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Abstract: Intelligent district heating control requires knowing the customers’ past behavior and 

predicting their future needs. This can reduce peak energy use, optimizing energy production, 

accurate billing, and reducing fraud. Clustering has been used for analyzing large-scale building 

operational data and recognizing consumption profiles. In this work, we analyze the heat 

consumption profiles of district heat customers in Kuopio, Finland. We constructed two consumption 

profiles of their average hourly use: one for weekdays, and one for weekends. Clustering is then used 

to construct four consumption profiles. These profiles can be used for intelligent control, prediction 

of future use, and to recognize abnormal use behavior. The latter can be the first indication of a 

problem like heat leaking, which can prevent possible water damage. 
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1. Introduction 

District heating is the most common form of heating of buildings and their water with a 45% 

share in Finland [1,2]. The operating principle is that water is heated in one or more thermal power 

plants and transported to customers via the district heating network with the help of water or steam 

(Figure 1). Typical customers are residential, industrial, commercial, and public buildings. The 

cooled water is directed back to the heater. 

Heat can be produced by solar, geothermal, wind, nuclear, and local fuels, as well as thermal 

power produced from combined heat and power plants. Wasted heat resources, including industrial 

waste heat, recycled heat from burning household waste, and biomass such as forestry waste wood, 

are also commonly used. 

https://www.aimspress.com/journal/aci


270 
 

Applied Computing and Intelligence                                                                Volume 4, Issue 2, 269–281. 

 

The system may include heat storage to provide flexibility of the system by reducing the 

demand for heat production during peak load, and by balancing the difference between demand and 

supply [3–6]. However, they are nowadays rare and heat consumption is allocated directly to the 

heating network. 

 

Figure 1. Principle of district heating. 

The cost of district heating systems consists of production and distribution costs. The 

production cost depends on fuel costs, excise tax, emission rights costs, and other variable costs. The 

distribution cost originates from the investments, maintenance, and temperature and pressure losses 

in the network. To be economically feasible, the total cost must be lower than the local heat 

generation alternative [7]. 

The most important factor in the efficiency of district heating systems is to lower the 

distribution temperatures [8]. This requires intelligent control systems, and strategies to identify 

operating errors that cause high return temperatures. To plan such strategies, it is important to know 

the customer’s behavior and predict their future needs. 

The competitiveness of district heating arises from the combination of heat production and heat 

distribution conditions. One important condition for heat distribution is that the heat demand must be 

centralized to minimize distribution costs and heat losses [9]. Low heat density in sparsely populated 

areas generates higher distribution costs and losses [10,11]. In a smart fourth-generation district 

heating system, the heating system and the distribution network must interact [12,13]. 

The consumption is measured by smart meters remotely which send data directly to the district 

heating company. This is an important property that allows the analysis of past and prediction of 

future heat use of customers. [14,15] listed several potential benefits: reducing peak energy use, 

optimizing indoor temperature and energy production, continuous network monitoring, accurate 

billing, and reducing fraud. 

The data can also be used for detecting heat load patterns [16], analyzing the factors affecting 

energy consumption, and forecasting future use [17]. Heat load patterns are the most typical behavior 

patterns that reveal how different customer groups use heat. Analyzing such patterns is essential for 

efficient operation and management of the system [18]. A better understanding of heat use at the 

customer level can help to improve the efficiency of the system. District heating companies can 



271 
 

Applied Computing and Intelligence                                                                Volume 4, Issue 2, 269–281. 

 

optimize their operations, introduce new control strategies, and personalize demand management for 

certain customer groups [16]. 

The data can also be used to identify abnormal consumption because even one problematic 

customer can affect the performance of the network [16]. However, recognizing typical and 

abnormal heat uses is a complex task in a system consisting of customers with different types and 

characteristics. 

Heat demand is determined by outside temperature, inside temperature, building materials, 

building structure, weather conditions, and individual behavior [19]. Individual behavior can include 

a secondary heating system such as a fireplace or an air source heat pump, hot water consumption, 

the number of people in the building, electrical devices producing heat, the building's ventilation, and 

the wind directed at the building. [20] estimated that 40% of heating is spent on room heating, 35% 

on ventilation heating, and 25% on domestic water heating in a residential building. 

Clustering is one of the most popular exploratory data mining methods for analyzing heat load 

patterns [21]. It has been successfully used for analyzing large-scale building operational data [22], 

recognizing consumption profiles [23], and as a preprocessing step when using other data mining 

techniques to predict future energy use [24,25]. 

In this work, we analyze the heat consumption profiles of district heat customers in Kuopio, 

Finland. We constructed two consumption profiles of the users. The first is the average hourly use on 

weekdays, and the second one is the average hourly use on weekends. The profiles are then clustered 

to construct four average profiles. 

These clusters provide useful information about the most common consumption profiles. They 

can be used for a better prediction of heat use and for intelligent heat control, which could reduce 

heat consumption without the customer noticing the effect. The consumption models can be used to 

alert when the consumption of a customer is significantly higher than the average usage in the 

cluster. It can be the first indication of a problem like heat leaking. Such a warning system can 

reduce the possibility of water damage. 

The rest of the paper is organized as follows. The data is first given in Section 2. The clustering 

process is described in Section 3 including pre-processing to fill in missing values, removing 

erroneous data, feature extraction, normalization, and the clustering algorithm. The resulting clusters 

are presented in Section 4 and their content is analyzed. Conclusions are drawn in Section 5. 

2. District heating data 

We use two data sources: customer consumption measures and weather data. The consumption 

measures come from Kuopio district heating customers in Finland during 2021. The weather data is 

provided by the Finnish Meteorological Institute for Kuopio's Savilahti area in Kuopio. 

The consumption data consists of 54,657,082 measurements in megawatt-hours (MWh) 

from 6089  customers. Each measurement has a status value that indicates the quality of the 

measurement. The statuses are in accordance with metered service consumption report (MSCONS) 

message service codes: successful reading (136), uncertain reading (Z02), and failed reading (Z03) 

[26]. The distribution of the readings for different statuses is shown in Table 1. The measurements 

are made once every hour, so there are 24 daily energy consumption measures for every customer. In 

total, 733,885 readings were missing from the database; they were left out of the final data. We also 

filtered out five customers with uncertain data or failed reading. The distribution of the 6084 used 

customers is summarized in Table 2 according to the building type. 
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Table 1. Status codes in data. The status code 136 indicates a good reading. These 

measurements will be used in this study. 

Status Readings 

136 54,557,377 

Z02 48 

Z03 9,965 

Missing 733,885 

Total 55,301,275 

Table 2. Distribution of district heating customers by building type. 

Building type Customers 

Detached house 3777 

Terraced house and apartment building 1602 

Service building 324 

Public service 213 

Industrial 131 

Transportation 20 

Other 17 

Total 6 084 

3. Clustering customer profiles 

To form daily consumption habits characteristic of customers, we use clustering. The clustering 

algorithm divides the data into groups (clusters) where customers in the same cluster are more 

similar than customers in other clusters. The overall process is shown in Figure 2. The details of the 

cluster analysis process are described in the following sub-sections. 

 

Figure 2. The cluster analysis includes four main steps: data pre-processing, generation 

of the customer profiles, clustering the profiles, and content analysis of the clusters. 

3.1. Pre-processing 

We pre-processed the data to detect and fix errors. There were a relatively large number of 

missing values. When more than four measures from the customer's data were missing on the same 

day, the entire day was deleted from the data. In other cases, missing readings are created by linear 

interpolation. Unrealistically large values were also filtered out. Missing outdoor temperature data 

were recovered using the open data service of the Finnish Meteorological Institute [27]. 
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3.2. Consumption profiles 

We extract daily consumption patterns (12 measurements per day) separately for weekdays and 

weekends. The result is a 24-dimensional feature vector normalized according to the outdoor 

temperature. 

Figure 3 shows the daily heat consumption of customers of two different building types. 

Weekdays are marked in red and weekend days in blue. For service properties, heating peaks are 

most often at two and six o'clock, while for residential buildings, three significant heating moments 

are at 2, 5, and 17 o'clock. The morning peak in residential building customers’ data is due to people 

using hot water in the shower (the evening peak exists but is less visible). Both customer types have 

slightly lower usage during the weekend, but besides this, there is very little we can observe from the 

averages. The consumption varies a lot between individual customers for both customer types. 

 

Figure 3. Plot of several daily heat uses of two sample customers. The numbers are 

averaged over the six months. The daily average of these days is marked with a thicker 

line. 

The biggest common affecting factor is the outside temperature. Figure 4 shows the total 

consumption of district heating by month and the average temperature for the months. The 

consumption closely follows the outside temperature and is roughly 7 times higher in the peak winter 

months (December, January, and February) than in the mid-summer months (June and July). In the 

summer months, the heating is mainly used for hot water. 

Figure 5 shows the effect of outdoor temperature. The consumption decreases linearly when the 

outside temperature increases until it reaches 15 °C. This is the temperature value when the heating 

of the building is turned off. The remaining consumption is mainly for hot water heating, and in 

some humid spaces, floor heating is continuous regardless of the weather. The further decrease of 

consumption beyond 15 °C in residential buildings can be explained by using less warm water when 

the weather becomes warmer. 

To eliminate the effect of outdoor temperature, we construct two models of the daily 

consumption relative to the outside temperature by linear regression as suggested [28]. One model is 

for the cases when the average outdoor temperature is below 15 °C, and the other for those 

above 15 °C.  The resulting modified daily load profile is 0/1-normalized so that normalized 

measurements have zero mean and unit variance. 
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Figure 4. Energy consumption varies significantly depending on the time of year. 

 

Figure 5. Example of daily consumptions of two customers (red and blue) and their two 

regression lines: one for outdoor temperatures below 15 °C, and another for above 15 °C. 

3.3. Clustering algorithm 

K-means is the most widely used clustering algorithm despite its sensitivity to random 

initialization. However, this deficiency can be compensated by better initialization and repeating the 

algorithm multiple times [29], or by using an additional random swap step as a wrapper around the k-

means [30]. K-means has also been generalized to graphs [31], sets [32], and time series [33]. 

The customer profiles are essentially time series. For this reason, we use the k-Shape algorithm 

[33] which is essentially a k-means variant adopted for time series. It operates iteratively like k-

means but with distance function and centroid calculation tailored for time series. Its advantages are 

fast speed, available implementation, and well-known properties [34]. We use the implementation 

available in the tslearn-library [35]. 

To compensate the sensitivity of k-means by repeating the algorithm 1000 times with different 

(random) initialization and choose the best according to the optimization function (sum-of-squared 

error) following the principle presented in [31]. The algorithm stops when the error decreases less 

than a threshold value (10-6), or the number of iterations reaches a maximum value of 2000. 

For selecting the number of clusters, we ran the algorithm from 2 to 40 clusters. The results 

were compared with five cluster validity indexes: Calinski-Harabasz-index (CHI) [36], Davies-
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Bouldin index (DBI) [37], Silhouette Coefficient (SC) [38], Sum of Squared Distances (SSD), and 

Gap statistic (GS) [39]. For a more detailed analysis of these measures, we refer to [40]. 

None of the indexes indicated that there would be natural clusters in the data, see Figure 6. The 

number was therefore left to us, the researchers, to decide. Since our goal is to create average 

customer profiles that can be manually analyzed, the number of clusters was kept relatively small: 

four. 

 

Figure 6. Comparing the number of clusters with four index values. If the data contained 

clusters, the minimum point of CI, SC, and SSD, and at the maximum point of DBI and 

GS should indicate this value. Only the least reliable index (DBI) provides visible 

maximum and most likely due to noise. 

4. Results 

After the pre-processing, five of the 6084 customers did not have enough data and were 

therefore dropped out. Four clusters were then created from the remaining 6079 customer profiles. 

Figure 7 summarizes the average heat profiles of the four clusters. Figure 8 shows the 

distribution building types and consumption profiles of the customers. Small houses are the most 

common building type in every cluster. Despite being mostly used for living, they have different heat 

use profiles. Terraced and apartment buildings are in all clusters, but mostly in cluster 3, which is 

formed mainly of residential buildings and almost completely lacking services and industrial 

buildings. 

Clusters 1 and 3: 

All profiles have the smallest consumption at night and then increase in the morning but only 

clusters 1 and 3 have a clear peak in the evening around 18–20 o'clock. On the weekend, the 

consumption profiles are similar, but the morning peak appears about two hours later than on 

weekdays. 

It is likely that the residents of cluster 3 work outside the home since the peaks align well with 

traditional working hours. There is less variation in cluster 3 than in cluster 1 having more residents 

in the same building, which smooths the variations. 
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Cluster 2: 

Many service and industrial buildings belong to cluster 2, where the consumption profile 

follows the working hours. It is likely determined by the ventilation, and the use is flat throughout 

the normal opening hours. 

Cluster 4: 

The profile of cluster 4 decreases steadily from morning to evening and is constant on weekends. 

The cluster consists mostly of non-residential buildings where the most heat consumption typically 

takes place in the morning on weekdays and is flat on weekends. Many of the buildings are used only 

on weekdays. 

 

Figure 7. Average heat consumption profiles of the four clusters. 
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Figure 8. Consumption profiles of the customers in each cluster (left), and distribution of 

the building types in the four clusters (right). 

The total energy use in each cluster is shown in Figure 9 according to the building type. 

Clusters 1 and 3 contain the most customers (2201 and 1995), yet the total consumption of customers 

in cluster 1 is the smallest. For the district heating company, clusters 2 and 3 are the most interesting 

because of the largest energy consumption. The number of service buildings is small, but they 

constitute a significant part of the energy consumption, especially in cluster 2. The terraced and 

multi-story buildings dominate the energy consumption in clusters 1 and 3. The total energy use of 

the small houses is insignificant in all clusters. In cluster 1, they make up more than a quarter of all 

building types; yet their heat consumption is less than a third of the total heat consumption in the 

cluster. 
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Figure 9. Total energy use of customers in each cluster according to the building type. 

5. Conclusions 

We constructed four average customer profiles of district heating customers in Kuopio by 

clustering their daily heat use profiles. These clusters provided useful information about the most 

common consumption profiles. They can be used for predicting future heat use and intelligent heat 

control, which could reduce heat consumption without the customer even noticing it. The models 

could also identify deviations from the normal (average) consumption to alert if the customer's 

consumption is significantly higher than the average usage. It can be the first indication of a heat leak 

or other problem. Such a warning system could reduce the extent of possible water damage. 

Limitations: The shape-based measure was shown superior in [33], but the results later in [41] 

did not favor this measure as strongly. Our data has fixed length where all measurements have 

recorded at the same time of day. It might be worth to take closer look whether Euclidean distance or 

dynamic time warping would be more accurate. 

Another limitation is that our study did not consider the energy stored in the building's 

structures. Solar radiation and previous heating are stored in the structures, which are later released 

to the interior. As a future work, this thermal inertia could be used in the model to create a more 

sophisticated prediction model. 
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