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Abstract: Deep learning-based object detection models perform well under daytime conditions but
face significant challenges at night, primarily because they are predominantly trained on daytime
images. Additionally, training with nighttime images presents another challenge: Even human
annotators struggle to accurately label objects in low-light conditions. This issue is particularly
pronounced in transportation applications, such as detecting vehicles and other objects of interest on
rural roads at night, where street lighting is often absent, and headlights may introduce undesirable
glare. In this study, we addressed these challenges by introducing a novel framework for labeling-
free data augmentation, leveraging synthetic data generated by the Car Learning to Act (CARLA)
simulator for day-to-night image style transfer. Specifically, the framework incorporated the efficient
attention Generative Adversarial Network for realistic day-to-night style transfer and used CARLA-
generated synthetic nighttime images to help the model learn the vehicle headlight effect. To evaluate
the efficacy of the proposed framework, we fine-tuned the state-of-the-art object detection model with
an augmented dataset curated for rural nighttime environments, achieving significant improvements in
nighttime vehicle detection. This novel approach was simple yet effective, offering a scalable solution
to enhance deep learning-based detection systems in low-visibility environments and extended the
applicability of object detection models to broader real-world contexts.

Keywords: nighttime vehicle detection; low visibility; headlight glare; generative adversarial
networks; image style transfer; rural environments; CARLA; synthetic data; data augmentation

1. Introduction

Accurate and reliable vehicle detection is essential for many transportation applications, such as
traffic monitoring and incident management. However, large performance gaps exist for vehicle
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detection between daytime and nighttime conditions. This especially true for rural environments,
where streetlighting is often absent. The disproportionate nighttime fatalities in rural areas compared
to urban areas have long been recognized [1]. Nighttime vehicle detection presents unique challenges,
including limited visibility, unpredictable lighting conditions, and lower resolution from standard
roadside cameras compared with daytime scenarios. In rural settings, where lighting infrastructure
is often sparse or non-existent, these challenges are even more pronounced, coupled with the headlight
glare that further aggravates the issue [2]. Researchers advancing in object detection technology must
address these challenges to offer reliable performance in such undesirable conditions.

Computer vision techniques leverage appearance information like color, shape, or typical vehicle
patterns to detect vehicles from different views to achieve good performance [3, 4], but most of
these works address the problem during the daytime. At night, above appearance features become
invalid, and headlights and taillights are almost the only obvious features. Efforts for nighttime vehicle
detection have made significant strides in recent years, particularly in applications that utilize ego
cameras and roadside cameras.

Ego cameras on vehicles offer a driver perspective and are primarily utilized in autonomous driving
applications. Nighttime vehicle detection using ego cameras has been studied due to the relatively
higher quality of data and less challenging nature of the tasks. Their primary focus is to accurately
identify nearby vehicles, a task essential for real-time decision-making and navigation for the safety of
the ego vehicle. For ego camera based nighttime vehicle detection tasks, researchers utilize generative
adversarial networks (GAN) and image-to-image translation techniques have been used [5-7] to
enhance object detection in challenging scenarios such as nighttime and adverse weather conditions.

Common approaches focus on translating images from a source domain (e.g., daytime) to a target
domain (e.g., nighttime) and preserving critical object features during the process. Models like
AugGAN [5] and CycleGAN [6-8] are popular approaches that leverage structure-aware mechanisms
to maintain semantic and geometric consistency during style transfer. Techniques such as semantic
segmentation and geometric attention maps [6] further ensure that essential object details are retained,
enabling robust object detection performance in the target domain. These models generate high-quality
synthetic datasets that mimic target domain characteristics, which are then utilized to train and fine-
tune object detection models, resulting in improved accuracy and robustness.

In addition to domain translation, cross-domain learning techniques are integrated to bridge the
performance gap between source and target domains. For instance, convolutional block attention
mechanisms (CBAM) [9] enhance detection accuracy by focusing on salient image regions, while
feature enhancement modules fuse daytime and nighttime data to mitigate ambient light interference.
Furthermore, advanced loss functions and data augmentation strategies refine model training and
address challenges like reduced visibility and occlusion. Collectively, these methodologies highlight
the efficacy of GAN-based frameworks, feature enhancement, and domain adaptation in improving
vehicle detection in low-visibility environments.

The aforementioned methods primarily address challenges in autonomous driving scenarios using
data captured by ego cameras. Their applications are limited to the localized environment surrounding
autonomous vehicles. Network-level traffic flow and incident monitoring are typically achieved by
roadside cameras operated by state or local transportation agencies. These cameras, which are
commonly mounted on roadside utility poles, capture a broader view for effective traffic monitoring
and incident management. Such objectives are critical for enhancing the operational efficiency and
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safety of entire road networks. These roadside cameras play a critical role in enhancing situational
awareness by detecting incidents and disseminating alerts, such as speed warning or hazard notification,
to drivers, thereby improving road safety. However, these camera are frequently characterized by low-
resolution images and poor video quality. This challenge becomes even more severe under adverse
conditions, such as nighttime or inclement weather, significantly complicating vehicle detection
in these environments. Both roadside and ego cameras face common challenges in nighttime
vehicle detection. These include difficulties in distinguishing vehicles from other objects under low
illumination, glare from headlights, and insufficient detail captured by standard imaging sensors. Such
limitations are particularly acute in rural settings, where minimal or inconsistent lighting exacerbates
detection difficulties. It is critical to address these challenges to improve the effectiveness of both
camera types in their respective operational contexts. In this paper, we focus on nighttime vehicle
detection from roadside cameras in rural settings.

Several studies have been conducted to address the challenges of nighttime vehicle detection. Fu
et al. [10] proposed a framework to improve nighttime object detection accuracy using a StyleMix-
based method that generates day-night image pairs for training and a kernel prediction network (KPN)
to enhance nighttime-to-daytime image translation. While this framework aims to adapt models trained
on daytime images for nighttime detection, the data used in their study was captured from a top-down
perspective, and the resulting augmented nighttime images fail to accurately represent real roadside
conditions. Specifically, the images suffer poor qualities such as low illumination, poor contrast, and
the presence of glare from headlights and reflections, which are common in real-world scenarios.
Similarly, Guo et al. [11] employed CycleGAN to generate nighttime traffic images from daytime
data, integrating these images with a dense traffic detection network (DTDNet) to enhance detection
accuracy and address the scarcity of nighttime annotations. Nevertheless, their data was collected using
phone cameras from specific angles, which is constrained by limited view perspectives. Consequently,
the approach does not adequately account for real-world challenges such as low illumination and
headlight glare, reducing its effectiveness in more complex and realistic nighttime environments.

The suboptimal performance of detection models in nighttime rural scenarios stems from several
interconnected challenges. Nighttime environments are characterized by low illumination and poor
contrast, which hinder models’ ability to distinguish vehicles from the background and accurately
delineate vehicle boundaries. Additionally, intense headlight glare and reflections often confuse
models, as these bright spots can obscure objects of interest or be misinterpreted as vehicles. With
these issues, nighttime images frequently suffer from noise, motion blur, and low resolution, resulting
from reduced sensor performance in low-light conditions. This degradation in data quality further
impacts model accuracy and reliability. Another significant limitation is the scarcity of large, diverse,
and annotated nighttime datasets. Most datasets predominantly consist of daytime images, leading to
an imbalance that prevents models from effectively generalizing to nighttime conditions. Furthermore,
domain adaptation remains a critical challenge, as models trained on daytime images struggle to
perform in nighttime environments due to the stark differences in visual features and environmental
conditions. These challenges collectively underscore the need for innovative approaches to enhance
nighttime data quality, increase dataset diversity, and improve model adaptability for rural nighttime
detection scenarios.

Generative models, particularly generative adversarial networks (GAN), have emerged as powerful
tools for augmenting datasets in scenarios where high-quality real-world data is scarce or difficult to
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obtain. Traditional GAN-based approaches, however, rely heavily on the availability of paired data
from two distinct domains (e.g., daytime and nighttime images). Several researchers, such as Fu
et al. [10] and Guo et al. [11], utilized CycleGAN for day-to-night image style transfer, generating
synthetic nighttime images to enhance dataset diversity and improve the performance of detection
models. While using these methods can effectively achieve day-to-night transfer, they often fail to
address more complex challenges, such as accurately replicating headlight effects, which is critical
for vehicle detection in rural nighttime settings where roadside lighting is absent. Moreover, rapid
advancement of generative pretrained transformers (GPTs) has led to the development of various Al
tools capable of performing image style transfer tasks, including text-based image editing. Motivated
by these advancements, we explored text-based image editing tools leveraging diffusion models [12].
Using a prompt such as “Given the daytime image, transfer it into a nighttime setting without ambient
light and turn on the headlights of all the vehicles”, we observed promising results for day-to-night
style transfer. However the generated images exhibited poor and unrealistic headlight modeling,
highlighting the limitations of GPT-like models in accurately simulating rural nighttime transportation
conditions.

A key limitation of other approaches lies in their inability to accurately model headlight effects,
as the distribution of headlight illumination is governed by complex physical principles that are
challenging to replicate using simple domain mapping techniques. At night, headlights serve as the
most prominent and reliable vehicle feature for detection. Several researchers have explored nighttime
vehicle detection through headlight detection, tracking, and pairing methods [13, 14]. While these
techniques perform well in low-light scenarios, they are impractical for roadside camera settings in
rural areas. To address these challenges, we propose a novel framework that enables the augmentation
of annotated nighttime images directly from daytime images, and realistically model headlight effects
using the CARLA simulator for image style transfer. To the best of our knowledge, we are the first
to leverage CARLA-generated synthetic data for both day-to-night image style transfer and headlight
effect modeling. Our framework offers a novel and effective solution to enhance vehicle detection in
challenging rural nighttime environments.

2. Proposed framework

Our proposed framework, illustrated in Figure 1, introduces a novel labeling-free data augmentation
method that enables realistic day-to-night image style transfer using synthetic data generated by
CARLA [15]. The framework comprises two major components: (1) Synthetic nighttime data
generation under rural settings: This component leverages the CARLA simulator to generate synthetic
nighttime images that incorporates realistic headlight effects and varying illumination conditions, as
observed from roadside cameras in rural environments. The CARLA simulator is integral to this
process, as it can faithfully model vehicle headlight effects at night, effectively addressing the limitation
of existing Al models that often fail to capture headlight effect during day-to-night style transfer. (2)
Day-to-night style transfer process: To address data scarcity of nighttime road scene images in rural
environments, a CycleGAN model is trained to perform day-to-night image transfer. Daytime images
are collected and processed using the state-of-the-art YOLO11 model [16] to perform vehicle detection
and classification. The resulting annotations are directly mapped to the style-transferred nighttime
images, enabling the creation of an augmented nighttime dataset without additional labeling effort.
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To enhance dataset diversity and reality, the final augmented dataset combines human-labeled real
nighttime low-light images (44%) with transferred images (56%). This dataset is subsequently used to
fine-tune the YOLO11 model, which is evaluated against its raw counterpart on a real-world nighttime
test dataset.

By combining realistic synthetic data generation with effective style transfer techniques and
automated annotation mapping, our framework addresses critical challenges in rural nighttime vehicle
detection, offering a novel and practical solution to improve model performance in real-world
scenarios.

~
Images (CARLA)
\ 1 Style
Images Nighttime
YOLO 11 Labelling-Free Imgges
Eck .ee
SEANSTN Direct label mapping Labeled style Labeled real
B ERN transferred nighttime
nighttime images images
\ I 4
56% 44%
Real-world test dataset | Augmented dataset |

Fine-tune

<— Fine-tuned YOLO11

Figure 1. Framework overview.

3. Technical approach

In this section, we introduce our proposed method, which addresses the challenges of nighttime
vehicle detection in rural environments through three key steps: (1) Synthetic Nighttime Data
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Generation: The process of generating realistic nighttime images is described, where the CARLA
simulator is utilized to incorporate critical features such as headlight effect and varying illumination
conditions. (2) Day-to-night image style transfer: The model architecture employed for performing
day-to-night image transfer is presented, enabling the creation of nighttime images that closely
resemble real-world scenarios. (3) Labeling-free data augmentation for nighttime images: The
approach for achieving labeling-free augmentation is described, where annotations from daytime
images are directly mapped onto nighttime images, facilitating the development of a robust augmented
dataset.

3.1. Synthetic nighttime data generation

The primary challenges in improving nighttime vehicle detection arise from the low quality of
roadside camera images and the difficulty of collecting sufficiently large and diverse datasets. To
address these issues, synthetic nighttime images are generated using CARLA [15], a widely used open-
source platform primarily designed for autonomous driving research. CARLA offers extensive control
over various environmental and operational parameters, such as weather conditions, lighting, vehicle
types, headlight settings (e.g., low-beam, high-beam), as well as camera positions and viewing angles.
These customizable options enable the creation of a comprehensive and diverse dataset that accurately
reflect real-world rural transportation settings. In particular, for rural highway safety research, the
simulator enables the strategic placement of cameras in critical locations, such as curves and ramps,
where lower speed limits are often imposed [17].

To closely mimic realistic rural environments, synthetic images were collected under the following
scenarios: (1) Departing and approaching vehicles relative to cameras, (2) side-view and top-view
perspectives, and (3) scenes with multiple vehicles and single vehicles. Several representative examples
are presented in Figure 2. It is important to note that, in this study, all synthetic images were generated
under clear weather conditions with no environmental modifications.

Figure 2. CARLA examples (from left to right, first column: Side-view approaching; second
column: center-view approaching; and third column: Side-view departing).
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3.2. Day-to-night image transfer

The efficient attention GAN (EAGAN) [18] builds upon the CycleGAN framework by integrating
efficient attention blocks into the generator networks while enabling attention sharing between
corresponding encoder and decoder blocks. This mechanism enables the re-utilization of the long-
range dependencies computed from the source-domain images during the reconstruction of their target-
domain counterparts. This design makes EAGAN a robust choice for high-quality image-to-image (12I)
translation tasks, particularly in scenarios where maintaining consistency between domains is critical.

In this study, the EAGAN architecture is adopted to perform day-to-night style transfer in rural
environments. The model is trained using datasets from two domains: Real-world daytime images and
CARLA virtual nighttime images.

The 121 translation task generally considers transforming image x from domain X (daytime) to
image y in domain Y (nighttime), represented as mappings: G : x — y, F : y — Xx, where
G and F are generator networks. The objective is to ensure that the distributions G(X) and F(Y)
are indistinguishable from X and Y, respectively, while preserving semantic information and cycle
consistency.

To train the EAGAN for the data augmentation purpose from daytime images and CARLA
nighttime images, the model input consists of {Real X, Real Y}, where Real X, and Real Y are from the
domains X and Y. The detailed information flow is shown in Figure 3. Following the standard training
process for GANs, the discriminators and generators are trained simultaneously by optimizing a min-
max adversarial objectives. Instead of the traditional adversarial loss, the least-square adversarial loss
proposed by [19] is used due to improved stability, which also encourages the generator to produce
realistic images indistinguishable by the discriminator:

min Lean(G) = Expyu(o (DG - 17 %

where pya.(x) denotes the true data distribution of domain X, comprising real daytime images. D(G(x))
represents the output of the discriminator, which assigns a score between 0 and 1. Ideally, D(G(x))
should approach 1 if the generated nighttime image appears realistic. The term (D(G(x)) — 1)? imposes
a penalty on the generator if the discriminator fails to classify G(x) as realistic, i.e., when the score
deviates from 1.

min Loan(D) = By i [(DO) = | + Eeoppuio [ DGV )

where pg..(y) denotes the true data distribution of domain Y, i.e., CARLA nighttime images. The term
Eypiaty) [(D(y) - 1)2] ensures that the discriminator assigns a score close to 1 to authentic CARLA

nighttime images from domain Y. Conversely, E..,, .. [D(G(x))z] penalizes the discriminator if it
assigns a high score to the nighttime images G(x) generated from real daytime images x. This dual
mechanism maintains the discriminator’s reliability in distinguishing real and generated samples.

In addition to the least square adversarial loss, cycle consistency is enforced between the two
generators to ensure the reversibility of the translation process. Specifically, when an image is passed
sequentially through both generators, the reconstructed image should closely resemble the original. To
achieve this, a cycle consistency loss term is added to the objective function alongside the adversarial
loss:

Leye(G, F) = Evepy [IF(G(x) = xlli] + Ey-p, [IGFEM) = ylh] - 3)
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Figure 3. The information flow of EAGAN.

Furthermore, an identity loss term, as proposed by [20], is also included. By leveraging identity
mappings for domains X and Y, the generators are encouraged to make minimal alterations to the input
images x and y when they already belong to the target domain. This constraint helps the generators to
better preserve the original tint and coloration of the input images. The identity loss is expressed as:

Lia(G, F) = Ey-p, [IGG) = ¥lli] + Evopy [IF () = 1] C))

As a result, the overall training objective for EAGAN combines adversarial loss, cycle consistency
loss, and identity loss, and is written as:

L(G, F» DXa DY) = LGAN(G’ DY, X’ Y) + LGAN(F9 DX» Y’ X) + AcychyC(G9 F) + /lidLid(G’ F)’ (5)

where Ay and ;4 are weighting parameters for the respective loss terms.

3.3. Labeling-free data augmentation for nighttime images

The you only look once (YOLO) family of models has revolutionized object detection, offering
real-time detection and high accuracy. YOLOL11, the latest version [16], builds upon this legacy
with attention mechanisms, deeper feature extraction layers, and an anchor-free detection approach.
It was designed to address challenges such as detecting small, occluded, or fast-moving vehicles.
By integrating strengths of CNNs and self-attention mechanism, YOLO11 improves both detection
accuracy and computational efficiency, making it well-suited for real-world applications. In our
study, YOLOL11 is applied as an “annotator” to automatically annotate daytime images. The obtained
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labels from daytime images are directly applied to the style-transferred nighttime images as the
objects of interest (i.e., vehicles) will remain in the same locations. This enables us to leverage the
accurate vehicle detection capability of the YOLO11 model to automatically obtain labels for its style-
transferred nighttime counterparts.

The original YOLOI11 model was pretrained on the COCO dataset [21], which includes vehicle
classes of car, bus, and truck that are relevant to rural settings. For this study, our focus is on classifying
two vehicle categories: Class 0 (sedan) and class 1 (SVP-BV). The SVP-BV category includes SUV,
Van, Pick-UP, and Bigger Vehicles. To align with the new vehicle categories, the COCO vehicle classes
are remapped as follows: (1) cars — > sedan; (2) bus and truck — > SVP-BV.

The augmented dataset is obtained by assembling the style-transferred nighttime images generated
by the EAGAN model with the corresponding labels predicted by YOLO11.

4. Experiments and results

4.1. Data

Our data was gathered from multiple public traffic cameras in California, which includes both
daytime and nighttime images, serving distinct purposes for training and testing. The data is organized
into three categories: (1) Training datasets for the EAGAN model, (2) fine-tuning datasets for the
YOLO11 model, and (3) an evaluation dataset for comparing the performance of the original YOLO11
model and the fine-tuned version.

A detailed summary of each dataset is provided in Table 1.

Table 1. Dataset details.

Dataset Split Description Image #
Train A Real daytime images 239
.. Train B CARLA nighttime images 413
EAGAN Training Test A Real daytime images 82
Test B CARLA nighttime images 50
Train 124 real nighttime images + 163 augmented images 287
YOLOI11 Fine-Tuning Validation 43 real nighttime images + 20 augmented images 63
Test 20 real nighttime images + 10 augmented images 30
Evaluation Test Real nighttime images 38

4.2. Image style transfer

For the image style transfer with EAGAN, we target two domains: Domain X, which consists of
daytime images in real-world settings, and domain Y, comprising CARLA-generated nighttime images.
The EAGAN is trained for 200 epochs with the scheduled learning rate in Eq (6) that is initialized
at 0.0002 and begins to decrease linearly after the 100th epoch. This decay strategy of learning rate
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ensures a smooth model convergence, leading to better generalization and performance [22].

l}"o’ lfl S Ne,
Irt) = lro - (1= 22), ifne <t < ne +ny, (6)
0, ift > ne + ng,

where [ry = initial learning rate ¢ = current epoch n. = the number of epochs that the learning rate
decay starts ny = the number of epochs that the learning rate decay ends.

Table 2 shows the detailed parameter settings for EAGAN training.

Table 2. Training parameter settings for EAGAN.

Parameter Value Description

n, 100 Epochs with constant learning rate
ny 200 Epochs for linear learning rate decay
Iro 0.0002 Initial learning rate

B 0.5 Momentum term of Adam optimizer
input_size 256 x256 Size of input images

Acyc 10.0 Weight for cycle consistency loss
Aig 0.5 Weight for identity loss

Each epoch takes approximately 150 seconds, with the training process completed in about 8
hours on a single NVIDIA A6000 GPU. Figure 4 showcases test examples from our trained EAGAN
model. The results confirm successful day-to-night translation, including effective addition of headlight
features. Notably, the model accurately places headlights in the correct locations of the vehicles,
demonstrating its ability to reliably locate the vehicles and identify their positions. Interestingly, some
shadow-related effects are observed:

(1) Vehicle shadows under sunlight: For shadows cast by vehicles in sunny conditions (e.g., rows 1
and 2 in columns 5 and 6 of Figure 4), the model tends to interpret the shadow in front of the
car’s bumper as part of the vehicle. This results in a slight angular misalignment between the
illuminated headlights and the front of the car in the transferred image. However, this minor
deviation does not impair the model’s ability to recognize vehicles at night.

(2) Vehicles in shadowed areas beneath trees: When vehicles are passing tree-shaded areas (e.g.,
row 3 in columns 5 and 6 of Figure 4), the blending of vehicle features with the blotchy tree
shadows create challenges for the model. These shadowed regions act as noise, degrading the
quality of the transferred images and negatively impacting downstream tasks.

While these shadow effects introduce some artifacts, the overall performance of the EAGAN model
remains robust in generating high-quality day-to-night image translation.
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Figure 4. Test examples of the trained EAGAN (From left to right: the first, third, and

fifth columns are original daytime images; the second, fourth, and sixth columns are the
corresponding style-transferred nighttime images, respectively).

4.3. Nighttime vehicle detection and classification

For this experiment, the YOLO1 1-small model is employed. Figure 5 showcases sample predictions
generated by the original YOLO11-small model, which serve as labels for their transferred nighttime
images.

Figure 5. Original YOLO1 1-small model predictions for auto-labeling.

Although CARLA can generate realistic nighttime road scene images, there are still subtle
differences in appearance compared to real-world nighttime road scenes. To address this domain
adaption gap, we incorporate a selection of manually annotated real-world nighttime images into
the training dataset. This approach enables the model to learn relevant features from both CARLA-
generated and real-world nighttime images, enhancing its overall performance and robustness.

To fine-tune the model, a learning rate scheduling strategy is implemented for different components
of the model. Initially, the backbone is fine-tuned with a learning rate of 0.0001 for 50 epochs.
Subsequently, the backbone network is frozen, and a learning rate of 0.00005 is applied exclusively
to the neck network for another 50 epochs. Finally, both the backbone and neck networks are frozen,
and a learning rate of 0.00001 is applied to the head network for an additional 50 epochs. This block-
wise adaptation strategy, distinct from the approach used in EAGAN training, facilitates enhanced
convergence and improved generalization.

For evaluation, representative real-world nighttime images captured by roadside traffic cameras in
rural areas are analyzed, as shown in Figures 6-—8. These nighttime images present various challenges,
including low ambient light, poor image quality, and issues caused by headlight glare. The original
YOLOI11 model frequently struggles to distinguish vehicles from the background, even under relatively
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favorable lighting conditions, and often produces low confidence scores when vehicles are detected.
In contrast, the fine-tuned YOLOI11 model, trained on the augmented dataset, achieves a 100%
detection success rate, with significantly higher confidence scores, demonstrating the effectiveness
of the proposed framework.

Figure 6. Comparison of predictions for single-vehicle images with ambient light (Top row:
Original YOLO11 model; and bottom row: fine-tuned YOLO11 model).

Figure 7. Comparison of predictions on multiple-vehicle images without ambient light (Top
row: Original YOLO11 model; and bottom row: fine-tuned YOLO11 model).

Figure 8. Comparison of predictions on gray-scale images without ambient light (Top row:
Original YOLO11 model; and bottom row: fine-tuned YOLO11 model).

Table 3 presents detailed classification results across metrics for the original and fine-tuned
YOLOI1 models. It reveals significant improvements across classes, indicating that the fine-tuned
model effectively captures most vehicles in the nighttime scenes, addressing the key limitation of state-
of-the-art object detection models. The consistent gains in mAP metrics further highlight the fine-tuned
model’s robustness in detecting and localizing vehicles under challenging nighttime conditions. Class-
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specific refinements enhance detection for both smaller vehicles (sedan) and larger ones (SVP-BV).
Notably, the fine-tuned model shows a slightly lower bounding box precision for the SVP-BV class,
largely due to the diverse mix of vehicle types in this newly defined class.

Table 3. Performance comparison of the original and fine-tuned YOLO11 models.

Model Class Bounding Box Precision Recall mAP50 mAPS50-95
all 0.56 0.25 0.26 0.16
Original YOLO11 car 0.21 0.39 0.20 0.12
truck 0.91 0.11 0.32 0.20
all 0.63 0.88 0.76 0.56
Fine-tuned YOLOI11 sedan 0.51 0.85 0.59 0.40
SVP.BV 0.75 0.92 0.93 0.72

5. Conclusions and discussion

In this work, we proposed a novel framework for enhancing nighttime vehicle detection, featuring a
labeling-free method that leverages EAGAN for day-to-night image transfer and CARLA for realistic
headlight modeling. We created an augmented dataset for fine-tuning object detection models, resulting
in improved performance for nighttime conditions. Additionally, we adopted different learning rate
scheduling strategies during EAGAN training and YOLOI11 fine-tuning to ensure smooth convergence
and enhanced generalization. A performance comparison between the original YOLO11 model and
the fine-tuned version demonstrated that the YOLO11 model fine-tuned with the augmented dataset
significantly outperformed the original YOLO11 model for nighttime vehicle detection. Its ability to
detect and localize the vehicles with high confidence highlights the effectiveness of fine-tuning with
properly augmented data, making it a more reliable solution for real-world applications.

Nevertheless, we acknowledge several limitations that should be addressed in future research:
(1) While CARLA offers many vehicle types, it lacks coverage of all vehicle types on the road,
particularly the tractor-trailers and RVs, which limits the diversity of synthetic data. Additionally, the
headlights in CARLA need to be refined to better replicate glare effects observed in real-world settings.
(2) Although the EAGAN model incorporates an attention-sharing mechanism in the generators of
CycleGAN, future researchers could explore alternative mechanisms to more effectively address the
observed shadow effects. (3) For proof of concept, the training and testing datasets utilized in this
study were relatively small. Thus, researchers should consider significantly expanding the datasets
using our proposed data augmentation approach, which is expected to enhance model performance and
robustness.
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