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Abstract: Clustering is a fundamental technique for revealing structure within data. Density-based
clustering has the advantage of detecting structure without prior knowledge, such as the distribution
or the number of clusters. However, existing density-based clustering algorithms usually suffer from
limitations in latent density patterns, which hinder their applicability to complex datasets. We have
showed that this may be caused by the bias of standard methods for point density estimation, such as
kernel density estimation (KDE), which tends to favor compact clusters. To address the limitations
of existing methods, we introduced the concept of local comparative density. We then proposed a
specialized technique well-suited for capturing the nature of local comparative density. This approach
allowed us to balance the density variations across clusters. Building on this foundation, we presented a
halo-based clustering method that can effectively discover clusters with arbitrary shapes, heterogeneous
densities, peakless distributions, and unbalanced cluster sizes. Additionally, this method is capable
of identifying high-quality noise within the data. The superiority of the proposed algorithm was
demonstrated by comparing it with state-of-the-art density-based clustering algorithms on artificial
and real-world datasets.

Keywords: cluster analysis; density-based clustering; neighborhood analysis; absolute density
estimation; relative density estimation

1. Introduction

Clustering analysis aims to gain insights into the intrinsic patterns and structures within data by
grouping data objects into meaningful clusters such that objects within each cluster are highly similar
to each other and dissimilar to objects in other clusters according to predefined criteria [1]. Various
clustering algorithms have been proposed that can be roughly categorized as partitioning methods [2],
density-based methods [3–7], hierarchical methods [8], and spectral clustering techniques [9]. Each
category adopts distinct strategies for conceptualizing clusters and grouping data objects accordingly.
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In general, clustering algorithms based on different principles exhibit particular strengths for specific
task types or optimize different performance metrics. Meanwhile, inherent limitations exist for each
clustering approach depending on its underlying assumptions and mechanisms.

Density-based clustering algorithms [10, 11] aim to recognize the various patterns from given
density estimates. The density patterns can be the contiguous high-density areas [7], density
ordering [12], density attractors [5], density peaks [13–15], or density subgraphs [4]. Theoretically
and practically, most of the algorithms bear time complexities that lie between that of k-means [16]
and hierarchical clustering such as Ward [8] and are able to handle relatively large-scale data [4,17,18].
In terms of adaptability, density-based clustering algorithms are non-parametric techniques that often
make no explicit assumptions about cluster shapes and require less prior knowledge than other
methods. Therefore, they have received wide attention. By incorporating the concept of density,
density-based clustering algorithms take advantage of recognizing clusters of arbitrary shapes from
compact regions of data space containing noise.

When handling the distributions like C2 and G3 displayed in Figure 1, common density estimate
methods tend to assign much lower density values for the sparse clusters, as shown in Figure 2. The
two datasets involve three challenging density distribution features: 1) significant density variation
from cluster to cluster, 2) indistinguishable density valleys caused by heavily overlapping cluster
boundaries, and 3) uniform or peak-less distributions. In other words, a particular density-based
clustering algorithm may fail when one or more of the above distributions occur.

We propose the local comparative density estimation and the halo-based clustering algorithm. The
contributions are summarized as follows: 1) We introduce a density estimation framework, called local
comparative density, that allows for equal treatment of sparse and compact clusters. 2) We propose
the concept of generalized nearest neighbors and show how to decompose it into three meaningful
subspaces that can be seamlessly embedded into the framework, formulating an efficient and robust
instance. 3) We propose a simple yet adaptable comparative density-based clustering method that
works by detecting cluster halos through a global density threshold that can be empirically fixed.

Figure 1. Two artificial datasets with varying density.
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Figure 2. Density estimates by 3 common methods, ε-P, k-r, and Gaussian KDE for C2 and
G3. They treat the sparser cluster(s) as less important.

2. Density-based clustering

In the rest of the paper, we sometimes use o, p, and q to represent some objects of a dataset X =

{x1, x2, ..., xN} ⊂ Rd, and di j represents the distance between xi and x j. Before introducing some existing
density-based clustering algorithms, we first introduce some common density definitions.

Definition 1 (ε-P density). The density of xi w.r.t. ε-P is defined as ε-P(xi) =
∑

j f (di j − ε), where
f (x) = 1 if x > 0 and f (x) = 0 otherwise. Here ε is a user-specified cutoff determining a neighborhood
of xi.

Definition 2 (k-r density). k-r density of xi is defined as k-r(xi) = 1/dk(xi), where dk(xi) is the distance
between xi and its kth nearest neighbor.

For any p, ε-P density fixes the radius of the neighborhood of p, depicting the local density of p as
the number of neighbors within the neighborhood, while k-r density fixes the number of neighbors of
p, describing the local density of p as the reciprocal of the radius of the neighborhood.

Density-based clustering algorithms using the above density definitions may fail when dealing with
specific data distributions such as C2 and G3 because the resulting density estimates cannot reveal the
necessary density patterns they require. DBSCAN [7, 19] uses ε-P density and defines a core point if
it has a higher density than a given threshold. Clusters are formed by connecting dense regions of core
points and their neighbors. DBSCAN cannot process significant density changes, mainly because ε-P
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density tends to assign low-density values to sparse clusters, resulting in the density of sparse clusters
falling below the given threshold.

Density peaks clustering (DPC) [6] computes two quantities for each point: density (ρ) and distance
from points with a higher density (σ). Density peaks are identified from candidates with high ρ and σ,
and clusters are formed as ascending density sequences pointing to the density peaks. The original DPC
implementation using Gaussian KDE has a time complexity of O(n2), which can be computationally
expensive for large datasets. To address this limitation, a fast density peaks algorithm was proposed
in [20], which applies a fast and generic construction of an approximate k-nearest neighbor graph to
accelerate density and delta calculation. In addition, when applying the mentioned density estimates,
DPC fails to handle significant density variation since it is difficult for peaks to emerge from sparse
areas. Moreover, DPC relies on the reliable recognition of density peaks and, therefore, suffers from
peakless data distributions.

Denclue and its improved version [5, 21] model the overall density as a sum of the data points’
influence functions (kernels). They apply a hill-climbing strategy to identify density attractors (local
maxima of the density function) and assign points to the same cluster if they share the same attractor.
These methods are sensitive to the kernel parameter as they depend on distinguishable density valleys
to separate clusters.

OPTICS [12], the algorithm based on hierarchical density estimates (HDBSCAN) [17, 22] and
the algorithm using reverse nearest neighbor density estimates (RNN-DBSCAN) [18] aim to address
the limitations of DBSCAN. Both OPTICS and HDBSCAN achieve this by providing hierarchical
representations of the clustering structure.

The key idea of OPTICS is to create an ordering of data points that reflects the density-based
structure of the dataset. Unlike DBSCAN, which assigns points directly to clusters, OPTICS generates
an ordering that captures the clustering structure at various density levels by introducing two main
concepts: reachability distance and core distance. OPTICS further constructs a plot of these distances,
allowing visualization and extraction of clusters with varying densities without requiring a fixed
distance threshold.

HDBSCAN enhances the DBSCAN algorithm by introducing a hierarchical clustering structure
rooted in mutual reachability distance. This method captures density-based connectivity among data
points through the construction of a minimum spanning tree (MST), a technique explored in several
studies for improving clustering performance [23, 24].

RNN-DBSCAN uses RNN counts to define core points and forms clusters by connecting core points
and their RNNs. RNN-DBSCAN can automatically adapt to varying densities and does not require
specifying ε, making it more robust to parameter settings. However, the authors did not shed light on
the nature of RNN counts as a density measure.

To address density variations in clusters, DBHD [3] repeatedly finds a cluster from the current
density peak based on two user-specified conditions until all points are processed. One can imagine the
idea as being developed from the combination of DPC and DBSCAN since it progressively computes
a density peak and then expands a cluster. RDMN [25] and RDR-DPC [26] incorporate modified
density definitions to alleviate the impact caused by significant density variation. However, RDMN
relies on revealing neighborhood relations through generating MST from fully connected graphs in an
iterative manner, which can lead to unbearable time costs when dealing with large-scale data. While
incorporating modified density helps handle density variation, it fails to improve the limitation rooted

Applied Computing and Intelligence Volume 4, Issue 2, 164–183.



168

in DPC in handling peak-less distributions.

3. Local comparative density

For the density-based clustering algorithm, it is desirable that the density estimation technique treats
sparse and compact clusters equally without placing more emphasis on compact clusters. Comparing
the density estimates shown in Figure 2 with those in Figure 3, the latter ones exhibit desirable
properties: drastic density variations across clusters are eliminated, and density valleys between
clusters are made distinguishable.

Figure 3. Density estimates with ρGNN on C2 and G3 by varying k. ρGNN provides
homogeneous density estimates across clusters without being affected by the variations in
data sparseness.

With this idea, we propose a new idea called local comparative density (LCD) estimation, which
comprises three key elements:

• Global measurement: Obtain an arbitrary density estimate.
• Local comparison: Perform separate density comparisons within local neighborhoods.
• Quantification: Quantify densities of data points based on their relative density rankings.

Building upon the principles of local comparative density estimation, we propose a specialized
method that inherently aligns with its nature and offers a more efficient approach compared to the
generalized framework, as it does not necessitate an initial density estimate.
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3.1. Local comparison based on generalized nearest neighbors

We first introduce the notion of generalized k nearest neighbors, which enables performing local
comparison without explicitly computing absolute density.

3.1.1. Generalized k nearest neighbors

Let us recall some of the necessary concepts in advance. First, the k nearest neighbors of an object p,
NNk(p), is a common concept used in machine learning, which intuitively determines the neighborhood
containing the k nearest neighbors of p. On the contrary, the k reverse nearest neighbors of p, denoted
as RNNk(p), is the set of objects that have p in their k nearest neighbors, and has also been widely used
in cluster analysis [18]. By combining NNk and RNNk, we define GNNk(p), the generalized k nearest
neighbors, as

Definition 3. The generalized k nearest neighbors of p is defined as the union of NNk(p) and RNNk(p):
GNNk(p) = {q|q ∈ NNk(p)} ∪ {q|q ∈ RNNk(p)}.

The nearest-neighbor relationship between p and GNNk(p) is not always symmetric, while a
symmetric nearest-neighbor space can be constructed from the intersection set of NNk(p) and RNNk(p),
among which all the objects have p as their k nearest neighbors and vice versa [27, 28].

3.1.2. Implicit local comparison

We show how local comparison can be done implicitly by decomposing GNNk without requiring
explicit density estimates. Particularly, GNNk can be decomposed into 3 special disjoint subspaces:
the density degradation space (DDS ), the density gain space (DGS ), and the density balance space
(DBS ). Each of the 3 subspaces captures a type of relative density relationship. The details of the
decomposition are given separately.

We first introduce the density degradation space, which is the subspace contained in GNNk(p),
where all objects have higher density than p.

Definition 4. For any object p and positive integer k, we define the density degradation space of p as

DDS (p) = {q|q ∈ GNNk(p), p < NNk(q)}.

Recalling Definition 2, it can be proved that all the objects belonging to DDS (p) have strict larger
k-r density values than that of p.

Proposition 1. For p and any q ∈ DDS (p), we have k-r(q) > k-r(p).

Proof. q ∈ GNNk(p)
1
⇒ q ∈ NNk(p) or q ∈ RNNk(p);

p < NNk(q)
2
⇒ q < RNNk(p)

3
⇒ q ∈ NNk(p);

q ∈ NNk(p)
4
⇒ d(p, q) ≤ dk(p);

p < NNk(q)
5
⇒ d(p, q) > dk(q);

dk(q) < d(p, q) ≤ dk(p)
6
⇒ dk(q) < dk(p)

7
⇒ k-r(q) > k-r(p). �
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As for the proof, implications 1 and 3 are because of Definition 3, while implications 2, 4, and 5 are
because of the properties of NNk and RNNk. Additionally, 7 is because of Definition 2.

Let |DDS (p)| be the cardinality of DDS (p), and then the larger |DDS (p)| is, the lower the ranking
of p will be within GNNk(p). That is, a larger |DDS (p)| implies p has a smaller relative density. As
|DDS (p)| grows, the relative density will keep decreasing. Note that |DDS (p)| always lies in the range
[0,k].

Next, we introduce DGS, which has a property completely opposite to density degraded space.

Definition 5. For any object p, we define the density gain space as

DGS (p) = {q|q ∈ GNNk(p), p < RNNk(q)}.

For each q ∈ DGS k(p), the density k-r(q) is strictly smaller than that of p.

Proposition 2. For p and any q ∈ DGS k(p), k-r(q) < k-r(p) holds.

Proof. q ∈ GNNk(p)
1
⇒ q ∈ NNk(p) or RNNk(p);

p < RNNk(q)
2
⇒ q < NNk(p)

3
⇒ q ∈ RNNk(p);

q < NNk(p)
4
⇒ d(p, q) > dk(p);

q ∈ RNNk(p)
5
⇒ p ∈ NNk(q)

6
⇒ d(p, q) ≤ dk(q);

dk(p) < d(p, q) ≤ dk(q)
7
⇒ dk(p) < dk(q)

8
⇒> k-r(q) < k-r(p). �

In the proof, implication 1 is because of Definition 3, while implications 2, 4, 5, and 6 are because
of the properties of NNk and RNNk. Implication 8 is because of Definition 2.

A larger |DGS (p)| implies p has a higher ranking within GNNk(p) and thus larger relative density.
Therefore, we refer to this subspace as DGS. DGS actually sheds light on the nature of the density
definition used in RNN-DBSCAN [18].

The last subspace decomposed from GNN is the density balance space.

Definition 6. For any object p, we define the density balance space as

DBS (p) = {q ∈ GNNk(p)|q < DGS k(p) ∪ DDS k(p)}.

Proposition 3. For any q ∈ DBS k(p), it holds that q ∈ NNk(p), p ∈ NNk(q).

Proof. q ∈ DBS (p)⇒ q ∈ NNk ∪ RNNk, q < DGS (q) ∪ DDS (q);
q ∈ NNk ∪RNNk, q < DGS (q)∪DDS (q)⇒ q ∈ (NNk(p)−DDS (p))⇔ q ∈ (RNNk(p)−DGS (p));
q ∈ (NNk(p) − DDS (p)), q ∈ (RNNk(p) − DGS (p))⇒ q ∈ NNk(p), p ∈ NNk(q). �

Considering Definitions 2–5, we have the following relationship:

Proposition 4. DDS (p), DGS (p), and DBS (p) are disjoint subspaces and the following relationship
holds: GNNk(p) = DDS (p) ∪ DGS (p) ∪ DBS (p).

Taking Propositions 3 and 4 together, we consider q ∈ DBS (p) to have a balanced (relatively
smooth) density relationship with p. So, we can approximately treat any q as forming an equal density
relationship with p.
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3.2. Quantification

With the results of local comparison given by the three decomposed subspaces, we define the local
comparative density as

ρGNN(p) =
1

|GNNk(p)|
φ(GNNk(p)), (3.1)

where |GNNk(p)| normalizes the density and φ(·) is a function quantifying the decomposition of GNN
such that

φ(GNN(p)) = |DGS (p)| × ρg + |DBS (p)| × ρb + |DDS (p)| × ρd. (3.2)

Here ρg, ρb, ρd are some weighting coefficients reflecting the properties of density gain, degradation,
and balance. For example, we can set (1, 0.5, 0) or (1, 0,−1) for these weights. Figure 3 shows the
density estimates from ρGNN on C2 and G3 using the first weight setting. Compared with that in Figure
2, ρGNN produces more desirable results, i.e., ρGNN treat sparse and compact clusters equally. Also, by
significantly varying k, it can be observed that ρGNN is insensitive to the parameter k.

4. Clustering by cluster halo detection

In this section, we introduce our method of clustering by detecting cluster halos. The key idea is
that by reliably identifying the points surrounding the clusters, which we refer to as the cluster halo,
we can then obtain the isolated clusters that are defined by these cluster halos.

4.1. Cluster halo detection

We expect to effectively identify cluster halos through a density level set according to a global
density threshold. This approach challenges the common density estimation methods, as they tend to
yield heterogeneous density estimates across different clusters in cases where sparseness varies across
clusters. However, this challenge can be easily addressed using the proposed LCD measure ρGNN ,
which provides homogeneous density estimates across clusters without being affected by the variations
in data sparseness.

Definition 7. Let ρmax = max{ρGNN(p)|p ∈ X}, ρmin = min{ρGNN(p)|p ∈ X}, and a halo threshold w.r.t.
t is defined as γt = ρmin + (ρmax − ρmin) × t, where t is such that 0 < t < 1.

Definition 8. Halo and Coreset are given by a γt-density level set: halo = {p ∈ X|ρGNN(p) < γt},
Coreset = {p ∈ X|ρGNN(p) ≥ γt}, where γt is a density threshold.

Here t affects the thickness of the halo, i.e., a larger t results in a thicker halo. Figure 4 shows the
results of halo detection, where the detected halo can reliably isolate clusters.

By leveraging the LCD technique, we can reliably determine a global density threshold that allows
us to extract the cluster halo regions surrounding the distinct cluster structures. This enables us to
delineate the clusters in a more robust and consistent manner, overcoming the limitations of traditional
density estimation approaches. This motivates us to propose the halo-based clustering method.
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Figure 4. Halo detection with ρGNN on C2 and G3.

4.2. Halo-based clustering

The cluster halo serves as a boundary that helps delineate the distinct clusters, allowing us to identify
the individual cluster structures. Specifically, we can repeatedly start from an arbitrary core point to
expand a cluster within an isolated area defined by the detected halo until all the clusters are found.
To facilitate a better understanding and description of how to recognize clusters from the independent
spaces separated by a halo, we make some definitions subsequent to Definitions 7 and 8.

Definition 9. For any p ∈ coreset, the adaptive radius ε for p is the distance between p and its nearest
neighbor in halo: ε(p) = mind(p,q){d(p, q)|q ∈ halo}.

Definition 10. Two core objects p, q ∈ coreset are ε-reachable if ε(p) > d(p, q) or ε(q) > d(p, q).

Definition 11. Two core objects p and q are density-connected if they are directly or transitively ε-
reachable.

Definition 12. A cluster C is a non-empty maximal subset of cores such that every pair of objects in C
is density-connected.

4.2.1. The relation and difference with DBSCAN

Through Definitions 7–12, we can relate the proposed halo-based clustering with DBSCAN. The
main differences lie in 3 aspects: 1) we use ρGNN instead of ε-P for the density estimate, 2) coreset
corresponds to the definition of the core objects of DBSCAN and halo contains the combination border
objects and noise, and 3) for DBSCAN, clusters are formed as density-connected core objects with a
fixed radius, while for HBC, the radius of each object is independently determined according to the
detected halo so that the clusters are formed as colonies separated by the halo.
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4.2.2. Pseudo code for HBC

The pseudo code shown in Algorithm 1 implements the proposed halo-based clustering. The inner
while loop implements the expansion of a cluster: it starts from an unvisited core object and stops when
all the ε-reachable objects are connected. Thus, a new cluster is formed after each round of the outer
while loop. The outer while loop will repeatedly execute until the Coreset is empty, i.e., all clusters
have been recognized. This way, a cluster grows from a series of self-adaptive expansions constrained
within the enclosed spaces separated by the cluster halo. Finally, we can reassign the halo points to
the clusters with the KNN algorithm according to cluster labels. In practice, we sometimes need to
strip noise from the detected halo. This will be discussed and demonstrated with experiments in the
following section. The source code of the algorithm is available in GitHub∗.

Algorithm 1: Halo-based clustering (HBC).
Input: X, k, t = 0.5
Output: labels
Halo = {p ∈ X|ρGNN(p) < γt}

Coreset = {p ∈ X|ρGNN(p) ≥ γt}

Initialize n-dimensional array labels
labels[X] = UNVIS IT ED
clusterNo = 0
while Coreset do

C = Coreset.pop()
while C do

o = C.pop()
labels[o] = clusterNo
ε(o) = min{d(o, q)|q ∈ Halo}
Ĉ = {p ∈ Coreset|d(p, o) < ε(o) & label[p] == UNVIS IT ED} C = C

⋃
Ĉ

end
Coreset = Coreset/C
clusterNo+ = 1

end
Strip noise from halo according to the knee point rule.
Reassign halo objects to the recognized clusters with the KNN algorithm.

4.2.3. Time complexity

Here ρGNN estimate requires a kNN query for all objects of X. Each round of the inner while loop
involves a 1-NN query within Halo to obtain ε(o) and a ε(o)-radius neighborhood within the Coreset
for cluster expansion. It usually runs t rounds where t << n. Thus, the time bottleneck of HBC lies
in the kNN query for all objects, which has the same time complexity as other methods based on
kNN queries, such as DBSCAN and RNN-DBSCAN. Specifically, the worst-case time complexity is
O(n2). However, when supported by index structures such as KDTree, R-Tree, or BallTree, the time
complexity can be greatly reduced.

∗https://github.com/uef-machine-learning/hbc

Applied Computing and Intelligence Volume 4, Issue 2, 164–183.



174

5. Parameter sensitivity and noise detection

This section investigates the performance of HBC on characteristics including density variations,
overlapping boundaries, peakless distributions, complex shapes, and noise. The primary focus is to
analyze the sensitivity of HBC to its two parameters: number of neighbors (k) and threshold for halo
detection (t). Through these experiments, we aim to

1) Determine the influence of k and t on halo detection.
2) Provide an empirical reference for t.
3) Develop a heuristic search strategy for selecting the appropriate value of k.
Furthermore, we introduce a method for identifying noise within the datasets.

5.1. Parameter sensitivity analysis

As discussed in the previous section, parameter k affects the reliability of ρ(GNN) density estimates,
and t determines the thickness of the halo. To show the sensitivity of HBC in terms of these two
parameters, we conduct experiments on C2 and G3 by varying k and t simultaneously. The results
are shown in Figures 5 and 6. It can be observed that when t is too small (such as 0.1), the detected
halo tends to be inadequate to isolate the true clusters accurately. In contrast, when t is large enough
(0.3–0.5), the clusters can be well-isolated by the detected halo in most cases.

Figure 5. Sensitivity of halo detection to parameters k and t on C2. The black points
represent the detected halo.
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Figure 6. Sensitivity of halo detection to parameters k and t on G3. The blue points represent
the cluster cores, and points with a gradient gray color correspond to the halo points with
varying ρ(GNN) densities. The darker the color, the smaller the ρ(GNN) is.

With a large t, the reliability of the detected halo becomes less sensitive to k. In detail, despite the
fact that the reliability may degrade when k is too small or too large, there are stable intervals of k
yielding reliable results. As shown in Figures 5 and 6, we expect that when a large t is selected, the
reliability of cluster detection tends to be less sensitive to k within a relatively stable interval (some
abnormal values are ignored).

Motivated by the above discussion, we describe, in the following section, the strategy for
determining the two parameters: fix t to a relatively large value (0.5) and then analyze the stable
intervals of k.

5.2. Reference for parameter k

We show how to determine the candidates for the number of clusters through a pair of decision
graphs constructed from a heuristic process. On this basis, we can obtain some stable intervals as a
reference for determining parameter k that is used for halo detection. Figure 7 shows the heuristics of
parameter selection on the artificial datasets, each of which consists of a pair of decision graphs, a line
plot showing the change curve of the resulting number of clusters with respect to parameter k, and a bar
plot showing the statistical frequencies of occurrence of candidate clusters. Intuitively, the relatively
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high statistical values of the bar plots and the long stable ranges of the line plot most likely reflect
the information about the correct number of clusters. It means that we can determine the parameter
by analyzing the stable intervals of the line plot as well as the relatively higher bars of the bar plot.
Particularly, in the following tests, we simply use the highest bar, the value of the maximal statistical
frequency of occurrence. The parameter k is picked from the corresponding interval of the line plot
where the same number of clusters was yielded. For example, we can infer from the bar plots for C2
and G3 shown in Figure 7 that the number of clusters should be 2 and 3, respectively. Then, we can set
k in accordance with the corresponding stable intervals of the line plots.

Figure 7. Decision graphs for parameter selection on C2 and G3.

5.3. Noise detection

Note that datasets C2 and G3 each contain random noise. Thus, we show how to detect noise from
the detected halos by constructing a knee-shaped curve. This step should be performed after halo-
based clustering and before assigning halos to the detected clusters. A knee curve is built by creating
the density ascending order in terms of ρGNN . Then, we need to find the knee point of the curve around
which the slope changes significantly, and noise can be identified as points with densities below the
knee point. Various methods exist for identifying knee points, such as angle-based and curvature-based
methods. We apply the method proposed in [29], which analyzes the knee from a difference curve built
from the difference between the curve and its chord. As shown in Figure 8, the symbol ‘x’ marks the
knee point given by the maximum of the difference curve, below which the curve reduction slows down
significantly. The comparison in Figure 9 shows that the method can identify proper amounts of noise
with higher quality.
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Figure 8. Identify noise according to inflection points of the knee-shaped curves. The x-
axis represents the descending ordering of relative densities of the halo points. Points with
relative density lower than the knee point are stripped as noise.

Figure 9. Results of density-based clustering algorithms on datasets C2 and G3. The solid
points with different colors indicate the clusters they belong to, and the symbol ’x’ represents
noise. For our method, the shadowy points represent halo objects reassigned to the cluster
body.
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6. Experiments

6.1. Artrificial datasets

We evaluate the performance of HBC with fixed t (0.5) and k inferred from the decision graphs. The
clustering quality is evaluated by comparing our method with other density-based clustering algorithms
from the following aspects: the number and quality of the revealed clusters, the quantity and quality
of detected noise, and the intuitive scatter distribution plot. The algorithms for comparison include
Denclue 2.0 [21], DPC* [30], RDR-DPC [26], DBSCAN* [7], RNN-DBSCAN [18], OPTICS* [12],
and DBHD [3]. Note that we add symbol * to stress that the algorithms are improved versions.
Particularly, DPC* was implemented by combining the original DPC with Gaussian KDE and the
automatic technique for determining the number of peaks. Note that DPC can also identify the noise.
On the one hand, this requires additional manual intervention, and on the other hand, it does not have
an impact on the cluster structure, so we simply ignore the noise identification step when running DPC.

Dataset C2 involves all three distribution characteristics that challenge the selected algorithms,
which have been discussed in the first section. According to the clustering results shown in Figure 9,
Denclue* and DBSCAN* identified the whole outer cluster as noise. OPTICS* recognized many more
clusters than 2 real clusters. DPC* and RDR-DPC produced similar artifacts that disagree with the true
clusters, although they used prior knowledge about the true number of clusters. Intuitively, the results
of DBHD and RNN-DBSCAN are much better. However, DBHD recognized border points of the outer
cluster as an independent cluster by mistake, while RNN-DBSCAN failed to identify the noise.

Dataset G3 involves significant density variation in clusters and indistinguishable density valleys.
According to the clustering results shown in Figure 9, Denclue*, DBSCAN*, and OPTICS all involve
the problem of identifying excessive noise. In addition, Denclue* and DBSCAN* ignored the sparse
cluster on the right side entirely. On the other hand, DPC* and RDR-DPC still yielded undesirable
results that were not inconsistent with the true cluster distribution. DBHD and RNN-DBSCAN
failed to recognize the true number of clusters. Specifically, DBHD recognized two more clusters
incorrectly, and RNN-DBSCAN merged two less compact clusters. In contrast, the HBC results are
highly consistent with the true cluster distributions, and intuitively, the recognized noise is of high
quality.

6.2. Real-life datasets

We also performed experiments on 8 UCI datasets [31] with different characteristics, including
sizes, categories, and dimensions. The Olivetti face dataset [32] is a space-sparse dataset since the
dimension of the embedded space is large and the number of objects belonging to a cluster is less than
the number of clusters. See Table 1 for more details. The 7 density-based clustering algorithms used
in the above subsection were selected to make a comprehensive comparison.

As for performance evaluation, the Normalized Mutual Information Index (NMI) [33] and
Clustering Accuracy (ACC) [34] were used to evaluate the clustering performance. Scores close to 1 (0)
indicate perfect (bad) results.

DBSCAN* uses two parameters to estimate the point density, which was tuned through a grid
search from broad ranges. In addition to specifying parameter minPts for constructing the density
ordering, OPTICS* also requires inferring ξ-steep to identify valleys from the reachability plot.
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As recommended, OPTICS* sets the radius as infinity. The bandwidth for Gaussian KDE and the
smoothing parameter for Denclue 2.0 were manually tuned. For DPC* and RDR-DPC, density peaks
were picked automatically according to the true number of clusters. As for RNN-DBSCAN, the only
used parameter, the number of neighbors for finding the reversed nearest neighbors, was set following
the heuristics given in the original work. DBHD requires specifying three parameters: the minimum
cluster size, the cluster member ratio, and the density deviation threshold. The last two parameters
range from 0 to 1. These parameters were adjusted through a grid search from proper ranges to ensure
good performances. For our method HBC, we used t = 0.5 for halo detection in most cases. Another
parameter k was set following the procedure described in Section 5.

Table 1. Real-life datasets.

Dataset objects clusters dimensions
Banknote authentication 1372 2 4
Segment 2310 7 19
Digits 1797 10 64
MiceProtein 1080 8 80
ReligiousBooks 590 8 8268
TCGA 801 5 20,531
Mnist-784 70k 10 784
Mfeat-zernike 1M 10 47
Olivetti-faces 400 40 4096

According to the results shown in Tables 2 and 3, the competitors fluctuate dramatically in
performance when dealing with different datasets. On datasets Mnist-784 and Religiousbooks, the
competitors generally achieve poor scores in terms of ACC and NMI. Such failures may be caused
by the distribution assumption implicitly or explicitly made by the methods. For example, DBSCAN
assumes homogeneous densities across clusters, OPTICS relies on the existence of distinguishable
density valleys between clusters, and DPC, RDR-DPC, and Denclue suffer from peakless cluster
distribution. As long as the true data distribution does not meet the assumption of the methods, they
will inevitably produce unsatisfactory clustering assignations.

Table 2. Experimental results on 8 real-life datasets (NMI).

Alg/datasets Banknote Segment Digits Protein Mfeat-Z Mnist-784 Books TCGA
DBSCAN* 0.52 0.68 0.88 0.70 0.65 0.42 0.46 0.87
RNN-DBSCAN 0.56 0.62 0.85 0.63 0.63 0.40 0.77 0.98
OPTICS* 0.36 0.63 0.90 0.68 0.88 0.69 0.68 0.90
Denclue2.0 0.46 0.60 0.87 0.47 0.68 0.44 0.31 0.87
DPC* 0.60 0.64 0.86 0.37 0.60 0.40 0.71 0.99
RDR-DPC* 0.22 0.66 0.87 0.35 0.60 0.45 0.81 0.99
DBHD 0.53 0.52 0.72 0.43 0.33 0.35 0.17 0.72
HBC 0.93 0.71 0.87 0.86 0.89 0.85 0.97 1.00
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Table 3. Experimental results on 8 real-life datasets (ACC).

Alg/datasets Banknote Segment Digits Protein Mfeat-Z Mnist-784 Books TCGA
DBSCAN* 0.71 0.57 0.86 0.32 0.60 0.45 0.28 0.79
RNN-DBSCAN 0.61 0.58 0.84 0.28 0.60 0.39 0.79 0.99
OPTICS* 0.18 0.27 0.87 0.25 0.86 0.28 0.25 0.79
Denclue2.0 0.65 0.27 0.88 0.02 0.63 0.01 0.01 0.88
DPC* 0.89 0.62 0.84 0.37 0.60 0.48 0.84 0.99
RDR-DPC* 0.68 0.58 0.85 0.34 0.60 0.50 0.89 0.99
DBHD 0.70 0.58 0.69 0.41 0.27 0.34 0.45 0.69
HBC 0.99 0.73 0.90 0.57 0.85 0.71 0.99 1.00

In comparison, our method shows desirable adaptability and achieves competitive or better
performance over the best-performed competitors. In addition, the Olivetti-Face dataset is a space-
sparse dataset that contains 64 × 64 gray-scale face images from 40 subjects, each of which contains
only 10 samples. As shown in Figure 10, of the 10 subjects, HBC successfully recognized 9 clusters.
After halo reallocation with KNN, the detected clusters are more consistent with true labels, resulting
in better scores.

Clustering on the coreset

Clustering result after halo reallocation

Figure 10. Halo-based clustering process on the Olivetti-Face dataset. The faces are colored
according to the detected clusters. The gray-scale faces are halo objects in the upper graph
and noise in the bottom graph.

Specifically, HBC achieves 14 out of the 16 best scores. This may be attributed to the fact that
local comparative density and halo-based clustering extend the advantages of algorithms in detecting
arbitrarily shaped clusters and overcome the distribution characteristics that challenge these density-
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based clustering algorithms.

7. Conclusions

We proposed a simple yet effective halo-based clustering method based on the local comparative
density, enabling the tight isolation of clusters by cluster halos through a global threshold. Experiments
on artificial synthetic datasets that challenge density-based clustering methods, as well as on 9 real-
world datasets with different characteristics, confirm the effectiveness of HBC. Moreover, the proposed
local comparative density exhibits potential for improving other density-based clustering methods.
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