monitoring variable 

rate fertilizers, spraying, and mapping salinity.  

Smart sensors can collect spectral information from the thermal, multispectral, hyperspectral, and 

visible spectrums. Hyperspectral acquisition modes include: (i) point scanning (whiskbroom) mode, 

(ⅱ) line scanning (push broom) mode, (ⅲ) plane scanning (area scanning) mode and (ⅳ) single shot 

mode. The whiskbroom scans at one point at a time which requires multi-axis scanning and time but 

provides high-resolution, which is required for pest detection and classification at the asymptomatic 

stage. This push-broom method operates simply and can increase the signal-to-noise ratio (SNR). 

Setting the optimal exposure time is crucial for band saturation with this method. The plane method 

scans the entire 2D area once at each wavelength interval, which requires several images captures to 

create the spectral depth of the hyperspectral data cube. Moreover, the target should be stable for better 

spatial and spectral resolution results. Spatial and spectral resolution is required for low-height and 

densely cultivated crops. The single-shot sensor collects all the hyperspectral data cube within a single 

integration period but provides lower spatial resolution. Multispectral imaging provides numerous and 

narrower wavelength bands that sometimes overlap, as is the case with the visible spectrum [129]. 

Thermal sensors performance depends on the sensor type, topology, and heat detection linearity. 

Visible spectrum ranges between (400–700 nm); this range can give detailed description of crop trait 

variation because plants have blue light dependent and non-blue light dependent physiological 

functions that control the building and transformation of carbohydrate for plant growth. Generally, 

each sensor category has some privileges and drawbacks associated with its use and each type’s 

characteristics. Table 1 describes in detail the privileges and drawbacks of each category. 

The smart sensors connected with wireless networks can monitor and collect information from 

various physical environments within different spectral ranges. The smart sensors can provide big data 

in real time with high accuracy, which provides a dataset of dense patterns. Consequently, datasets 

with dense patterns allow MLs to learn solid models and give certain results. 
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Table 1. The description of smart sensor types.  

Sensor type Group  Descriptions  Reference  

Smart 

thermal 

sensors and 

probs 

IC (Integrated 

circuit) sensors 

 

 

 

−55 ℃ to +200 ℃ (range), of good/best accuracy, small size, easy to use, no calibration software is needed, topology of point-to-point, multidrop 

or daisy chain and low to moderate price 

[128] 

Thermistors 

 

Range of −100 ℃ to +500 ℃, calibration-dependent (low linearity) accuracy, small size, moderate complexity, point to point topology and low to 

moderate price  

[128] 

RTDs 

(Resistance 

temperature 

detectors) 

Range of −240 ℃ to 600 ℃, best accuracy, moderate size, complex to use best linearity (no calibration is needed), point to point topology but 

expensive  

[128] 

Thermocouples Range of −260 ℃ to +2,300 ℃, better accuracy, large size, complex to use, better linearity, point to point topology but expensive  [128] 

Multispectral  

sensors  

Efficiently capture nearly a dozen of relevant health indices, variants include (e.g., RGB, NDVI, NDRE) 

Actively scout fields with live-streaming video options 

Quickly integrate with DJI M200 and M210 drone series using Lock-and-Go gimbal technology 

Seamlessly flow data to field-agent web, mobile, and desktop platform; generate shapefiles, support prescription development, and telematics integration 

Minimize the effects of plant damage by quickly and accurately detecting plant stress 

Capture comprehensive plant data to help identify productive plants suitable for their environments and select desirable crop traits to improve outcomes 

The powerful multispectral data delivered by the 6X allows for you to pinpoint areas of low nutrient availability 

Quickly identify comprehensive field health, monitor the effects of applications throughout the season and determine the need for future applications with precision 

(https://www.p

oladrone.com/) 

(https://www.h

yspex.com/) 

Hyperspectral 

sensors 

Designed to minimize optical distortions down to 10% of a pixel over the full spectral and spatial range 

The spatial and spectral resolution is optimized to be as similar as possible for all points in the FOV and all spectral bands 

Hyperspectral camera with an onboard computer and an integrated navigation system, all fitted into a self-contained module 

Support dual IMU which is especially important when operating with the gimbal to compensate for the dynamic lever arm 

Capture (sense) images 

Enhanced sensor operation, such as to enable high dynamic range acquisition 

Perform spatial-temporal analysis 

Support decision-making based on the outcome of that interpretation 

(https://www.p

oladrone.com/) 

(https://www.h

yspex.com/) 

(Arena & 

Patanè, 2009) 

 
Continued on next page 
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Sensor type Group  Description  Reference  

RGB smart 

sensors  

Resolution of 0.2 mm 

Maximum of 4000 tips per interval 

2 m cable 

Calibration accuracy ±1.0% at up to 20 mm/hour (1 in./hour) 

Operating temp range: 32 to 122 ℉ (0 to 50 ℃) 

https://www.ins

trumart.com/ 

Table 2. Summary of robotics to use in precision agriculture.  

Robotics  Description Reference 

Autonomous tractors These are self-driving tractors equipped with sensors and GPS technology to navigate through fields and perform various 

tasks, such as planting, spraying, and harvesting. 

https://www.bearflagrobotics.com/autonomous-

farm-tractors/ 

Drones Drones equipped with cameras and sensors can be used to collect data on crop health, soil moisture, and other 

environmental factors. This information can be used to optimize crop management. 

https://www.dji.com/camera-drones 

Robotic harvesters These machines can be used to pick and sort fruits and vegetables, reducing the need for manual labor and increasing 

efficiency. 

https://www.agrobot.com/e-series 

Autonomous weeders These machines can use machine learning algorithms and computer vision to identify and remove weeds, reducing the 

need for herbicides and manual labor. 

https://carbonrobotics.com/autonomous-weeder 

Robotic greenhouses These systems can be used to control temperature, humidity, and other environmental factors in indoor growing 

environments, increasing crop yields and reducing water and energy consumption. 

https://www.postscapes.com/smart-

greenhouses/ 

Autonomous sprayers These machines can be used to apply pesticides and other chemicals to crops, reducing the risk of human exposure and 

increasing efficiency. 

https://www.agromillora.com/olint/en/ 

Soil monitoring robots These machines can be used to analyze soil composition and moisture levels, helping farmers make informed decisions 

about crop management. 

https://www.agritechfuture.com/ 

Livestock monitoring 

robots 

These machines can be used to monitor the health and behaviour of livestock, helping farmers detect and prevent disease 

outbreaks and increase productivity. 

https://www.dilepix.com/en/ 

Autonomous seeders These machines can be used to plant seeds with precision and accuracy, reducing waste and increasing crop yields. https://www.futurefarming.com/ 

Fruit picking robots They provide the farmer with invaluable data, including real-time updates on harvesting progress, duration, quantity 

harvested, and cost. 

https://www.weforum.org/ 
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4.2. Mechatronics technology  

Robotic technologies have emerged to automate plant trait measurement and expand 

access to field imaging within successive growth stages. Robotics accelerate data acquisition 

with high repeatability. Additionally, robotics allows for the collection of ground data from 

large-scale screening which increase the sampling representativeness regarding the entire field 

population. Higher sampling’s representativeness and frequent access to data acquisition 

provide a large dataset with rich visual and quantitative patterns, which make the learning task 

fruitful [130]. Thus, robotics technology should be an investment focus in precision agriculture.  

There are several integrated applications that use the IoT and mechanization for remote 

control available for different uses, such as computer-aided design and modeling (CAD/CAM) 

applied to develop the 3D model of the robotic platform. The control system incorporates an 

embedded system to accommodate motion and operation control software, which is interfaced 

with the main processing computer. This later runs the measurement device, such as lidar, with 

a positioning system and device, such as the real-time kinematic (RTK), with a global 

navigation satellite system (GNSS) [131]. Additionally, autonomous tractors with the proper 

rigging are used for several agricultural applications. Tractors can till, fertilize, plant, spray, 

weed, mow, haul and harvest. Such flexible and automated use of tractors allows for increased 

productivity, improved safety and reduced costs for many agricultural procedures. These 

tractors are fully equipped with vision and proximity sensors that allow the post mechanization 

of the farm field. Additionally, automated tilling and sowing machines are available for post-

cultivation processes. The machine allows for a quick, low-cost and controlled tillage depth, 

sowing rate and density. Furthermore, a Zigbee microcontroller and a well-installed network of 

cheap sensors within the field can be used to control and monitor each’s plant environment. 

Robots that use one gray-level vision sensor can be used for spraying, fertilization, weed 

removal and balanced irrigation [132]. Table 2 shows more details about these technologies.  

The combination of IoT with robots and sensors allows for the best crop monitoring of 

plant environments and dense, exact data collection. The data with such quality allows quite 

integrated analysis. This latter approach covers all sides when modelling crop traits, gives the 

best possible results, and reduces uncertainty. 

4.3. Artificial intelligence (AI) and internet of things (IoT)  

The digitalization of data collection allows massive data transfers, real-time collection and 

makes the collection error rates in showing predictable at detailed levels. Furthermore, the 

digital mechanization of farm practices reduces the error sowing and fertilization, which saves 

the cropping and farm management materials. Rather than the applications that can improve the 

interaction between the small-scale farmers and the farming, there is more important software 

that can facilitate the control, monitoring, and examination of in-field installed devices and 

robots. Agrivi, Granular, Trimble, Farm-ERP, Farm-Logos, Ag-World, Agri-Webb, and 

Conservis are commonly used to optimize, automate, and schedule the production activities, as 

well as for data storage and analysis. These software are of administrational commercial format.  

Rather, the linkage of smart sensors with wireless networks and IT software allows a real-
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time and frequent monitoring of canopy development, including parameters, such as 

phenological development including germination, leaf development, flowering, fruiting, 

maturity, and senescence, which give detailed information about plant trait variation at each 

stage. It allows to examine the health status of the plant with regard to the morphological 

parameters such as height, leaf area index, ground cover fraction, storage content, and biomass, 

which help predict the yield potential of the plant. The volume and quality of such information 

allow the researcher to get precise modelling results. 

4.4. Big data transformation and analysis  

Data cleaning and preparation are requirements before the analysis. Several analysis 

methods and algorithms were incapable of modeling different sorts of data. Data transformation 

is a powerful method to prepare data of different formats into a format that can be modelled by 

some powerful algorithms. For example, CNNs are designed for visual image recognition with 

a high ability to handle big data and reduce model overfitting. However, the performance of 

CNNs regarding regression-tabular data is less inspected. Regression is crucial in precision 

agriculture. Therefore, in this section, we review several algorithmic methods that are under 

assessment to transform different data formats to CNNs’ input format so that other domains 

other than agriculture can benefit from it.   

4.4.1. Deep-Insight method  

Basically, CNNs are designed for visual image recognition with a high ability to deal with 

big and complex data. The concept of Deep-Insight is to first transform a non-image sample 

into an image form and then supply it to the CNN architecture for prediction or classification 

purposes. The method transforms a non-image sample in the form of vectors into meaningful 

images for the CNN application. This method causes the CNN to use all the versatility attributes 

used in image-data classification [133]. All programming languages (e.g., Python) and 

integrated development environments (e.g., Colab) can be used for this method application.  

4.4.2. Image generator for tabular data (IGTD) algorithm  

CNNs show a high performance in visual image recognition. However, most tabular data 

do not assume a spatial relationship between features and, thus, are unsuitable for modelling 

using CNNs. In response to the problem posed, the IGTD method transforms tabular data into 

images by assigning features to pixel positions so that similar features are close to each other 

in the image. The algorithm searches for an optimised assignment by minimizing the difference 

between the ranking of distances between features and the ranking of distances between their 

assigned pixels in the image [134]. All programming languages (e.g., Python) and integrated 

development environments (e.g., Colab) can be used for this method application.  

4.4.3. Tabular convolution (TAC) for CNN classification  

Convolutional neural networks (CNNs) represent a major breakthrough in image 

classification. However, there has not been similar progress in applying CNNs, or neural 
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networks of any kind, to the classification of tabular data. A novel method, tabular convolution 

(TAC), was developed and evaluated for the classification of such data using CNNs by 

transforming tabular data to images and then classifying the images using CNNs. The 

transformation is performed by treating each row of tabular data (i.e., a vector of features) as 

an image filter (kernel) and applying the filter to a fixed base image. A CNN is then trained to 

classify the filtered images. Further, the TAC was applied to the classification of gene 

expression data derived from blood samples of patients with bacterial or viral infections. The 

results demonstrated that off-the-shelf ResNet can classify the gene expression data as 

accurately as the current non-CNN state-of-the-art classifiers [135].  

Overall, given the power of these algorithms in image pattern classification, data 

transformation methods can extract features from tabular discrete and continuous data and then 

arrange them in a multidimensional image space to be classified later with a convolutional 

neural network. The transformation method allows for mitigating modeling error and lower 

uncertainty in modeling results. All programming languages (e.g., Python) and integrated 

development environments (e.g., Colab) can be used for this methods application. 

5. Conclusions  

This study aims to review different uncertainty sources affecting the operational efficiency 

of ML algorithms in regression and classification interventions examined among the crops of 

interest in UAV-based precision agriculture; (i) field conditions, (ⅱ) farm practices, ⅲ) data 

collection, preparation and analysis were found to be the main sources of uncertainty in 

modelling results. Field conditions are uncontrollable, but farm management can be partially 

improved to mitigate the uncertainty. Thus, the main interest is driven by the novelties that can 

improve the data collection, preparation and analysis processes to obtain high-quality data. The 

use of UAV-mounted smart sensors, mechatronics, the IoT and AI can strongly provide exact, 

real-time, dense, and high-quality data. High-quality data can strongly reduce the uncertainty 

of results in modelling, and precision agriculture. By figuring out the sources of uncertainty 

that affect the operational efficiency of MLs in regression and classification interventions in 

agriculture, it might be able to make better decisions about how to use MLs in precision 

agriculture studies in the future. This would allow researchers to choose algorithms that work 

best in different study contexts.  

The future of ML in precision agriculture is promising due to advancement in technologies 

such as UAV-mounted smart sensors, mechatronics, the IoT and AI which are expected to 

provide better and more precise data, improving the efficiency and accuracy of ML algorithms. 

In the future, ML algorithms are anticipated to be customized and tailored to specific crops, 

farm management practices and field conditions enabling researchers to choose the best 

algorithms for different study contexts and provide better predictions and insights. 
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