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Abstract: This paper presents a comprehensive study aimed at understanding the dynamics of
single-vehicle and multi-vehicle crashes through a binary classification approach. By harnessing
high-resolution, multi-source data, including high-resolution traffic profile data captured by weigh-
in-motion stations, weather conditions, roadway attributes, and pavement properties, we delved into
distinctive characteristics of the two crash types. Particularly, a meticulous data fusion approach
was applied to integrate the diverse data sources, enabling a holistic investigation of influential
factors. Framing it as a classification task, key factors differentiating between single-vehicle and multi-
vehicle crashes were identified. The results of the study provide valuable insights into the underlying
mechanisms of the two distinct crash types, supporting the development of targeted safety measures.
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1. Introduction

The automobile has firmly established itself as the beloved and dominant mode of travel in the
United States. With a staggering registration of approximately 283 million vehicles in 2022 [2], it is
evident that cars play an integral role in people’s daily life. However, this reliance on automobiles
comes with a grave cost as evidenced by the tragic toll of motor vehicle crashes. According to the
National Highway Traffic Safety Administration (NHTSA), an estimated 40,990 people died in motor
vehicle traffic crashes in 2023 [14]. The urgency to investigate the patterns and root causes of these
crashes cannot be overstated, as it is crucial for formulating and implementing effective safety measures
and policies. By understanding the intricate dynamics of vehicle accidents, we not only safeguard lives
but also pave the way for a safer and more sustainable transportation, benefiting the society as a whole.
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Crash analysis, a cornerstone of traffic safety research, has examined contributing factors
influencing crash outcomes, such as crash event features, roadway features, weather conditions,
and traffic features. Among these, weather conditions and traffic-related features have emerged
as critical areas of study, given their significant impact on crash likelihood and outcomes. For
weather-related features, variables such as precipitation, visibility, and temperature have been shown
to impact driver behavior and roadway conditions, thereby affecting the likelihood and severity
of crashes [3, 7, 15]. Precipitation, in particular, influences crash risk in two different ways: it
alters driver behavior and encourages cautious driving due to reduced visibility and wet roads while
simultaneously decreasing road friction, thereby increasing the likelihood of skidding and necessitating
longer stopping distances [23].

Moreover, traffic characteristics, especially truck-related traffic features, have been linked to
increased crash severity due to the greater impact forces involved in truck-related collisions [20, 22].
Research has also demonstrated that integrating traffic-related features such as speed and traffic flow,
along with categorical weather data, can improve crash risk prediction modeling; also, the impact of
traffic features on crash outcomes varies across different weather conditions [8, 21]. Researchers also
found that truck traffic significantly impacts crash risk and severity [4, 5]. Due to their greater weights
compared to passenger vehicles, crashes involving trucks tend to result in more severe outcomes
because of higher impact forces and momentum involved. Weigh-in-motion (WIM) data, which
includes truck volumes, vehicle weights, and the ratio of truck traffic to passenger cars, has been
utilized to analyze the influence of truck traffic on crashes. Findings from these studies indicate that
higher truck ratios and greater mean vehicle weights are correlated with increased injury and fatality
risks in traffic crashes [20, 22].

A crucial focus of traffic safety research is identifying factors that differentiate single-vehicle
(SV) crashes from multi-vehicle (MV) crashes. SV crashes, often involving run-off-road incidents
or collisions with stationary objects, differ markedly from MV crashes, which typically include head-
on, rear-end, angle, and sideswipe collisions. While these two types of crashes may share some site-
specific correlations, they differ substantially in contributing crash factors [9] and are often treated
separately when conducting safety investigations. Extensive research has been devoted to analyzing
MV crashes [1, 6, 12, 17], which are most often caused by drivers’ errors when interacting with other
vehicles in dynamic traffic. In contrast, SV crashes usually result from the loss of vehicle control
due to driver misbehavior or negligence when interacting with unfavorable environments (e.g., sharp
curves and inclement weather). Thus, understanding the distinct factors that contribute to SV and MV
crashes is essential for identifying the underlying dynamics that differentiate the two crash types. This
knowledge can inform the development of targeted countermeasures and mitigation strategies.

Previous studies have examined various factors contributing to SV and MV crashes [10]. For
example, Wang et al. [18] found that factors such as traffic volume, speed variance, and traffic operation
characteristics had no significant influence on SV crashes, while the inverse was true for MV crashes.
Similarly, Dong et al. [9], utilized a mixed logit model to investigate the contributing factors for
different outcomes: non-crash events, SV crashes, and MV crashes, revealing that traffic, pavement
characteristics, and road surface features play important roles in distinguishing among these outcomes.
However, their dataset is still limited. For truck-related features with SV and MV, Wu et al. [19]
employed mixed logit models and elasticity analysis to study SV and MV crashes on rural two-lane
highways. Their findings revealed that the likelihood of drivers being fatally injured in a truck-involved
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MV crash is 270% higher. Similarly, Islam et al. [11] investigated the effect of truck at-fault SV and
MV crashes in both rural and urban settings. Their results highlighted a strong correlation among
single-unit trucks and increased injury severity in rural areas, while multi-unit truck crashes were
found to be more severe in urban environments.

Despite these advancements, significant gaps remain in comprehensively understanding the unique
factors driving SV and MV crashes. A considerable limitation of many existing studies [9, 11, 13]
lies in their reliance on datasets that lack the necessary breadth and depth to integrate the diverse
range of features contributing to crash occurrences. In particular, the collection of detailed truck traffic
data and fine-grained weather (temporal-wise) and pavement characteristics (spatial-wise) presents
significant challenges, thereby constraining the scope of insights that can be derived. This limitation
arises because the effectiveness and interpretability of crash severity models are highly dependent on
the quality and completeness of the input data. When critical variables, such as real-time weather
conditions or detailed pavement characteristics, are omitted, the ability of models to capture the
underlying relationships between crash types and contributing factors is significantly constrained.
Such data gaps can lead to biased parameter estimates or incorrect causal attributions, resulting in
oversimplified models that fail to reflect the complex mechanisms underlying SV and MV crashes. For
example, the absence of real-time weather data or granular pavement details may overlook essential
interactions between environmental and traffic factors, thereby reducing the reliability and applicability
of the resulting safety insights.

This paper addresses these gaps by integrating diverse datasets encompassing crash-related,
road pavement-related, weather-related, and traffic-related variables. Our approach leverages high-
resolution data from WIM systems, incorporating detailed traffic flow characteristics such as vehicle
weights and truck ratios. While it is nearly impossible for any dataset to capture all the contributing
factors in crash events, especially given the complexity of human behavior, aggregating a wide
range of variables provides significant insights into the difference between SV and MV crashes. In
this study, we aggregated four categories of data to explore the dynamics of SV and MV crashes
through a comparative analysis: (1) accident-related data: vehicle direction and driver maneuver
when the crash occurred; (2) road and pavement-related data: detailed pavement surface conditions
where crashes occurred; (3) weather-related data: high-resolution weather conditions; and (4) traffic-
related WIM data: WIM data capturing both macroscopic flow characteristics (e.g., vehicle counts and
speed statistics) and refined flow details (e.g., average vehicle weights and truck ratios) when crashes
occurred.

To investigate the contributing factors distinguishing SV and MV crashes using this fused dataset, a
logistic regression model with L2 norm was fit. Logistic regression was chosen for its robustness and
interpretability, which make it well-suited for identifying and quantifying the relationships between
crash outcomes and contributing factors. The L2 norm regularization helps mitigate over-fitting by
penalizing large coefficients, ensuring the model remains generalizable despite the diverse and high-
dimensional nature of the input features. This approach balances model complexity with performance,
enabling a clear understanding of how individual variables influence crash classification. The model
achieved an accuracy of 0.86 in classifying SV and MV crashes, demonstrating its effectiveness.
More importantly, we conducted a detailed analysis of variables identified in each feature category
and their influences on crash classification. For MV crashes, factors such as roadway locations
(e.g., entrance/exit ramps), driver age, lane-changing maneuvers, wind speed, and speed variance
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showed strong correlations. In contrast, SV crashes were more strongly associated with factors like
locations off the roadway or on the shoulder, average traffic speed, pavement cracking percentage,
and UV radiation. A comprehensive discussion of these findings and their implications is provided in
Sections 5–7.

2. Data fusion and processing

In this section, we first introduce the data sources used and how they were fused together, followed
by data processing for subsequent regularized logistic regression.

The Georgia Department of Transportation (GDOT) maintains a WIM system, a comprehensive
repository of road and pavement characteristics for state roads, and an extensive crash database.
Additionally, meteorological data are publicly accessible through the Weather Underground [16]. This
study integrates data from these sources, depicted in Figure 1. First, crash records are filtered to include
only accidents recorded during the years 2021 and 2022 that occurred within 500 feet of each WIM
station. The reason we set the distance as 500 feet is to try to link actual traffic conditions when
the crash happened. To match the WIM data with the crash data, traffic conditions are extracted
within one hour when the crash happened. Then, the resultant dataset is further augmented with
corresponding meteorological data obtained from the Weather Underground repository, by identifying
the nearest weather station and synchronizing the observed atmospheric conditions at the time of
the crash within a 5 minutes window. Finally, the integrated crash-traffic-weather dataset is further
enriched with road and pavement characteristic data, also sourced from GDOT, by mapping each event
to the corresponding road segment. The compiled multi-source dataset contains 448 crash occurrences
with 124 SV crashes and 324 MV crashes. For the MV crashes, it includes rear-end collisions,
angle collisions, and side-swipe collisions in the same and opposite directions. All the variables are
summarized in Table 1, categorized into four groups: crash features, road and pavement characteristics,
weather features, and WIM features.

Figure 1. Data fusion process.
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Table 1. Data description.
Name Variable Description Processing

Crash features

Time Period X1

0 Mid-day (9:00-15:00)

One-Hot
1 Early morning (0:00-6:00)
2 Early evening (15:00-18:00)
3 Evening (18:00-24:00)
4 Morning (6:00-9:00)

Location of
Impact
Element

X2

5 Median

One-Hot

6 On Roadway - Roadway Intersection
7 Off Roadway
8 On Roadway - Non-Intersection
9 Entrance/Exit Ramp
10 On Shoulder

Light Element X3

11 Dark-Not Lighted

One-Hot
12 Dark-Lighted
13 Dawn
14 Dusk
15 Daylight

Surface
Element X4

16 Dry
One-Hot17 Water (standing or moving)

18 Wet
Driver Age Element X5 19 The age of the driver that crashed (years old) Max-min

Veh Type
Element X6

20 Unknown

One-Hot
21 Passenger Car
22 Sports Utility Vehicle (SUV), Pickup Truck, Van
23 Tractor/Trailer

Dir Veh1
Element X7

24 West

One-Hot
25 East
26 North
27 South

Mnvr Veh1
Element X8

28 Changing Lanes

One-Hot

29 PIT
30 Negotiating A Curve
31 Passing
32 Other
33 Backing
34 Turning Right
35 Making U-turn
36 Straight
37 Turning Left
38 Stopped

U1 Traffic
Control
Element

X9

39 Yield Sign

One-Hot

40 Traffic Signal
41 Lanes
42 Other
43 Stop Sign
44 No Control Present

Road and pavement characteristics
U1 Road Composition
Element X10

45 Concrete
One-Hot46 Black Top

Continued on next page
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Name Variable Description Processing

U1 Road
Character
Element

X11

47 Straight and Level

One-Hot
48 Curve and Level
49 Straight on Grade
50 Curve on Grade
51 Straight on Hillcrest

NumLanes X12 52 The number of lanes in the direction that the primary vehicle is
driving

Max-min

U1 Traffic Way
Flow Element X13

53 One-Way trafficway

One-Hot
54 Two-Way trafficway with a physical barrier
55 Two-Way trafficway with a physical separation
56 Continuous turning Lane
57 Two-Way trafficway with no physical separation

PrcntGrade X14 58 The grade classification expressed as a percentage Max-min
IRIAvg X15 59 The International Roughness Index average expressed in

inch/mile
Max-min

TexAvg X16 60 The variance of profile height on the left and right wheelpath
averaged

Max-min

RutAv X17 61 The surface depression depth on the right and left wheelpath
averaged

Max-min

FAUAvg3D X18 62 Faulting values that fall across the entire lane (Measured by
inch/mile)

Max-min

FAUAvg2D X19 63 Faulting values that fall within the minimum and maximum
values

Max-min

MacroText X20 64 The mean texture depth measure of the road measured in mm Max-min
Heading X21 65 Measurement from beginning to the end of a horizontal

curvature
Max-min

CS X22 66 Cross slope, which is a critical design element for pavement Max-min
CrackPerc X23 67 Percentage of pavement surface showing cracking (as a

percentage)
Max-min

Curve X24

68 Curves B

One-Hot
69 Curves C
70 Curves A
71 Curves E

Weather features
Temp X25 72 The temperature outside at the given time (degrees Fahrenheit) Max-min
Dew Point X26 73 The dew point temperature outside at the given time (degrees

Fahrenheit)
Max-min

Humidity X27 74 Percentage of water vapor in the air (expressed as percent) Max-min
Wind Speed X28 75 Speed of the wind (in mph) Max-min
Pressure X29 76 The weight of the air (in) Max-min
Precip. Rate X30 77 The rate at which the precipitation is falling (in) Max-min
Precip. Accum. X31 78 Amount of precipitation accumulated to that point in the day (in) Max-min
Gust X32 79 A brief increase in the speed of the wind (mph) Max-min
UV X33 80 The measure of the amount of UV radiation (1-10) Max-min

WIM features
Avg. Speed (mph) X34 81 The average vehicle speed in the hour across lanes in the

direction of the crash (mph)
Max-min

Traffic Volume X35 82 The total traffic volume for the hour that the crash occurred Max-min
Continued on next page
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Name Variable Description Processing
Avg. Headway (s) X36 83 The average amount of time between one vehicle arriving and

the next in the crash hour
Max-min

Truck/Car Ratio X37 84 The number of trucks divided by the number of passenger cars
in the hour of the crash

Max-min

Avg. Weight (kg) X38 85 The average weight of all vehicles that passed by in the hour of
the crash

Max-min

Avg. PC Weight (kg) X39 86 The average weight of passenger cars (less than class 3) in the
hour of the crash

Max-min

Avg. Truck Weight (kg) X40 87 The average weight of trucks (greater than class 3) in the hour of
the crash

Max-min

Speed (mph) Variance X41 88 The variance of the speeds in the hour of the crash (mph2) Max-min

The crash data extracted from the police reports includes details such as the location of impact,
vehicle maneuver, type of the primary vehicle, roadway type, the direction of the primary vehicle, one
or two-way street, presence of traffic control, surface conditions, pavement composition, light, and
driver age. These descriptive crash attributes characterize the circumstances under which each crash
occurred.

WIM stations record lane-specific traffic and weight data at high temporal resolution. The WIM
station locations are indicated by green rectangle markers in Figure 2. In reference to each crash, we
extracted directional traffic by lanes and weight information from the corresponding WIM station for
the specific hour in which the crash occurred. We further computed meaningful features to capture
traffic dynamics, including average vehicle speed, average speed variance, range of speed, total traffic
volume, average passenger car weight, average truck weight, average total weight, average headway,
and the ratio of trucks to passenger cars as well as the proportions of each vehicle class type (Class 1
to 13).

Figure 2. WIM locations in Georgia.

For each WIM station, pavement condition data were obtained as well, including crack percentages,
curves, faulting averages, rutting average, cross slope, percent grades, grades, macro-texture, the
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average texture, heading, and the average roughness index. These measurements characterize the
roadway’s geometry and surface conditions, which likely impact the risk of crashes and how they
may occur.

Weather attributes are retrieved from the nearest available weather station for each crash occurrence,
encompassing temperature, dew point, humidity, pressure, precipitation accumulation, precipitation
rate, wind speed, wind gust, and UV index. These environmental conditions can influence roadway
surface characteristics, driver perception and behavior, and overall driving risk.

All variables are pre-processed as shown in Table 1. Many of the features included in this study are
categorical, for which one-hot encoding is applied. For numeric features, min-max scaling is used to
normalize their value ranges to [0, 1].

3. Regularized logistic regression

Logistic regression is a widely used statistical method for binary classification tasks. In this study,
we aim to investigate the features that help to distinguish between two distinct crash types: SV and
MV crashes, which is essentially a binary classification task for which logistic regression is a natural
choice.

The core of logistic regression lies in the assumption of the logistic distribution of the error term,
denoted as follows:

σ(z) =
1

1 + e−z , (1)

where z is usually an affine transformation of input features and can be interpreted as the log-odds of
the positive class.

The logistic function predicts the probability that a given instance x belongs to the positive class
(e.g., MV crash). The parametrized function can be written as

p(x|β) = σ(βT x + b), (2)

where p(x|β) is the predicted probability that the instance x belongs to the positive class, β is model
parameters (weights), and b is the bias. Given the high dimensional feature space and relatively small
sample size, we impose L2 regularization to combat overfitting. For the model traning and testing, we
randomly split the dataset into two subsets: 80% for training and 20% for testing.

4. Experimental results

The classification results of regularized logistic regression are summarized in Table 2, showing
the model’s overall effectiveness with an weighted average accuracy of 86% and weighted averaged
f1-score 0.85 on the test dataset. For MV crashes, the model demonstrated a high f1-score of 0.90,
precision of 0.84, and recall of 0.97. In comparison, for SV crashes, it achieves an f1-score of 0.73
and precision of 0.90, yet a lower recall of 0.62. Overall, the model demonstrated robust performance
in identifying MV crashes but exhibited some limitations in accurately detecting SV crashes. This
disparity may be attributed to the critical and complex role of driver behavior in SV crashes, which is
challenging to model due to limited observational data on human behavior. Another possible reason is
the imbalanced dataset with the majority of crashes being MV crashes. Despite these challenges, the
model effectively handled the binary classification task, achieving a overall F1-score of 0.85.

Applied Computing and Intelligence Volume 4, Issue 2, 349–369.



357

Table 2. Binary classification results.

precision recall f1-score support
SV crash 0.90 0.62 0.73 29
MV crash 0.84 0.97 0.90 61
macro avg 0.87 0.79 0.82 90
weighted avg 0.86 0.86 0.85 90
accuracy 0.86 90

In addition to the classification results, the coefficient and odds ratio for each variable are listed in
Table 3. To highlight key predictors, the top 25 important variables, ranked by the magnitude of their
coefficients, are summarized in Table 4. The coefficients quantify the change in the likelihood of a
MV crash with respect to a one-unit change in each predictor variable. A positive coefficient signifies
that an increase in the variable value raises the probability of a MV crash, while a negative coefficient
indicates a decreased probability. Similarly, an odds ratio greater than 1 indicates a higher likelihood
of a MV crash, whereas an odds ratio lower than 1 implies a greater likelihood of a SV crash.

Table 3. Results of regularized logistic regression.
Variable Coefficients Odds ratio Variable Coefficients Odds ratio

X1

0 0.1549 1.1675
X10

45 0.1561 1.1690
1 -0.2346 0.7909 46 -0.1558 0.8557
2 0.0214 1.0216

X11

47 0.4133 1.5118
3 -0.0692 0.9331 48 -0.2845 0.7524
4 0.1278 1.1364 49 0.1785 1.1955

X2

5 -0.3487 0.7056 50 -0.3269 0.7211
6 0.5809 1.7876 51 0.0199 1.0201
7 -2.4101 0.0898 X12 52 -0.5226 0.5930
8 1.7908 5.9944

X13

53 0.1123 1.1189
9 1.0359 2.8176 54 -0.0621 0.9398
10 -0.6485 0.5228 55 0.3570 1.4291

X3

11 -0.0740 0.9286 56 -0.3138 0.7307
12 -0.2425 0.7847 57 -0.0932 0.9110
13 -0.1274 0.8803 X14 58 -0.0672 0.9350
14 0.3442 1.4109 X15 59 -0.0717 0.9308
15 0.1000 1.1052 X16 60 -0.2329 0.7922

X4
16 0.1520 1.1642 X17 61 0.6428 1.9018
17 0.2921 1.3392 X18 62 -0.6190 0.5385
18 -0.4438 0.6416 X19 63 0.0000 1.0000

X5 19 0.8060 2.2389 X20 64 -0.5602 0.5711

X6

20 -0.5584 0.5721 X21 65 0.7518 2.1209
21 0.4964 1.6429 X22 66 0.0333 1.0339
22 0.3154 1.3708 X23 67 -1.3206 0.2670
23 -0.2532 0.7763

X24

68 0.4618 1.5869

X7

24 0.2807 1.3240 69 -0.0625 0.9394
25 0.2059 1.2287 70 -0.1843 0.8317
26 -0.0579 0.9438 71 -0.2147 0.8068
27 -0.4284 0.6515 X25 72 -0.1734 0.8408

Continued on next page
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Variable Coefficients Odds ratio Variable Coefficients Odds ratio

X8

28 0.7363 2.0881 X26 73 0.1871 1.2058
29 0.0435 1.0445 X27 74 0.0173 1.0175
30 -0.9183 0.3992 X28 75 0.6781 1.9701
31 0.0554 1.0569 X29 76 -0.1184 0.8883
32 0.4451 1.5607 X30 77 -0.1342 0.8744
33 0.3136 1.3684 X31 78 0.1089 1.1151
34 0.0168 1.0169 X32 79 -0.0945 0.9098
35 0.0000 1.0000 X33 80 -0.6698 0.5118
36 -0.8274 0.4372 X34 81 -2.2176 0.1089
37 -0.0134 0.9867 X35 82 0.2651 1.3035
38 0.1487 1.1603 X36 83 -0.2415 0.7854

X9

39 0.0168 1.0169 X37 84 0.5763 1.7794
40 0.5597 1.7501 X38 85 0.2904 1.3370
41 -0.5986 0.5496 X39 86 0.2285 1.2567
42 0.0637 1.0658 X40 87 0.2302 1.2588
43 0.0291 1.0295 X41 88 0.5835 1.7923
44 -0.0703 0.9321

Table 4. Top 25 important variables.
Variable name Type Variable Coefficient Odds ratio
Location (Off Roadway) Crash X2 7 -2.4101 0.0898
Avg. Speed (mph) WIM X34 81 -2.2176 0.1089
Location (On Roadway - Non-Intersection) Crash X2 8 1.7908 5.9944
CrackPerc Pavement X23 67 -1.3206 0.2670
Location (Entrance/Exit Ramp) Crash X2 9 1.0359 2.8176
Mnvr Veh1 Element (Negotiating A Curve) Crash X8 30 -0.9183 0.3992
Mnvr Veh1 Element (Straight) Crash X8 36 -0.8274 0.4372
Driver Age Element Crash X5 19 0.8060 2.2389
Heading Pavement X21 65 0.7518 2.1209
Mnvr Veh1 Element (Changing Lanes) Crash X8 28 0.7363 2.0881
Wind Speed Weather X28 75 0.6781 1.9701
UV Weather X33 80 -0.6698 0.5118
Location (On Shoulder) Crash X2 10 -0.6485 0.5228
RutAv Pavement X17 61 0.6428 1.9018
FAUAvg3D Pavement X18 62 -0.6190 0.5385
U1 Traffic Control Element (Lanes) Crash X9 41 -0.5986 0.5496
Speed (mph) Variance WIM X41 88 0.5835 1.7923
Location (On Roadway - Roadway Intersection) Crash X2 6 0.5809 1.7876
Truck/Car Ratio WIM X37 84 0.5763 1.7794
MacroText Pavement X20 64 -0.5602 0.5711
U1 Traffic Control Element (Traffic Signal) Crash X9 40 0.5597 1.7501
Veh Type Element (Unknown) Crash X6 20 -0.5584 0.5721
NumLanes Pavement X12 52 -0.5226 0.5930
Veh Type Element (Passenger Car) Crash X6 21 0.4964 1.6429
CurveB Pavement X24 68 0.4618 1.5869
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Table 4 shows that the top 25 important variables differentiating SV crashes and MV crashes span
across various feature groups. Within the crash and traffic-related features, the most important variable
is the crash location - off roadway, while the average speed (Avg. Speed (mph)) ranks highest in
the traffic-related WIM features. The crack percentage (CrackPerc) emerges as the most influential
variable in the road and pavement characteristics, and wind speed is the leading variable in the weather-
related features. Detailed discussions of these findings are provided in the subsequent Sections 5–7.

5. Effects of crash-related variables

In this section, we delve into important variables within the crash features and discuss their specific
impacts on differentiating SV crashes and MV crashes.

5.1. Time period

The coefficients of five time periods are plotted in Figure 3, with the following definition: early
morning (12:00 AM to 6:00 AM), morning (6:00 AM to 9:00 AM), mid-day (9:00 AM to 3:00 PM),
early evening (3:00 PM to 6:00 PM), and evening (6:00 PM to 12:00 AM). This time segmentation
partially captures variation in traffic characteristics, such as the typical AM and PM peak hours,
represented by the morning and early evening periods. The results revealed that SV crashes are more
likely to occur during the early morning and evening periods, when traffic is lighter, and less likely
during the morning or mid-day periods.

Figure 3. Time period (X1).

5.2. Location

Figure 4 illustrates the coefficients of various location elements, designated as Location Element
(X2), including Entrance/Exit Ramp, Median, Off Roadway, On Shoulder, On Roadway-Non-
Intersection, and On Roadway-Roadway Intersection. The results indicate that crashes at Off Roadway
locations exhibit the strongest association with SV crashes. In contrast, crashes occurring On
Roadway, both at intersections and non-intersections, are predominantly associated with MV crashes.
Furthermore, the analysis reveals that MV crashes are more likely to occur on entrance and exit ramps
compared to other locations.
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Figure 4. Location element (X2).

5.3. Light conditions

Figure 5 presents the coefficients for various lighting conditions, designated as Light Element (X3),
including Dusk, Daylight, Dark-Not Lighted, Dawn, and Dark-Lighted. The results indicate that
crashes occurring during Dusk are more likely to involve multiple vehicles. Conversely, SV crashes
are more commonly associated with Dark-Lighted and Dawn conditions.

Figure 5. Light element (X3).

These patterns highlight the influence of lighting conditions on crash types. The higher risk of MV
crashes during Dusk may be attributed to reduced visibility from rapidly changing light levels and glare
from the setting sun, compounded by high traffic volumes typical of evening commutes. In contrast,
the association of SV crashes with Dark-Lighted and Dawn conditions could reflect challenges posed
by low ambient light, which can impair a driver’s ability to perceive road geometry or obstacles.
Additionally, fatigue during early morning hours might contribute to the increased risk of SV crashes
during Dawn. These findings underscore the importance of adaptive lighting solutions and visibility-
enhancing measures, such as reflective road markings and targeted lighting improvements, to mitigate
crash risks under varying lighting conditions.
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5.4. Surface conditions

Figure 6 illustrates the coefficients corresponding to road surface conditions, designated as Surface
Element (X4) at the time of crashes, categorized as Water (standing or moving), Dry, and Wet. The
results indicate that SV crashes are more likely to occur on Wet road surfaces, while MV crashes are
predominantly associated with roadways featuring Water (standing or moving).

These findings highlight the distinct challenges posed by various road surface conditions. The
increased likelihood of SV crashes on Wet surfaces likely results from reduced tire traction, increasing
the risk of skidding or loss of control, particularly at higher speeds. Conversely, the strong association
between MV crashes and Water (standing or moving) can be attributed to additional hazards such as
hydroplaning or sudden braking in response to water-related obstacles, often leading to chain-reaction
collisions involving multiple vehicles. These results underscore the importance of implementing
proactive measures, including timely warnings about hazardous road conditions and the integration
of computer vision techniques to support drivers in navigating adverse weather conditions effectively.

Figure 6. Surface element (X4).

5.5. Vehicle type

Figure 7 presents the coefficients for vehicle types, designated as Veh Type Element (X6) involved
in crashes, categorized as Passenger Car, SUV, Pickup Truck, and Van, Tractor/Trailers, and Unknown.
The results indicate that Passenger Car and SUV, Pickup Truck, and Van categories are more frequently
associated with MV crashes, whereas larger vehicles, such as Tractor/Trailers, are more likely to be
involved in SV crashes. This pattern suggests that the higher involvement of larger vehicles like
Tractor/Trailers in SV crashes could be attributed to their reduced maneuverability and longer stopping
distances, making them more prone to losing control in challenging situations.
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Figure 7. Veh type element (X6).

5.6. Vehicle directions

Figure 8 depicts the coefficients for driving directions, designated as Dir Veh1 Element (X7) and
categorized as South, North, West, and East. The results reveal that the risk of MV crashes increases
when vehicles are traveling West or East. This phenomenon may be attributed to the adverse effects
of sun glare during sunrise and sunset, which can significantly impair driver visibility. Additionally,
sunrise and sunset periods often coincide with peak traffic volumes, further exacerbating the risk of
MV crashes.

Figure 8. Dir Veh1 Element (X7).

5.7. Vehicle maneuvers

Figure 9 illustrates the coefficients for various vehicle maneuvers, designated as Mnvr Veh1 Element
(X8), including Negotiating a Curve, Making a U-Turn, Other, Changing Lanes, Straight, Passing,
Backing, PIT, Turning Left, Turning Right, and Stopped. The results indicate that SV crashes are more
likely to occur when vehicles are Negotiating a Curve or traveling Straight. In contrast, MV crashes
are more frequently associated with maneuvers such as Changing Lanes or Backing. This pattern
highlights the differing dynamics of crash types based on vehicle maneuvers. The increased likelihood
of SV crashes during Negotiating a Curve or traveling Straight may result from drivers losing control
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due to excessive speed, sharp turns, or adverse road conditions. Conversely, MV crashes being more
common during maneuvers such as Changing Lanes or Backing likely reflects scenarios with higher
vehicle interactions and limited visibility, increasing the risk of collisions.

Figure 9. Mnvr Veh1 Element (X8).

5.8. Traffic control

Figure 10 presents the coefficients for various traffic control elements, designated as U1 Traffic
Control Element (X9), including No Control Present, Yield Sign, Traffic Signal, Lanes, Stop Sign, and
Other. The results indicate that SV crashes are more likely to occur on roads with Lanes control, which
may reflect situations where lane markings are insufficient to guide drivers effectively, especially under
adverse conditions. Conversely, the higher risk of MV crashes at locations with Traffic Signals likely
stems from the increased vehicle interactions and traffic volumes at signalized intersections. These
findings emphasize the need for targeted safety measures, such as improved lane markings for roads
with Lanes control and enhanced signal management at high-traffic intersections, to mitigate crash
risks.

Figure 10. U1 Traffic Control Element (X9).
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6. Effects of road and pavement features

This section examines key variables related to road and pavement characteristics, analyzing their
impacts on distinguishing between SV and MV crashes.

6.1. Road characteristics

Figure 11 plots the coefficients for the road characteristic elements, designated as U1 Road
Character Element (X11) of the segments where crashes occurred, categorized as Curve and Level,
Straight and Level, Straight on Hillcrest, Straight on Grade, and Curve on Grade. The results indicate
that on straight road segments, whether level or on a grade, the probability of a MV crash is higher
than that of a SV crash. Conversely, curved segments, whether level or on a grade, are more likely to
be associated with SV crashes. This pattern likely reflects the greater challenges curves pose to vehicle
control, particularly under adverse conditions, increasing the risk of losing control and resulting in SV
crashes. In contrast, straight segments typically involve higher traffic volumes and interactions, which
may lead to a greater likelihood of MV crashes.

Figure 11. U1 Road Character Element (X11).

6.2. Traffic way flow element

Figure 12 plots the coefficients of different traffic way flow elements (X13) for the segments
where crashes occurred. The traffic way flow elements include Two-Way Traffic-way with a Physical
Separation, One-Way Traffic-way, Two-Way Traffic-way with a Physical Barrier, Continuous Turning
Lane, and Two-Way Traffic-way with No Physical Separation. The results indicate that Continuous
Turning Lanes are more likely to contribute to SV crashes, whereas Two-Way Traffic-ways with a
Physical Separation are associated with a higher likelihood of MV crashes. This may reflect the unique
dynamics of each road configuration. For example, continuous turning lanes can pose challenges for
individual drivers, such as unexpected maneuvers or misjudging the lane’s boundaries, leading to a
higher risk of SV crashes.
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Figure 12. U1 Traffic Way Flow Element (X13).

6.3. Other numerical pavement characteristics

Figure 13 illustrates the coefficients for various pavement variables, including the directional
number of lanes (X12), PrcntGrade (X14), IRIAvg (X15), TexAvg (X16), RutAv (X17), FAUAvg3D
(X18), FAUAvg2D (X19), MacroText (X20), Heading (X21), CS (X22), and CrackPerc (X23). The
results show that increases in CrackPerc, MacroText, and FAUAvg2D are associated with a higher
likelihood of SV crashes compared to MV crashes. Conversely, higher values of RutAv and Heading
are linked to a greater likelihood of MV crashes. These findings suggest that deteriorated pavement
conditions, such as increased cracking (CrackPerc) and macro-texture (MacroText), contribute to loss
of control, making SV crashes more likely. On the other hand, higher RutAv values and variations in
Heading could indicate areas with complex vehicle interactions or high traffic volumes, which may
increase the risk of MV crashes.

Figure 13. Pavement characteristics (X12, X14-X23).

7. Effects of weather and WIM-related variables

This section explores key weather- and WIM-related variables, analyzing their impacts on
distinguishing between SV and MV crashes.

Figure 14 presents the coefficients for weather-related variables, including Temp (X25), Dew Point
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(X26), Humidity (X27), Wind Speed (X28), Pressure (X29), Precip. Rate (X30), Precip. Accum.
(X31), Gust (X32), and UV (X33). Among these variables, UV and Wind Speed stand out as relatively
important features, with UV associated with a higher probability of SV crashes and Wind Speed
linked to an increased likelihood of MV crashes. Higher UV levels could correlate with clear weather
conditions, potentially encouraging higher speeds or riskier driving behavior that increases SV crash
risks.

Figure 14. Weather.

Figure 15 plots the coefficients of WIM-related variables, including Avg. Speed (X34), Traffic
Volume (X35), Avg. Headway (X36), Truck/Car Ratio (X37), Avg. Weight (X38), Avg. Passenger Car
Weight (X39), Avg. Truck Weight (X40), and Speed (mph) Variance (X41). The results indicate that
higher Avg. Speed on the roadway increases the likelihood of SV crashes compared to MV crashes. A
larger Truck/Car Ratio, reflecting a higher proportion of trucks in the traffic flow, is associated with an
increased likelihood of MV crashes. Furthermore, greater Speed Variance across lanes is linked to a
higher probability of MV crashes over SV crashes.

Figure 15. WIM related features.

These findings highlight the interplay between traffic dynamics and crash types. Elevated Avg.
Speed likely contributes to SV crashes due to reduced reaction time and greater difficulty in maintaining
control at higher speeds. In contrast, a higher Truck/Car Ratio and Speed Variance create more complex
traffic interactions, increasing the likelihood of MV crashes. These insights underscore the importance
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of managing traffic speed consistency and managing vehicle distributions on roadways or separate
lanes at critical locations to enhance safety for all users.

8. Conclusions

This paper presents a comprehensive study aimed at understanding the dynamics of SV and MV
crashes through a binary classification approach. By integrating high-resolution, multi-source data, we
identified key factors that differentiate these two crash types. A data fusion approach was employed
to integrate these diverse data sources, enabling a holistic investigation of the factors influencing crash
outcomes. The regularized logistic regression was applied with the multi-source data for SV vs. MV
crashes. The regularized logistic regression model demonstrated strong performance, achieving a
weighted average accuracy of 86% and an f1-score of 0.85 on the test dataset.

Our findings reveal that for MV crashes, factors such as locations on the roadway, or entrance/exit
ramps, driver age, maneuvers such as changing lanes, wind speed, and speed variance exhibit strong
correlations. For SV crashes, factors like locations off the roadway or on the shoulder, average traffic
speed, cracking percentage of pavement, or UV radiation show higher correlations. These insights
highlight the specific factors influencing each crash type and pave the way for more efficient and
targeted safety measures. By analyzing these specific factors, our research supports the development
of tailored strategies to enhance road safety and reduce the frequency and severity of accidents.
Ultimately, our study contributes to the advancement of evidence-based road safety practices, fostering
a safer transportation landscape for all road users.
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