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Abstract: The objectives of this study were to assess the microbial quality of honey, evaluate the effect 

of microwaves on microbial survival, and assess the antibacterial activity of honey. Bacteria, yeast and 

mold were evaluated in samples before and after microwave treatment. Dominant bacterial 

contaminants were also identified. The antibacterial activity of honey was assessed against nine 

pathogens using an agar well diffusion assay. The minimum inhibitory concentration was determined 

for four honey samples that exhibited the highest antibacterial activity. In addition, one sample of 

Manuka honey was tested to compare its microbial load as well as its antibacterial activity to local 

honey samples. Sequencing using 16S rRNA gene was used for the identification of dominant bacteria. 

The average standard plate count, yeasts and molds were 286.5, 161.0 and 25.5 CFU/g, respectively. 

Microwave treatment decreased microbial populations gradually with increasing power levels and 

exposure times. The present study indicated that raw honey had a significant antibacterial activity 

which decreased following microwave treatment. The identity of 125 isolates was confirmed with 

Bacillus being most frequently isolated. 
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1. Introduction 

Honey is mainly composed of (%): monosaccharides including fructose (38.19), glucose (31.28), 

and disaccharides such as maltose (7.3), sucrose (1.3) and water (17.2). In addition, it contains trace 

amounts of enzymes (α-amylase, α-glucosidase, glucose oxidase and catalase), proteins, amino acids, 

phenolic compounds, carotenoids, minerals, vitamins, colloids, sugar alcohols, pigments, flavor and 

aromatic substances [1,2]. Honey components vary from one type to another because of botanical 

origins, geographical regions, bee species, entomological sources and other factors such as processing 

methods, storage conditions, climatic changes, and maturity [3–5]. It is characterized by sensory, 

physicochemical, and microbiological characteristics which help determine its quality [6,7]. The water 

activity (aw) of honey ranges between 0.5 and 0.65, the higher aw results in microbial spoilage [8]. The 

majority of the antibacterial activity and medicinal properties of honey against a broad spectrum of 

bacteria, including multidrug-resistant, is likely due to various components, such as hydrogen 

peroxide (H2O2), methylglyoxal (MGO), bee defensin-1, as well as phenolic compounds (flavonoids 

and phenolic acids) [9,10]. Furthermore, the hygroscopic nature of honey is a unique property that is 

expressed as the honey’s ability to absorb and retain moisture or expel water molecules into or out of 

the surrounding environment, which adds to its antibacterial activity [11]. 

Microbial and chemical contamination of honey is due to several sources. Primary sources are those 

present in pollen, such contaminants originating from dust, other insects, and from the GIT of the honeybee 

itself [11]. Secondary sources include chemicals such as pesticides, industrial pollutants, radioactive 

pollutants, and heavy metals that might occasionally contaminate honey during collection or processing [12]. 

Most microbes present on or in honeybee GIT reproduce under aerobic conditions, while a few 

reproduce under anaerobic conditions [13]. Various bacteria have been isolated from honey including 

Bacillus, Clostridium, Acinetobacter and Micrococcus [12,14–16]. Additionally, yeast and mold have 

been isolated. Mold growth may lead to the production and accumulation of mycotoxins such as 

aflatoxin B1 which can not only affect the entire bee colony but can also render it dangerous to 

consume [17]. Moreover, honey may contain Clostridium botulinum spores that may lead to food 

poisoning and is considered a possible cause of sudden infant death. It is for this reason that 

incorporating honey in food prepared for infants under one year old is not encouraged [18,19]. Due to 

the propensity of bacterial contamination, it may be necessary to treat honey to increase both shelf life 

and safety especially if given to neonates and the immunocompromised [20]. At present, several 

methods have been proposed to decontaminate honey including high-temperature short-time 

pasteurization (HTST) [21], ultrasound [22], and microwave [20]. 

Microwave technology emerged in the mid-1980s as a quick method of cooking and heating of 

food [23]. Microwave is a term expressing the electromagnetic spectrum, with wavelengths ranging 

from 1mm to 1m and frequencies between 0.3 and 300 GHz [24,25]. Two frequencies are normally 

used in microwave heating; 0.915 and 2.45 GHz which are reserved by the US Federal 

Communications Commission (FCC) for industrial, scientific, and medical (ISM) purposes [26]. 

However, lower frequency microwaves are better suited for penetration [27]. Domestic microwaves 

use a 2.45 GHz frequency, while industry uses either a 0.915 or 2.45GHz frequency. Domestic 

microwave is primarily used for heating and reheating food. At the industrial level, microwave heating 

has been applied to food processing practices such as drying, heating, or cooking, pasteurization, 

sterilization and preservation of food [27,28]. Microwave heating of food creates molecular motion 

between food molecules, leading to heat generation, which is a function of time and power. However, 
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pasteurization or sterilization of food via microwave treatment can be understood with various 

mechanisms, such as selective heating, where microbial bodies absorb more heat than the surrounding, 

leading to their destruction [25]. Other mechanisms involve electroporation where the electrical potential 

throughout the cell membrane can create pores in cells, resulting in the leakage of cellular material. A third 

mechanism involves magnetic field coupling, where vital components of the cell, such as protein or DNA 

coupled in the magnetic field can be destroyed [29,30]. This leads to irreversible denaturation of enzymes, 

proteins, nucleic acids, disruption of membranes and eventually cell death [31,32]. 

The efficiency of microwave sterilization depends on food characteristics as well as the frequency 

and length of application [33]. Microwaves are differently absorbed by water, fatty substances, and 

sugars and thus the food composition determines the efficacy of treatment [34,35]; overall, in-food 

heating increases efficacy with increasing moisture content and dissolved sugars [20]. However, 

microwave processing has been reported to change the flavor and nutritional characteristics of some 

food although to a lesser degree than conventional heating [36]. 

Honey is a supersaturated viscose sugar solution with the length of sugar chains determining its 

viscosity and palatability [37,38]. Occasionally, honey crystalizes, a phenomenon, usually is not 

desired by honey consumers, although is naturally and commonly occurring in honey. In order to get 

rid of the crystallization, they expose it to mild heat treatment to dissolve the crystals. Glucose oxidase, 

diastase, invertase and other protective enzymes that act as antioxidants and antibacterial agents or 

purported to possess healing power are also degraded because of the heat generated by this 

treatment [39–44]. Furthermore, excessive microwave treatment decreases bioactive components, 

including antioxidant and anti-inflammatory activities in honey, denaturation of proteins, decreases 

vitamin content and decreases the freshness of honey [45,46].  

This study investigated the feasibility of using microwave treatments, based on time and power 

levels, to eliminate or minimize standard plate count (SPC) bacteria, yeasts and molds in honey and to 

investigate the effect of microwave heating on the antibacterial activity of honey. Also, to identify 

major bacteria in the honey samples. 

2. Materials and methods 

2.1. Honey samples 

Honey samples were obtained from local apiarists (n = 20) from April to November in 2019. All 

samples were collected from various regions in the northern and southern Jordan Valley. Some samples 

were collected from nectar of plants growing on reclaimed water areas near wastewater treatment 

plans (9 samples) while others from natural forests areas (11 samples). Beekeepers placed samples 

into a sterile tightly closed glass containers with minimal handling and stored at 25 ℃ in the dark until 

used (six months during lab tests). The Manuka honey sample contains at least 515 mg/kg of 

methylglyoxal and 15+ UMF as appeared on the label. Its pH was 4.2. It is originated from New 

Zealand and was purchased from the local market. 

2.2. Determination of honey water activity 

Water activity (aw) was measured at 25 ℃ (±0.2 ℃) using an electronic water activity meter (Aqualab 

Series, Hygrolab, Rotronic Instr. Corp, Huntington, NY, US) [47]. Measurements were performed in 
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triplicates for each sample, and the average was reported. 

2.3. Microwave treatment 

Honey samples (15 g) capped in 100 mL Teflon tubes, were microwaved using MAXI-14 (MILESTONE 

ETHOS EASY, Italy). Advanced microwave digestion system (closed system conditions) was used in 

this study at different power settings (400 and 800 watts). After the internal temperature of the samples 

reached 80 ℃, which was maintained throughout treatment, the samples were held for 10, 30, and 60 

sec at either 400 or 800 watts as per [48] with minor modification. The treated samples were cooled 

within the microwave system. Samples were analyzed for SPC, yeast and mold. Untreated honey 

samples were used as controls. 

2.4. Enumeration and presumptive identification of SPC, yeast and mold 

Microbial enumeration was conducted according to the method described by Breslin et al. [49] 

with minor modification. Briefly, samples (4 g) were diluted 5-fold in sterile saline (0.9% NaCl) and 

centrifuged (29,220 x g at 4 ℃; 20 min). Resulting pellets were resuspended by vortex mixing for 1 

min in 4 ml sterile saline. The pour plate method was used: 100 µL of resuspended cells were added 

to Tryptic Soy Agar (20 mL, TSA; Oxoid, UK) and incubated (37 ℃, 24 h) under aerobic conditions. 

This protocol was repeated using MacConkey (MAC) agar (37 ℃ for 48 h; Oxoid, UK) Baird-parker (BP) 

agar (37 ℃ for 72 h; Oxoid, UK) Salmonella-Shigella (SS) agar (37 ℃, 48 h; Oxoid, UK) and Potato 

Dextrose agar (PDA; 28 ℃, 5–7 d Oxoid, UK). In addition, 100 µL were streaked onto de Man Rogosa 

and Sharpe (MRS agar; Oxoid, UK) and incubated anaerobically (30 ℃, 4 d) using an Oxoid 

AnaeroGen system. Plates were inoculated in duplicate and average numbers of colonies was reported. 

Presumptive isolates were stored by mixing 1ml of fresh culture broth with 666 µL of 50% glycerol 

and stored at −80 ℃. 

2.5. Molecular identification 

Presumptive isolates were streaked onto TSA plates and incubated (37 ℃, 24 h) under aerobic 

conditions. Single colonies were cultured in TSB broth aerobically (37 ℃, 6 h). Broth cultures were 

subsequently used for genomic DNA extraction using phenol-chloroform extraction [50]. 

In the present study, a set of universal primers 27F (5'-AGAGTTTGATCCTGG CTCAG-3’) and 

1492R (5'-GGTTACCTTGTTACGACTT-3’) were used to amplify a specific region of the bacterial 

16S rRNA genes, using appropriate amplification conditions as described by Miyoshi et al. [51]. PCR 

amplifications were analyzed using 1% agarose gel electrophoresis. Sequencing of PCR amplicons 

was performed by Macrogen Inc (Korea), using forward primers. All resulting 16S sequences were 

determined using a BLASTN program. The identified Acinetobacter spp. was performed by PCR using 

species-specific primers. PCR partial amplification of blaOXA-51 like gene was performed as previously 

described by Turton et al. [52]. A. baumannii (ATCC 19606) DNA was used as a control. 

2.6. Bacterial strains used for testing antibacterial power of honey 

To assess the effect of microwave treatment on the antibacterial activity of honey, 9 bacteria 
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(Table 1) were challenged with treated, untreated raw honey and Manuka honey. All bacteria were 

obtained from the Department of Biotechnology and Genetic Engineering, Jordan University of 

Science and Technology. Bacterial cultures used in the study were stored at −80 ℃. 

Table 1. Targeted Bacteria. 

Genus spp. ATCC no. Resistance phenotype 

Escherichia coli BAA-2452 Colistin disk 10µg 

Klebsiella pneumoniae BAA-2146 Colistin disk 10µg 

Pseudomonas aeruginosa BAA-2114 Colistin disk 10µg 

Acinetobacter baumannii (S) 19606 Colistin disk 10µg 

Acinetobacter baumannii (MDR) BAA- 1605A Colistin disk 10µg 

Listeria ivanovii 19119 Meropenem disk 10µg 

Enterococcus faecium BAA-2316 Meropenem disk 10µg 

Staphylococcus aureus MRSA 33591 Vancomycin disk 30μg 

Staphylococcus aureus MRSA 43300 Vancomycin disk 30μg 

Note: S: sensitive, MDR: multi-drug resistant, MRSA: methicillin resistant S. aureus. 

Honey samples which exhibited higher antibacterial activities were evaluated using AWD and 

MIC protocols. Samples: 1, 7, 14 and 20 were chosen. 

2.7. Agar well diffusion 

AWD was performed as per Mama et al. [53] with slight modification. Upon thawing, each 

organism was streaked onto Luria-Bertani (LB) agar plates and incubated at 37 ℃, for 16–20 h. Single 

colonies were cultured in Mueller Hinton broth (2.0 ml, MHB; Oxoid, UK). Suspensions were adjusted 

to a 0.5 McFarland standard (OD 625 nm). 

Mueller Hinton (25 mL; Oxoid, UK) agar plates were surface streaked using sterile cotton swabs, 

previously dipped in the microbial suspensions, over the entire surface of the plates in order to obtain 

uniform bacterial densities. Wells (6 mm) were cut into each agar plate using a sterile glass cork borer. 

Five wells (for each sample) were filled with honey (50 μL) previously diluted using sterile distilled 

water (w/v, %): 25, 50, 75 and 100. A negative control consisting of a well filled with sterile distilled 

water (50 μL) and a positive control consisting of a standard commercial antibiotic disc, Oxoid, UK 

(Table 1) were included in each plate. Plates were placed in a laminar flow cabinet at ambient 

temperature for 15 min to allow for diffusion and subsequently incubated aerobically (37 ℃, 18–24 h). 

Antibacterial activities were assessed by measuring the diameters of the inhibition zones. Each assay 

was carried out in duplicates and the means and standard deviations of the zones were calculated. 

2.8. Minimum inhibitory concentrations 

Four samples yielding higher antibacterial activities assessed by AWD and the Manuka honey 

sample were chosen for MIC determination. Experiments were performed in triplicates by 

microdilution using 96-well plates before and after microwave treatment as described by Wiegand et 

al. [54]. Each sample (%): 25, 12.5, 6.25, 3.125, 1.56, 0.78, 0.39, 0.195, 0.0976 and 0.0488 was 

assessed against each of the chosen microorganisms. 
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Bacteria were first grown on Luria-Bertani (LB) agar and incubated at 37 ℃, for 16–20 h. Each 

microorganism was suspended in MHB, adjusted to 1 × 108 CFU/ ml (0.5 McFarland) and diluted by 

a factor of 1:100 by adding 200 μL bacterial suspension to 19.8 mL sterile MHB in sterile 50 mL 

conical tubes. Resultant suspensions (106 CFU/mL) of 100 μL were added to wells containing 100 μL 

of diluted honey in order to obtain a final concentration of 5.0 × 105 CFU/well. Sterile MHB was added 

in one well for sterility assessment; bacterial solutions in broth were included as a positive control 

while honey mixed with broth were included as negative controls. Plates were incubated at 37 ℃, for 

18–24 h and the OD 600 nm determined using a microtiter plate reader (BioTek Epoch). 

2.9. Statistical analysis 

All data were presented as means ± standard deviations and were analyzed by Statistical Package 

for Social Sciences (SPSS) software version 26.0 (IBM Corporation; Armonk, New York, USA). The 

Nonparametric Wilcoxon signed-rank test was used to compare two related samples in order to assess 

whether their population mean ranks differed and used with data that violates the assumption of 

normality. Mean values using the Wilcoxon signed-rank test were conducted to determine the 

differences between honey samples before and after microwave treatments and among variable treated 

groups. For all analyses, differences were considered significant at p-value < 0.05. Linear regression 

analyses were used to describe the effects of water activity on microbial counts. 

3. Results 

3.1. Microbial counts of raw honey 

The average SPC of the honey samples was 286.5 CFU/g with a range from 50 to 660 CFU/g 

while the yeast count ranged from 10 to 710 CFU/g with an average 161 CFU/g; mold counts were the 

lowest ranging from 0 to 110 CFU/g with an average of 25.5 CFU/g (Figure 1). Manuka honey samples 

contained no detectable SPC. Seven samples (35%) contained SPC greater than 470 CFU/g; four of these 

sample contained yeasts > 320 CFU/g, while only one sample contained mold counts greater than 100 CFU/g. 

 

Figure 1. Microbial assessment of honey samples. 
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3.2. Water activity (aw) in raw honey 

The aw for the local samples ranged from 0.58 to 0.72; while for Manuka honey was 0.595. 

Regression equations showed no significant association (r2 < 1) between aw and SPC, yeast or mold; 

r2 values ranged from 0.0012 to 0.1673. Due to the high microbial load in some samples collected from 

hives close to the reclaimed water. 

3.3. Effect of microwave treatment on SPC, yeast and mold. 

Microwave treatment of samples was effective in reducing SPC. Increasing microwave from 400 

to 800 W concomitant with an increase in the exposure time decreased the SPC. Microwave heating 

at 400 W reduced SPC from 286.5 to 82.5, 54.5 and 37.0 CFU/g after 10, 30 and 60 sec, respectively 

(Figure 2). At 800 W, reductions in SPC increased: 48.5, 28.5 and 19.5 CFU/g after 10, 30 and 60 sec 

of exposure, respectively.  

Microwave heating at 400 W reduced yeast from 161.0 to 39.5, 15.5 and 14.0 CFU/g, after 10, 

30 and 60 sec, respectively. At 800 W, yeasts were reduced from 161.0 to 28.5, 15.5 and 11.5 CFU/g, 

after 10, 30 and 60 sec, respectively.  

The samples contained lower mold levels compared to SPC and yeasts. Similarly, mold 

populations gradually decreased with an increase in microwave power as time of treatment was 

increased. Microwave heating of honey samples at 400W reduced mold from 25.5 to 11.0, 8.0 and 6.0 

CFU/g after 10, 30 and 60 sec, respectively. Microwave heating at 800W resulted in enhanced 

reductions of mold from 25.5 to 5.5, 2.5 and 1.5 CFU/g after 10, 30 and 60 sec, respectively (Figure 2). 

 

Figure 2. The effects of microwave treatments on SPC, yeast and mold at 400 and 800 W 

at 10, 30 and 60 sec. The data represent averages of CFU/g for each sample ± standard 

deviations. 

3.4. Identification of bacterial isolates 

Sequencing results of the 16S rRNA gene for the identified 125 bacterial isolates are presented in 

Table 2. 
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Table 2. Distribution of bacteria identified in the 16S rRNA gene of bacteria isolated from honey. 

Bacteria No of species (relative abundance) % Identity 

Bacillus (total) 

Bacillus (spp) 

B. subtilis 

B. licheniformis 

B. safensis 

B. amyloliquefaciens 

B. pumilus 

B. velezensis 

B. cereus 

B. kochii 

B. tequilensis 

109/125 (87.2%) 

52/109 (47.7%) 

22/109 (20.2%) 

10/109 (9.2%) 

6/109 (5.5%) 

5/109 (4.6%) 

5/109 (4.6%) 

4/109 (3.7%) 

3/109 (2.8%) 

1/109 (0.92%) 

1/109 (0.92%) 

 

93.70–99.48 

93.23–99.14 

91.43–99.31 

96.92–98.29 

94.14–97.49 

98.24–96.73 

96.50–99.47 

95.93–97.29 

96.32 

98.06 

Acinetobacter baumannii 8/125 (6.4%) 94.87–98.85 

Staphylococcus spp. 

S. epidermidis 

S. haemolyticus 

3/125 (2.4%) 

2/3 (66.7) 

1/3 (33.3) 

 

99.45 

98.03 

Pseudomonas spp. 3/125 (2.4%) 95.56–98.33 

Enterococcus faecium 2/125 (1.6%) 97.21–100 

The 8 Acinetobacter isolates identified as A. baumannii (positive for blaOXA-51-like gene specific 

for A. baumannii) (Figure 3). 

 

Figure 3. Agarose gel electrophoresis of blaOXA-51-like gene in A. baumannii. 

3.5. Antibacterial activity 

All samples exhibited varying degrees of antibacterial activity against all selected strains. Diluted 

Manuka honey showed no antibacterial activity when tested by AWD. The antibacterial activity of 

honey increased with the increase in honey concentration, as shown in Table 3.  
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Table 3. Antibacterial activity of raw honey evaluated by AWD. 

Bacteria Diameter of inhibition zone (mm) (n = 20) 

Raw honey concentration Manuka honey 

(100%) 

100% 75% 50% 25% 

Escherichia coli 12 7.6 ± 7 0 0 0 

Klebsiella pneumoniae 12 8.55 ± 8.2 0.5 ± 0.3 0 0 

Pseudomonas aeruginosa 0 9 ± 8.5 0.8± 0.5 0 0 

Acinetobacter baumannii 

19606 

11 10.2 ± 5.6 0.8 ± 1.8 0.4 ± 1.2 0 

Acinetobacter baumannii 

BAA-1605A 

15 10 ± 5.2 2 ± 3 0.2 ± 0.8 0 

Listeria ivanovii 12 8.5 ± 5.5 0 0 0 

Enterococcus faecium 15 10.3 ± 10 0.25 ± 0.01 0 0 

Staphylococcus aureus 33591 15 12 ± 11.8 1.1 ± 1.2 0.2 ± 0.01 0 

Staphylococcus aureus 43300 16 11.1 ± 10.8 0.9 ± 0.4 0.3 ± 0.02 0 

Initial screening by AWD demonstrated that all undiluted honey samples exhibited bacterial 

inhibition. Moreover, at lower concentrations 75% and 50% (w/v), some honey samples continued to 

exert an antibacterial effect against all tested bacterial strains except for E. coli and L. ivanovii. 

However, at 25% no detectable antibacterial activity was observed with all samples. It should be noted 

that the antibacterial activity of some samples was more than the positive control value (antibiotic 

discs) except against L. ivanovii.  

Honey samples treated by microwave heating. 

The antibacterial activity of honey was divided into three groups according to the inhibition zone 

diameter (high, medium, and no-effect; Table 4). All treatments, depending on the times of exposure 

and power levels, for undiluted honey samples were significant (p < 0.05) in reducing the inhibition 

of all bacteria compared to the untreated samples.  
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Table 4. Antibacterial activity assessed by AWD assay before and after microwave heating. 

 Diameter of Inhibition Zone (mm) (Mean ± SD) (n = 20) 

Anti-

bacterial 

activity 

Treatment 

Bacterial Strain 

Un-treated 400 watts 800 watts Positive 

control 10 s 30 s 60 s 10 s 30 s 60  

(a) High  

(n = 4) 

E. coli BAA-2452 13.3 ± 2.5 4.5 ± 0.5 6.8 ± 3.2 4.3 ± 3.3 2.3 ± 2.6 6 ± 4.2 4.8 ± 4.1 11 

K. pneumonia BAA-2146 14.3 ± 2.2 6.3 ± 4.8 3.3 ± 4.3 5.8 ± 2.9 6.8 ± 3.1 6 ± 2.3 5.5 ± 2.4 11 

P. aeruginosa BAA-2114 13.3 ± 1.7 5 ± 2.2 8.8 ± 3.2 8.8 ± 0.5 3.3 ± 2.2 4.8 ± 1.5 3 ± 3.8 13.5 ± 1.7 

A. baumannii 19606 14 ± 3.6 5.3 ± 1 6.8 ± 3.5 3.8 ± 5.2 3.8 ± 5.2 6 ± 4.5 4.8 ± 0.5 11 

A. baumannii BAA-1605 14.5 ± 2 2 ± 2.3 5.5 ± 3 8.5 ± 2.4 3.3 ± 2.2 5.3 ± 1.9 6.8 ± 2.6 15.3 ± 0.8 

L. ivanovii 19119 13.9 ± 3.1 4.5 ± 3.3 6.5 ± 1.9 9.8 ± 1.3 6.5 ± 4.4 9.3 ± 1 8.5 ± 2.4 29.4 ± 2.1 

E. faecium BAA-2316 13 ± 2.4 3.3 ± 2.2 4.5 ± 3.3 7.3 ± 2.2 3.5 ± 2.5 4 ± 4.6 0 14.1 ± 0.9 

S. aureus 33591 16.8 ± 1 4 6 ± 4.7 4.8 ± 4.1 2.3 ± 2.6 6 ± 4.2 4.8 ± 4.1 22.9 ± 1.5 

S. aureus 43300 17.8 ± 1 11.3 ± 3 13 ± 4.7 10.3 ± 3 9.5 ± 0.6 11 ± 1.4 11 ± 5.3 18.1 ± 0.6 

(b) Medium 

(n = 11) 

E. coli BAA-2452 9 ± 3 2.3 ± 2.2*g 2.7 ± 2.2*g 3.5 ± 3.9*g 2.4 ± 2.9*g 2.4 ± 2.9*g 3 ± 3.6*g 11.2 ± 0.4 

K. pneumonia BAA-2146 10.7 ± 3.8 2.1 ± 3.3*g 2.8 ± 3.2*g 6.2 ± 3.7*b, g 5.2 ± 3*a, g 5.1 ± 3.1*g 6 ± 3.4*g 10.6 ± 0.9 

P. aeruginosa BAA-2114 9.6 ± 3.9 4.7 ± 3.7*g 5.6 ± 3.7*g 3.9 ± 3.2*g 2.3 ± 3*a, g 1.2 ± 2*g, b 2.2 ± 3.3*g 13.9 ± 1 

A. baumannii 19606 12.5 ± 2.8 5 ± 3.4*g 4 ± 4.4*g 4.7 ± 4.4*g 6.1 ± 2.6*g 4.2 ± 3.3*g 4.4 ± 2.7*g 11.1 ± 0.8 

A. baumannii BAA-1605 11 ± 4.2 2 ± 3*g 3.8 ± 3.6*g 4.6 ± 3.5*g 3.5 ± 2.5*g 2.2 ± 2.8*g 5.1 ± 4*e, g 15.4 ± 0.6 

L. ivanovii 19119 10.2 ± 2.6 4.2 ± 3.2*g 3.2 ± 2.8*g 6.2 ± 3.8*b, g 4.4 ± 2.5*g 8.5 ± 2*b, d, g 6.9 ± 3.3*g 29.6 ± 2.6 

E. faecium BAA-2316 12.31.5 2.3 ± 2.8*g 2.9 ± 3.2*g 3.2 ± 3.4*g 2.6 ± 2.9*g 2.5 ± 3.2*g 3.4 ± 3.6*g 14.5 ± 1 

S. aureus 33591 13.6 ± 3.6 1.5 ± 2*g 2 ± 3.8*g 1.7 ± 2.5*g 3.8 ± 4.5*g 3.6 ± 5.9*g 4.5 ± 5.7*g 22.7 ± 1.3 

S. aureus 43300 12.8 ± 4.9 6.4 ± 4.2*g 6.6 ± 4.6*g 5 ± 6*g 1.1 ± 1.9*g 0.9 ± 2*g 1.2 ± 2.7*g 18.1 ± 0.6 

(c) No antibacterial activity samples (n = 5) 

Experiments were performed in duplicate; activity is shown as the diameter (mm) ± SD. 

a: trt 400W-10s, b: trt 400W-30s, c: trt 400 W-60s, d: trt 800W-10s, e: trt 800W-30s, f: trt 800W-60s, g: Un-trt. Trt: treatment. *Significant at (p < 0.05).  
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Minimum Inhibitory Concentrations. 

MIC values of honey samples that gave the highest antibacterial activities according to AWD 

before and after microwave treatment were evaluated. However, statistical analysis of the MIC data 

did not show a significant (p > 0.05) decrease in antibacterial activity (Table 5). 

Table 5. Antibacterial activity of honey assessed by MIC before and after microwave heating. 

MIC (%w/v) (Mean ± SD) (n = 4) 

Treatment 

Bacterial Strain 

Untreated 400 watts 800 watts 

10 s 30 s 60 s 10 s 30 s 60 s 

E. coli BAA-2452 12.5 25*g 25*g 25*g 25*g 25*g 25*g 

K. pneumonia BAA-2146 12.5 25*g 25*g 25*g 25*g 25*g 25*g 

P. aeruginosa BAA-2114 12.5 25*g 25*g 25*g 25*g 25*g 25*g 

A. baumannii 19606 9.37 ± 3.6 21.8 ± 6.25 25 25 25 25 25 

A. baumannii BAA-1605 6.25 21.8 ± 6.25 25*g 25*g 25*g 25*g 25*g 

L. ivanovii 19119 9.37 ± 3.6 25 25 25 25 25 25 

E. faecium BAA-2316 18.75 ± 7 25 25 25 25 25 25 

S. aureus 33591 4.68 ± 1.8 21.8 ± 6.25 25 25 25 21.8 ± 6.25 25 

S. aureus 43300 6.25 ± 4.4 21.8 ± 6.25 21.8 ± 6.25 21.8 ± 6.25 25 25 25 

The experiments were performed in triplicate, and the data are expressed in the form of mean ± SD. (n = 4). 

a: trt 400W-10s, b: trt 400W-30s, c: trt 400 W-60s, d: trt 800W-10s, e: trt 800W-30s, f: trt 800W-60s, g: Un-trt. Trt: 

treatment. *Significant at (p < 0.05). 

Antibacterial activity of Manuka honey. 

Compared with local honey samples, the negative effect of microwave treatments on Manuka 

honey was less, as shown in Table 6. 

Table 6. Antibacterial activity of Manuka honey assessed by AWD and MIC before and 

after microwave heating. 

Treatment 

Bacterial Strain 

Untreated 400 watts 800 watts 

10 s 30 s 60 s 10 s 30 s 60 s 

(A) Diameter of Inhibition Zone (mm) (n = 1) 

E. coli BAA-2452 16 10 13 12 12 11 11 

K. pneumonia BAA-2146 12 8 8 8 8 8 8 

P. aeruginosa BAA-2114 0 0 0 0 0 0 0 

A. baumannii 19606 16 9 9 9 9 9 9 

A. baumannii BAA-1605 15 11 11 11 11 11 11 

L. ivanovii 19119 12 11 10 10 10 10 10 

E. faecium BAA-2316 15 15 14 14 14 14 14 

S. aureus 33591 15 14 13 10 10 10 10 

S. aureus 43300 16 15 15 14 14 12 12 

Continued on the next page 
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Treatment 

Bacterial Strain 

Untreated 400 watts 800 watts 

 10 s 30 s 60 s 10 s 30 s 60 s 

(B) MIC (%w/v) (Mean ± SD) (n = 1) 

E. coli BAA-2452 12.5 25 25 25 25 25 25 

Diameter of Inhibition 

Zone (mm) (n = 1) 

12.5 25 25 25 25 25 25 

P. aeruginosa BAA-2114 12.5 25 25 25 25 25 25 

A. baumannii 19606 6.25 12.5 12.5 12.5 12.5 12.5 12.5 

A. baumannii BAA-1605 6.25 12.5 12.5 12.5 12.5 12.5 12.5 

L. ivanovii 19119 6.25 12.5 12.5 12.5 12.5 12.5 12.5 

E. faecium BAA-2316 12.5 25 25 25 25 25 25 

S. aureus 33591 6.25 12.5 12.5 12.5 12.5 12.5 12.5 

S. aureus 43300 3.125 12.5 12.5 12.5 12.5 12.5 12.5 

4. Discussion 

Honey samples contained a mean SPC of 286.5 CFU/g. Lower numbers were observed for yeast 

and mold, with an average of 161 and 25.5 CFU/g, respectively. Similar to our results, it was reported 

that the SPC in honey ranged from 0 to several thousand CFU per gram [12,55]. In this respect, Tysset 

and Rousseau. [56] tested 175 honey samples from France and reported SPC yeast and mold mean of 

227 and 90 CFU/g, respectively. Likewise, Iurlina and Fritz. [55] examined 70 honey samples 

originating in Argentina with some samples being imported. Their results indicated that honey from 

commercial sources, apiaries and bulk containers, exhibited SPC means of 244, 500 and 223 CFU/g, 

respectively. While yeast and mold from commercial, apiary, and bulk honey storage were 34, 164, 

and 100 CFU/g, respectively. In contrast, Nakano and Sakagucki, [15] reported a SPC of 83 CFU/g in 

270 samples collected from Japan; a lower count of 24 CFU/g was recorded for imported samples. 

SPC, yeast, and mold counts are well known to vary from country to country. This could be due 

to the different practices used during honey harvesting and packaging. Floral types and the 

environment where beehives are located may also contribute to the natural microflora of honey. For 

instance, beehives located near reclaimed water or other types of contaminants may be reflected in the 

microflora of the honey [12,57–59]. The microbial content in honey depends on many factors that 

affect honeybee, some of which are biotic, including bacteria, mold, parasites and viruses. Abiotic 

factors that stress honeybees, including environmental stresses as extreme temperatures, seasonal 

variation, and environmental pollutants from industry as well as urbanization activities are also 

important [60]. Nonetheless, this requires further studies to correlate the relationship between 

microbial contaminants in honey versus environmental stresses. 

The 16s rRNA was used to help identify bacteria in the samples. Bacillus accounted for 87.2% of 

the isolates. This result agrees with studies reported by Malika et al. [61], Pomastowski et al. [62], and 

Tsadila et al. [63]. These researchers reported that Bacillus was the most abundant species in honey. 

This occurrence in honey ostensibly reflects the common presence of Bacillus in soil. Dust or 

contaminated water on flora could thereby contaminate pollinating honeybees [64]. 

This is the first report for the isolation of A. baumannii from honey samples. Veress et al. [16] 

isolated A. lwoffii while A. pollinis sp. nov., A. baretiae sp. nov., A. rathckeae sp. nov. were recently 

isolated from floral nectar and honeybees by Alvarez-Perez et al. [65]. In addition, Alvarez-Perez et 
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al. [66] isolated A. nectaris sp. nov., A. boissieri sp. nov., from the floral nectar of Mediterranean wild 

plants. Kim et al. [67] isolated A. apis sp. nov., from the intestinal tract of a honeybee. The isolation 

of A. baumannii from honey can be attributed to the close proximity of some honeybee hives to 

reclaimed water since A. baumannii is abundant in soil and reclaimed water [68,69]. These results 

stress the importance that soil, and vegetation might be a reservoir for Acinetobacter spp. [70]. As a 

result of environmental conditions, A. baumannii may have contaminated the samples during 

harvesting and packaging [65]. Similar to previous studies Staphylococcus, Pseudomonas and 

Enterococcus faecium were isolated. These microorganisms are also common in soil and reclaimed 

water [61–63,70,71]. 

The presence of pathogenic bacteria in honey is rare [12]. Contamination with pathogens due to 

improper hygienic practices while harvesting, handling and packaging is possible. Further, some 

bacteria that are associated with honeybee microbiota, such as lactic acid bacterial, Streptococcus and 

Enterococcus spp., have been isolated from honey [72]. Therefore, microwave heating could be one 

method used to address post-harvest contamination without affecting nutritional and sensory quality. 

Results in the current study showed that microwave treatment reduced SPC, yeast, and mold in 

all honey samples depending on power and exposure times. As expected, the effect of increasing the 

power from 400 to 800 W was more pronounced than the effect of increasing the time, which is 

concordant with results obtained by Benlloch, Tinoco et al. [73]. This can be attributed to the increased 

movement of particles by increasing the microwave energy, which excites water molecules and thereby 

increasing the lethality of heat [74]. 

Honey, which is normally contaminated with certain bacteria and mold, can be treated with 

microwave to decrease the microbial load and render it safe for consumption by infants and 

immunocompromised individuals [61,75]. De La Paz Moliné et al. [76] used microwave heating to 

inactivate SPC, yeast, and mold counts in honey at different times and power levels (800W for 45 and 

90 sec). They reported a decrease in all microbes proportional to the increase in time and power. Earlier, 

Hebbar et al. [20] reported similar results, where yeast counts decreased substantially upon microwave 

treatment of honey. 

In addition to therapeutic benefits, honey has been reported to exert antibacterial effects; the most 

prominent of which is the high concentration of sugars. Average CHO of honey is 85%. This high 

osmotic fluid draws water from microbial cells leading to death via dehydration or inactivation by 

lysis [77,78]. Honey also contains antibacterial agents such as hydrogen peroxide, methylglyoxal, bee 

defensin-1, and phenolic compounds that help in killing bacterial cells [10,77,79,80].  

In the current study, 25% honey did not exert any inhibition as shown by AWD. In contrast, this 

concentration did show effectiveness when evaluated using MIC. One limitation in evaluating the 

antibacterial activities by the AWD is the need for the active components to diffuse into the agar. 

Volatile and phenolic compounds (non-polar compounds) which might not diffuse easily may account 

for lower inhibition zones [81,82]. Furthermore, lack of hydrogen peroxide production in undiluted 

honey at high concentrations is also manifested in the observed low inhibition zones [82]. Therefore, 

it is difficult to compare the results with those of other studies, and the inability to distinguish between 

bacteriostatic and bactericidal activity [83]. 

MGO is the principal effective antibacterial agent in Manuka honey (mono-floral) from the 

Manuka myrtle tree in New Zealand and Eastern Australia. Uniquely, Manuka honey has a little 

hydrogen peroxide activity, unlike other honey types that contains hydrogen peroxide as the significant 

antibacterial agent [84,85]. Testing antibacterial activity of Manuka honey using well diffusion assay 
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pose a challenge since MGO diffusion through the agar is hindered and requires limited moisture to 

facilitate the diffusion mechanism despite it is low molecular weight [86]. Thus, it is likely that, 

inconsistency of results in Manuka honey between AWD and MIC methods is reported. 

Two strains of MRSA and one A. baumannii strain were observed to be the most sensitive to 

honey. These results appear in agreement with studies by Gobin et al. [87] who found that A. baumannii, 

as well as S. aureus, were the most sensitive to honey. This effect could be due to the physiology or 

morphology of these bacteria per se that makes them more sensitive.  
Raw honey contains unique compounds and bacteria secreted from the GIT of bees that act as 

antimicrobial agents and have probiotic properties, which might impart some antibacterial 

activity [72,88–92]. Further, Ibarguren et al. [93] tested several Enterococcus faecium isolates from 

six different samples of Argentinian honey against different strains of Listeria monocytogenes and 

found that there was an inhibitory effect. 

In the current study, all honey samples were shown to exert antibacterial activity against nine 

pathogenic bacteria; however, the activity decreased after microwave treatment. This could be due to 

the inactivation of beneficial bacteria [94] as well as the inactivation of antibacterial compounds found 

in honey [48]. Furthermore, microwave heating has been reported to inactivate glucose oxidase, diastase 

(α-amylase), and invertase (α-glucosidase) enzymes which have antibacterial activity [43,48,95].  

Methylglyoxal (MGO) is the main antimicrobial component in Manuka honey, [96] and its 

antibacterial activity is negatively affected by heat treatments, as well as the MGO content decreases 

with increasing temperature [97]. 

5. Conclusions 

In the present study, 125 bacteria were isolated from twenty honey samples originating from 

diverse geographical regions in Jordan. Bacillus spp. represented the most prevalent bacteria. Also, 

the presence of Acinetobacter baumannii in honey has been reported for the first time. 

Further, this is the first study to use a closed microwave system in honey treatment. Microbial 

populations decreased by increasing microwave power and time of exposure. In addition, raw honey 

exhibited antibacterial activity. However, microwave treatment reduced antibacterial activity. 

Therefore, it is not recommended to treat honey in the microwave, and there is a need to study other 

treatment methods to reduce the microbial load without negatively affecting the antibacterial activity 

of honey. 
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