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Abstract: The use of synthetic data could facilitate data-driven innovation across industries and
applications. Synthetic data can be generated using a range of methods, from statistical modeling to
machine learning and generative AI, resulting in datasets of different formats and utility. In the health
sector, the use of synthetic data is often motivated by privacy concerns. As generative AI is becoming
an everyday tool, there is a need for practice-oriented insights into the prospects and limitations of
synthetic data, especially in the privacy sensitive domains. We present an interdisciplinary outlook on
the topic, focusing on, but not limited to, the Finnish regulatory context. First, we emphasize the need
for working definitions to avoid misplaced assumptions. Second, we consider use cases for synthetic
data, viewing it as a helpful tool for experimentation, decision-making, and building data literacy.
Yet the complementary uses of synthetic datasets should not diminish the continued efforts to collect
and share high-quality real-world data. Third, we discuss how privacy-preserving synthetic datasets
fall into the existing data protection frameworks. Neither the process of synthetic data generation
nor synthetic datasets are automatically exempt from the regulatory obligations concerning personal
data. Finally, we explore the future research directions for generating synthetic data and conclude by
discussing potential future developments at the societal level.
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1. Introduction

Data is the raw material that fuels evidence-based decision-making as well as research,
development, and innovation (RDI). Researchers, product developers, and decision-makers are
increasingly focused on individual determinants of health, making aggregate datasets unfit for their
needs. However, data usage must not jeopardize people’s fundamental rights, such as the right to
privacy. The more detailed individual-level information datasets contain, the greater the privacy risks
entailed. Therefore, analyzing and sharing individual-level data requires special attention to data
protection.

In 2019, Finland enforced national regulation on the secondary use of health and social data (Act
on the Secondary Use of Health and Social Data, 552/2019). The political debates and incentives
leading to this reform are described by Aula [1]. The new act treated research and development
as distinct purposes for personal data processing, setting more rigorous rules for business-oriented
development activities. Against this backdrop, we asked whether synthetic data could narrow the gap
between aggregate statistics and pseudonymized data to facilitate the availability of individual-level
data for company R&D. By mitigating privacy concerns, synthetic health data shows promise in adding
flexibility to different stages of product or service development. While the upcoming European Health
Data Space (EHDS) Act [2] will introduce changes to the Finnish regulatory framework, establishing
private protocols for exchanging data and insights will remain a pivotal target for the health sector on
both national and European levels. In addition to companies, also scientific research and education
would benefit from having streamlined access to up-to-date, realistic datasets for demonstrations and
testing.

Synthetic datasets have already been successfully applied in stroke and cancer research [3],
radiology [4], epidemiology [5], and many other medical disciplines [6]. To incorporate the use of
synthetic data into RDI processes, we must increase our understanding of the potential use cases and
the associated requirements [7, 8]. For example, the quality and privacy criteria for synthetic data may
vary greatly depending on whether the data is used for testing system functionalities or formulating
preliminary research hypotheses in a trusted environment. Additionally, many alternative methods
exist for generating synthetic data [9], and not all of them are designed to protect privacy. Therefore,
the privacy implications of synthetic datasets must be evaluated on a case-by-case basis, taking into
account the intended context of use [10, 11].

In this paper, we provide practical guidelines for leveraging privacy-preserving synthetic data for
health, with an emphasis on data-driven methods for synthetic data generation. The guidelines are
applicable to companies, public entities, and research organizations looking to enhance knowledge
transfer, co-creation, and data flows within the healthcare ecosystem. This work summarizes
our findings from a Finnish academy-industry collaboration PRIVASA (Privacy-preserving AI for
Synthetic and Anonymous Health Data, 2021–2024) and features research works from the project.

In the next section, we will introduce the concept of synthetic data. We then proceed to list the
different types of use cases for synthetic data with examples from the health domain. The fourth
section addresses legal, technical, and ethical questions that emerge when the goal of synthetic data
generation is to protect privacy. Finally, we provide a brief outlook on the methods of synthetic data
generation and evaluation.
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2. The many interpretations of synthetic data

Synthetic data is often described as an artificially generated, statistical representation of real-world
data (RWD), yet there is no single, formal definition for synthetic data. The lack of a consistent
interpretation is partially explained by the many possible modalities of synthetic data, including text,
numeric data, signal data, and images. Another explanation stems from the fact that synthetic datasets
have been studied in parallel within the fields of statistics and computer science [12]. In this article,
we have adopted the definition provided by Jordon et al. [13]: “Synthetic data is data that has been
generated using a purpose-built mathematical model or algorithm, with the aim of solving a (set of)
data science task(s)”. According to this definition, synthetic data is generated for the dedicated purpose
of data science tasks. We interpret this in the broad sense, covering all tasks from exploratory mapping
to setting up workflows and performing advanced analytics.

Concepts like fully synthetic data and partially synthetic data also carry slightly different meanings
in the existing literature. Raghunathan et al. [14] introduced synthetic samples and populations created
via multiple imputation, leading to a definition of fully synthetic data as datasets consisting entirely of
modeled data points. In this paper, we endorse the view presented by El Emam et al. [15] that even
fully synthetic datasets are not automatically free of associations to RWD. In line with Reiter [16]
and following Jordon et al. [13], partially synthetic datasets contain both real (original) and modeled
attributes. Hybrid synthetic data mixes real and synthetic data points [17]. As partially and hybrid
synthetic datasets include real data in an unaltered form, they are less likely to qualify as anonymous
(see Section 4). Hence, this paper focuses on fully synthetic data.

While RWD consists of measurements, observations, and experiences from real life, fully synthetic
data is based on a mathematical model representing real-world phenomena. The model itself can be
anything from a simple regression model to a complex deep learning algorithm, but an informative
link to RWD is typically assumed. Setting synthetic data apart from fabricated (as in imaginary) or
simulated datasets can be more challenging, as these terms are often used interchangeably, even if the
underlying data generation processes differ. In general, fabricated datasets (also known as mock data
or dummy data) are created with no input from the real world. Simulated datasets can be based on
domain knowledge, parameters extracted from RWD, or both. In contrast to synthetic data generation,
the parameters in simulation models often describe key points in a process rather than the overall
statistical properties of a dataset.

For example, one could generate a list of random numbers to test how information is transferred
within a hospital management system. Taking a step toward realism, one could produce simulated
events. If the goal was to perform a patient flow analysis for a healthcare organization, summary
statistics from the patient registry could be enough to construct a rule-based simulation, even though
more advanced simulation models integrate data from multiple sources [18, 19]. For example,
Mohiuddin et al. [18] extracted information from electronic patient records and combined it with
domain knowledge to analyze care pathways within a sexual health clinic. Finally, the synthetic data
approach for enhancing health care delivery could be to identify a relevant subset of real electronic
health records (EHRs), use it to develop a mathematical model (e.g., by training a machine learning
algorithm), and explore care pathways using artificial yet statistically accurate data to represent
individuals receiving treatment [20]. Healthcare providers, companies, and research organizations
may have various reasons for using synthetic data instead of or in combination with the real one, data
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protection being one of the most common reasons stated (see Section 4).

Synthetic data Fabricated 
data

Simulated
data

typically 
sample-based, 

statistically-oriented
entirely made up

mock data

typically rule-based, 
process-oriented

Figure 1. Common properties of synthetic, simulated, and fabricated datasets. The
differences are not clear-cut and the terms may be used interchangeably.

In summary, we use the term fabricated dataset in reference to data that is created independently
of RWD, whereas simulated datasets are often based on simplified real-world processes. Synthetic
datasets, in turn, are generally sample-based model outputs, carefully designed to match the statistical
properties of their real-world counterparts (training data) (Figure 1). The use cases for synthetic data
tend to put more emphasis on individual data subjects and their attributes in contrast to population-
level trends. In the absence of a universal definition, any remarks on synthetic data should indicate
the correct interpretation in that context. This can be achieved by specifying attributes like privacy-
preserving, fully synthetic, or data-driven, depending on the applicability. Communicating the
meanings and underlying assumptions is critical for productive dialogues and fostering trust among
different stakeholders, data subjects in particular. In the next section, we will provide an overview of
the potential use cases for different types of synthetic datasets before moving on to a more detailed
examination of the privacy implications.

3. Use cases for synthetic data: from early tests to private data release

Synthetic data is a promising tool for supporting data analytics workflows, knowledge transfer, and
collaboration across industries. The diverse range of use cases (see Table 1) suggests that there is no
one-size-fits-all solution, but synthetic datasets should be created to match their intended purposes.
Typical reasons for working with synthetic data are

(1) Real-world data does not exist. In this case, generating fabricated, simulated, or synthetic data
to test different data analytics workflows could help design a novel data collection protocol.
Simulations or synthetic data generation could be based on other existing datasets with properties
similar to the phenomenon of interest.

(2) Real-world data exists, but it is not available for intended use. Specifically sensitive health data is
subject to strict data protection measures, including access controls and limited purposes of use.

(3) Real-world data exists and is available, but it is of poor quality. Many existing datasets exhibit
strong biases or narrow sampling and could be complemented with synthetic data to create a more
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balanced dataset [21]. This approach is sometimes referred to as data augmentation.
(4) Real-world data is available and of excellent quality, but making use of it would require investing

a lot of resources. Gaining access to real-world datasets can be expensive, or the process may
take a long time. It might be a sensible strategy to experiment with synthetic data before deciding
on these investments.

(5) Real-world data is available and of excellent quality, but using synthetic data is preferred for
ethical reasons. For many applications such as medical care or clinical trials, the most ethical
approach is using RWD to produce as accurate results as possible. Other cases are less self-
evident. One such gray area could be linked to the data minimization principle in the European
General Data Protection Regulation (GDPR, 2016/679 EU), which states that personal data should
only be processed when necessary (see also Section 4). Even if using personal data for a given
task would be legally compliant, organizations could opt for synthetic data to mitigate the risks
of privacy disclosure.

Table 1. Example tasks in which synthetic datasets are already becoming established tools.

Examples of use cases for synthetic data.

1. Testing and validation tasks: Synthetic datasets support testing and validating analytical
workflows, model performance, or software. Even if RWD was a must-have for the final
testing and validation steps, synthetic data could serve as a simple tool for the preliminary
inspection of errors. In addition, developers could rely on synthetic data to assess system
performance and robustness under novel or unusual conditions.

2. Machine learning (ML) development: With synthetic data, ML models can be trained
to become more robust and generalizable. One approach is to use synthetic data to
complement RWD (data augmentation). If real data is not available, synthetic data could
provide a reasonable starting point for ML development.

3. Exploratory analysis: New projects may involve the need to design new experimental
protocols or data collection campaigns. Having synthetic data available could help
researchers understand the structure and common properties of the data, which makes it
easier to plan the following steps such as formulating research hypotheses, seeking ethical
approvals, or filing the data permit applications.

4. Demonstration and hands-on training: Synthetic data could be a valuable asset in
educational settings, allowing learners to visualize and experiment with realistic datasets.

5. Privacy-preserving data sharing: In privacy-sensitive domains like healthcare and
finance, the use of synthetic data could mitigate privacy concerns when data is shared
internally or externally. As synthetic datasets are programmed to bear resemblance to the
RWD, privacy is not guaranteed by default.

In all the scenarios above, generating synthetic data to work with requires at least some information
from the real world. How distinct this background information (training data) can be to produce
a useful model output (synthetic data) depends very much on the application. If the goal was to
perform an initial impact assessment for planning novel health interventions, one might be able to
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generate synthetic data on the city’s elderly population based on data from another city with similar
characteristics. However, the data utility will be significantly lower if the two cities are distinct in
terms of demographics or other aspects affecting the outcome of the intervention. In medical imaging,
an increasingly popular research topic is image translation, in which images of another modality are
produced based on an available modality [22, 23], such as positron emission tomography (PET) to
computed tomography (CT) [24] or magnetic resonance imaging (MRI) to PET [25] translations (see
also Table 2 on generating synthetic medical images).

Table 2. Developing generative deep learning-based methods to create indistinguishable,
fine-grained synthetic medical images [26, 27].

PRIVASA results: Generating synthetic medical image data with conditional GANs.

Using conditional generative adversarial networks (cGANs), the researchers from Turku
University of Applied Sciences created several iterations of image-to-image translation
frameworks for MRI, CT, PET and X-ray data. The 3D GAN model successfully generated
synthetic multimodal brain MRI images featuring Glioblastoma cancer tumors [27]. Essentially,
the GAN model processes two sets of image data: the brain atlas from one patient and the
lesion mask information from another. This task is particularly challenging, as integrating lesion
information during the synthesis of brain MRIs requires a sophisticated AI pipeline capable of
creating realistic tumors in the images. The team also developed deep GAN models to synthesize
chest and elbow X-ray images, aiming to enhance image classification tasks [28]. Finally, in
collaboration with researchers from the Stanford University and the Turku PET Center, the team
developed 2D, 2.5D and 3D GAN methods to generate synthetic standard-dose cardiac PET data
from ultra-low dose images [26]. Their approach successfully demonstrated the potential of
synthetic data generation in molecular imaging, significantly reducing radiation exposure, scan
time and the dose required for patients. However, using GAN-based methods of synthetic data
generation also presents considerable challenges, including the risk of hallucinations, difficulties
in maintaining high image quality and fidelity, and ensuring that the generated images are both
medically applicable and realistic while accurately capturing complex anatomical structures.

For each use case, the potential data analytics solutions can be based on RWD only, synthetic data
only, or several ways to combine them. Movahedi et al. [29] showed how machine learning models
can be trained on synthetic data and privately tested on RWD (see Figure 2). Given that synthetic data
generation is essentially a process of modeling, one must consider which properties of the training data
need to be preserved in the synthetic data. In a case study conducted by VTT Technical Research Centre
of Finland and the Wellbeing Services County of Southwest Finland, synthetic datasets performed
reasonably well compared to RWD in predicting ischemic stroke occurrence (see Table 3). This aligns
with the results obtained by Benaim et al. [30], who reported that using synthetic data led to similar
conclusions as using RWD in five clinical studies. For certain tasks, such as software testing, conveying
structural similarity could be more important than matching statistical properties. Especially in these
types of use cases, synthetic data comes close to simulated and fabricated data, and deciding on the
best approach relies on case-specific consideration. The potential criteria for identifying the right type
of test data could be simplicity, repeatability, and whether there’s a need for privacy guarantees.
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RWD 1. Synthetic data 
generation (SDG)
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Figure 2. PRIVASA study on how ML models inferred from DP synthetic data generalize
to RWD, and how to assess this without compromising privacy [29, 31]. Protocol A uses
synthetic data only. Protocol B uses synthetic data for training but conducts testing and
validation privately using RWD on the curator’s side. Redrawn from Movahedi et al. [29].

Table 3. Evaluation of using synthetic data in place of real patient data to train ML models
to predict the occurrence of ischemic stroke.

PRIVASA results: Methods for generating synthetic data for predicting ischemic stroke
occurrence.

Using a dataset from the Wellbeing Services County of Southwest Finland, researchers from
VTT tested several methods for generating synthetic tabular data on patients diagnosed with
ischemic stroke (IS). Both statistical and neural network approaches were represented in the
selected methods from the Synthpop data synthesis library [32] and Synthetic Data Vault library
(CTGAN, FASTML, Gaussian Copula, and CopulaGAN) [33]. Each method was used to
generate 20,000 samples to train the predictive models (Extreme Gradient Boosting, Decision
Tree, and Support Vector Machine). This information available to the predictive models
represented information from the time before the IS diagnosis. Model performances were
calculated using real-world test data excluded from synthetic data generation. The accuracy
of models trained with synthetic data was compared to those trained with real data. Higher
area under curve (AUC) scores were generally achieved with real training data. However, in
many cases, comparable performance was achieved with synthetic training data. For example,
XGBoost trained with real data achieved an AUC score of 0.76, and the respective score for
Synthpop-generated synthetic data was 0.74. Apart from Synthpop, all methods produced less
than 10% of synthetic records with too close of a match with the real data. Our results support
the value proposition of synthetic data in initial model training, although real data would still be
needed in further stages of model development. This use case also highlighted the importance
of having synthetic datasets with measurable levels of privacy protection and quality.
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In conclusion, synthetic data serves various purposes across industries and applications. We wish to
highlight that synthetic data does not remove the need for real data in developing safe and effective
medical treatments, health interventions, or technological innovations. We see privacy-preserving
synthetic data as a tool that allows organizations to experiment with new ideas, support decision-
making, and build data literacy. In most cases, synthetic data represents an intermediate step to enable
the first stages of research or development work and helps identify potential challenges early on. All-
purpose synthetic datasets mainly hold value for demonstrative purposes, such as teaching or creating
prototypes. For training machine learning models and statistical inference, synthetic datasets should
be carefully crafted to reflect the RWD attributes that are considered most relevant for the use case.
Finally, synthetic data should not be relied on when achieving real-world accuracy is of the highest
priority, such as in clinical decision-making.

4. Synthetic data for preserving privacy

Data protection covers a set of principles for safeguarding personal data against unauthorized access
and use. Regulatory frameworks such as the GDPR (2016/679 EU) (Table 4) and Health Insurance
Portability and Accountability Act (HIPAA, 1996) in the United States determine when collecting,
processing, and sharing personal data is justified. Special attention must be given to sensitive data,
including information on personal health. In this context, it is critical to highlight that synthetic
data is not anonymous by default. When applied accurately, generative models can indeed produce
synthetic datasets with strong privacy-preserving properties, but not without affecting data quality.
The well-known privacy-utility trade-off [34–36] introduces a number of technical, legal, and ethical
considerations regarding the use of synthetic data as a privacy-preserving mechanism.

4.1. Privacy breaches can take many forms

Any data protection measure should be evaluated against different types of privacy breaches that
could occur. The main types of risks recognized in the field of statistical disclosure limitation are

(1) Identity disclosure [15, 20]: An unauthorized person learns that a certain piece of information
in the dataset relates to one or more identifiable persons. Synthetic datasets provide effective
protection against identity disclosures, as long as information from the training data is not
matched too closely (overfitting). Specifically, unique outliers increase the risks, as recognizable
data points could make it possible to trace back the properties of real training data and gain
additional information.

(2) Attribute disclosure [20, 37]: An unauthorized person uses the data to discover new information
about someone they already knew something about. Personal data does not need to be based on
real, accurate, or true records. For example, synthetic data could provide a strong indication that
someone has a rare medical condition given their very specific diet which is known to the co-
workers. This does not make the synthetic dataset itself personal data, but only the information
(attribute) that becomes linked with an identifiable person should be considered as such.

(3) Membership disclosure [20, 38]: An unauthorized person learns that an individual or a group
of individuals were included in the dataset. In the case of synthetic data, membership disclosure
could be interpreted as being included in the real-world dataset that was used to train the generator.
Depending on the context, membership disclosure can be immediately followed by an attribute
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disclosure. This happens, for example, if the dataset is known to cover patients with a specific
medical condition.

In the past, data anonymization implied eliminating all variables that directly pointed out to an
individual, including name, social security number, and home address. Since then, it has been
recognized that successful identification is possible even with seemingly general and nonpersonal
pieces of information. According to influential research by Sweeney [39], approximately half of the
US population could be identified based on three data points alone: their place of residence, gender,
and date of birth. Therefore, deleting the obvious (direct) identifiers is not enough, and deleting the
less obvious (indirect) ones is practically impossible, as almost any attribute could become an indirect
identifier when combined with additional information. This is the problem of anonymity that the
traditional anonymization methods struggle to overcome.

Approaches like k-anonymity [40], l-diversity, and t-closeness [41] may prove insufficient, if
anonymized data is linked to external sources of information (linkage attack) or subjected to intricate
analyses to identify persons based on statistical likelihoods (inference attack). Synthetic data offers
stronger privacy protection against these types of attacks, because one should not be able to connect
artificial data points and RWD with a high level of confidence. Different methods, such as differential
privacy (DP) [42], could be applied to ensure that synthetic data generation does not simply copy-paste
training data but produces novel data points – mimicking, but not replicating the RWD.

4.2. Personal data processing to generate synthetic data: Accessing real-world health data under the
Finnish regulatory framework

When synthetic data is generated through a process of modeling, it is critical to assess the
privacy implications of both input and output data. Creating high-quality synthetic health data
typically requires, or has at some point required, personal data to ensure a close enough resemblance
between synthetic data and RWD. Even if the model output could be considered nonpersonal (privacy-
preserving synthetic data), the same might not be true for the model input. On the contrary, generative
models are often trained with pseudonymized datasets, in which case the requirements imposed by the
data protection regulations still apply to the training stage.

When synthetic data generators are trained with real patient or social care data, the required input
data can be subject to additional professional secrecy rules. In Finland, the relevant legislation
comprises mainly of the GDPR (2016/679 EU), the Data Protection Act (1050/2018), and the
Secondary Use Act (552/2019). Depending on the dataset, also the Biobank Act (688/2012) may
apply. Accessing patient records to create synthetic data requires permission in accordance with the
Secondary Use Act. The national data permit authority Findata∗ will decide on permissions in case
of 1) records from private health care providers, 2) records of several public health care providers,
or 3) records from health care providers that have transferred their decision-making powers to Findata.
In other situations, permissions are available via the public health care provider whose patient data is
required.

In terms of getting access to the training data, two potential complications arise out of the Finnish
Secondary Use Act: individual-level data is only available for scientific research and processing within
an audited data processing environment, and approved secure operating environments like Findata’s

∗https://findata.fi/
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own Kapseli support limited data formats and data processing capabilities, which makes them less
suited for tasks like ML development. However, only aggregated statistical data can be processed
outside these environments. No individual-level patient or social care data is available for pure product
development, regardless of where it would be processed.

Patient data is available also from the Finnish biobanks under the Biobank Act, but access requires
that the data is accompanied by a biological sample or sample-originating data, such as genomic data.
Data from the six Finnish hospital biobanks and the biobank of the Finnish Institute for Health and
Welfare (THL) can be applied with a single application through the Fingenious portal†, whereas the
other biobanks can be contacted individually. Contact details are available from the Finnish Medicines
Agency Fimea‡. Data from biobanks is available for both scientific research and product development
and does not need to be constrained to audited and approved processing environments.

The Finnish Secondary Use Act and the Biobank Act enable access to data for a defined project for
a defined time, which may pose a challenge for any projects or systems requiring long-term access to
the original data. Neither act requires project-specific consent from data subjects.

Possibilities to access data that are not subject to the Secondary Use Act or Biobank Act should
be evaluated against the data protection rules and sector-specific legislation, if there are any. For
example, data collected as a part of providing health or activity-related consumer services could be
accessed to create synthetic data based on consumer consent or other GDPR and Data Protection Act
compatible legal bases, remembering the additional requirements for health and other sensitive data
under the GDPR Article 9. The GDPR transparency requirements need to be respected, ensuring that
the data subjects are kept informed of personal data processing and their rights. Before any personal
data processing begins, the privacy risks should be carefully evaluated and the rights of data subjects
acknowledged, in case a patient chooses to withdraw their consent or object to processing their personal
data.

4.3. Synthetic data as anonymous data: Meeting the GDPR requirements

Using synthetic data instead of real data satisfies the GDPR data minimization principle
(Article 5.1c) and exempts processing from data protection requirements, provided that the synthetic
data no longer constitutes personal data. The GDPR concept of personal data is very broad, but also
elusive, relative, and context-sensitive [43, 44]. In accordance with the definition, personal data means
any information relating to an identified or identifiable natural person. The definition requires further
clarification of what is information, what does “relate to” mean, and who are natural persons. Recital
26 provides guidance for interpretations, stating that when considering identifiability, all means should
be taken into account that could reasonably be used to identify persons. It is notable that the GDPR
includes a reasonability test and does not require absolute universal anonymity for data to not be
personal (Table 4). To be considered anonymous, it seems clear that synthetic data should not have
data points with one-to-one linkages to the real (original and thus identifiable) dataset. It should not be
generated by such recoverable methods that could be used to rediscover original data, exposing data
subjects to a risk of identity disclosure (model inversion attack) [45].

†http://www.fingenious.fi
‡https://fimea.fi/en/supervision/biobanks/national-biobank-register
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Table 4. A list of general misconceptions on GDPR.

General misconceptions on GDPR.

1. GDPR requires consent: The GDPR requires a legal basis for processing personal data,
and consent is just one of the possibilities. In many cases, consent may not be the best
option or even a feasible one. For example, the actual or perceived power imbalance could
prevent public healthcare authorities from obtaining data subject’s consent that would be
valid in the eyes of the data protection authorities. To be valid as a legal basis, consent
must be “freely given, specific, informed and unambiguous” (Article 4).

2. GDPR requires anonymity: The GDPR requires a valid legal basis for processing
personal data, additional justification for processing sensitive personal data, and data
minimization. Depending on the purpose, the data can be directly identifiable, indirectly
identifiable (de-identified or pseudonymized), relatively anonymous, or universally
anonymous. From the GDPR perspective, “anonymous” implies that there are no means
that would reasonably likely be used to identify a person (to link the data to an identifiable
person). Based on the European Court of Justice ruling (Breyer, Case C-582/14), the same
data can be personal data to one party and not personal data to another, depending on
whether or not they have legal access to additional identifying data.

3. Synthetic data is anonymous data: Synthetic data can be personal data; see discussion
above.

4. De-identified is anonymous: De-identification typically means removing certain variables
from the dataset, including names, personal IDs, and addresses. In the United States, the
HIPAA lists information that needs to be removed for data to qualify as de-identified. An
alternative method is to have an expert evaluate the likelihood of identification. HIPAA
allows de-identified data to remain indirectly identifiable through coding and code-keys,
i.e., pseudonymization. From the European perspective, de-identified data may or may not
qualify as anonymous data.

5. Pseudonymised data is anonymous data: In Europe, pseudonymization is a common
safeguard to protect personal data and minimize the use of directly identifiable data, but
pseudonymized data is still understood to be personal data and the same requirements still
apply.

A framework that has gained popularity over recent years is differential privacy (DP) [42], which
is based on carefully calibrated noise. Adding this noise during the training stage guarantees that the
synthetic data generator produces outputs with minor deviations compared to the RWD (see, [46–48]).
These deviations should occur at the level of individual observations and in a way that preserves the
main statistical properties of the training data. As a result, inferring any personal information from
synthetic data becomes difficult due to the low level of confidence or, in other words, an increased
margin of error. Concealing personal data with random noise makes it extremely difficult to bypass the
data protection, but the cost is paid in data quality. When the amount of noise added is high enough,
even the most robust statistical patterns become obscured, and new, artificial patterns could emerge by
chance alone [49].
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This leads to two practical questions:

(1) How much noise is enough to protect personal data?
(2) How much noise will destroy the data utility?

The answers depend on the task at hand, but, generally speaking, smaller datasets with weaker
statistical trends are more sensitive to the DP noise. If the phenomenon of interest is very complex
and multidimensional, applying even a small amount of DP noise may break down the multivariate
correlations, rendering data useless for hypothesis testing. The data could still serve its purpose in
the exploration and building of data analysis pipelines, highlighting the context-specific definition of
utility. The need for random noise to conceal personal data could be minimized by using synthetic data
in combination with other privacy-enhancing technologies such as federated learning (Table 5).

Table 5. Improved weight aggregation methods for federated learning [50–52].

PRIVASA results: Federated learning as a privacy-preserving alternative to synthetic data.

In federated learning, data is not shared but collaboratively used by training ML models in a
decentralized manner [53]. There is no need to transfer the data to a central server because
each dataset is processed locally. The results from these local models (e.g., model gradients)
are then shared to create a global model. Researchers from the Turku University of Applied
Sciences focused on how the information from local models could be combined to produce
the most accurate results without leaking any sensitive information from the original, locally
processed datasets. They published novel methods, similarity weighted aggregation (SimAgg),
regularized aggregation (RegAgg), and regularized SimAgg (RegSimAgg) [50–52], which were
subsequently developed further. The team’s work was awarded top positions in the International
Federated Tumor Segmentation Challenge in 2021 and 2022. All in all, federated learning is a
promising approach to joint analytics tasks that require combining real-world data from multiple
sources. Federated learning can also be applied for collaboratively training generative models to
create more representative synthetic datasets.

4.4. Ethical questions emerging from the use of synthetic health data

As privacy-preserving synthetic data is often algorithmically generated, and possibly used in AI
development, the ethical aspects of synthetic health data reflect the wider discourse of AI in healthcare.
Privacy-preserving synthetic data could facilitate ethically aligned data sharing practices, one of the
most popular research topics being data augmentation to mitigate bias [54]. Yet it also raises complex
and profound questions on data ethics, introducing unique viewpoints that are not fully addressed by the
existing ethical frameworks [55]. This happens because applying synthetic data in healthcare requires
balancing many aims, sometimes conflicting, such as ensuring data confidentiality and making data
accessible for the public good.

The ethical questions stem from trade-offs involving data privacy, data quality, fairness, and
transparency (Table 6). One could ask questions such as: When is it acceptable to compromise on
data quality to protect privacy? Is it ethically appropriate to increase the representativeness of a given
dataset with synthetic data? Could synthetic data amplify bias? Should synthetic data generation
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always include bias and stability assessments, even if those consume the privacy budget and therefore
increase the risk of privacy disclosures? As with legal interpretations, there are no simple answers.
Several authors have already pointed out that synthetic data is not free of risks, but rather a tool
that reshapes how different types of risks are manifested [56, 57]. For example, Ganev et al. [58]
showed how the downstream analyses of DP synthetic datasets provided less accurate or consistent
results for minority groups. At the same time, synthetic datasets can promote explainability by helping
researchers map model outputs with different types of input data [59].

Compared to other forms of data-driven research, synthetic data is more frequently relied upon as
the best out of limited options. For example, RWD could be completely unavailable or of extremely
poor quality. Therefore, the ethical assessment should not be based on comparisons to RWD alone,
but also acknowledge the “no data” scenarios when applicable. The ethical assessments tailored
for synthetic data generation and utilization remain a developing area. However, several published
guidelines on responsible and trustworthy AI already provide a high-level framework for identifying
best practices.

Table 6. Ethical challenges associated with the generation and use of synthetic health
data [60].

PRIVASA results: Ethical implications of synthetic health data.

1. Human agency and oversight: Even if synthetic data preserves privacy, the indirect
involvement of human participants in data generation calls for clear communication and
adherence to individual rights. As discussed by Whitney et al. [57], informed consent
should not be disregarded in the context of synthetic data generation.

2. Technical robustness and safety: Any methods for synthetic data generation should be
evaluated against context-sensitive thresholds of accuracy and reliability.

3. Privacy and data governance: Synthetic data may still be susceptible to privacy breaches,
which highlights the need for holistic data protection impact assessments (DPIAs).

4. Transparency: To build trust, synthetic data should be generated and used in a transparent
manner. For example, data labels and model cards could support communicating the origin
and limitations of synthetic datasets or models trained on synthetic data.

5. Diversity, non-discrimination, and fairness: The process of synthetic data generation
should involve meticulous data preparation, use of diverse and representative datasets, and
in-depth analyses of data generation algorithms to address biases.

6. Societal and environmental well-being: The use of synthetic medical data should not
compromise any ethical principles in pursuit of abstract notions such as ‘public good’ or
‘technological progress’.

7. Accountability: Actors and organizational entities accountable for the organization’s
existing data practices should also assume liability when it comes to the generation and
utilization of synthetic health data.

For example, to prevent bias in synthetic health data, one could work on the following aspects:

(1) Ensuring the diversity and representativeness of RWD training data.
(2) Observing potential biases during model development.
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(3) Applying fairness metrics to synthetic data or generative model [61–63].
(4) Testing the robustness with adversarial training techniques designed to reveal any vulnerabilities.
(5) Matching the data properties with the intended use and making sure all users are aware of the

limitations.
(6) Involving experts from different fields to understand all the potential sources of bias (ranging from

technical ones to individual behaviors and differences in organizational practices).
(7) Prioritizing transparency and explainability throughout the different stages of synthetic data

generation.

A conservative ethical argument could be that every use of synthetic data needs a separate ethical
analysis and consideration, especially from the representativeness perspective. In addition, it will be
important to establish “digital chains of custody” for synthetic datasets to document how the data was
formed, communicate limitations, and track usage [54]. Synthetic datasets should be clearly marked
as such and unintentional mixing with real data should be avoided. Progress on the synthetic data
front could still be considered a positive direction, as it can diversify and complement the existing data
protection protocols.

4.5. Recommendations for privacy-preserving synthetic data

To sum up Section 4, we present the following recommendations for the responsible use of synthetic
data to protect privacy:

(1) While privacy metrics provide a practical starting point for employing synthetic data for privacy
protection, more work is needed to establish a holistic approach. Based on our experience,
releasing synthetic datasets for unrestricted, public use is rarely a realistic goal due to cumulative
privacy risks. Instead, data synthesis could be successfully applied with other privacy-enhancing
technologies, possibly allowing the other safeguards to be more lightweight than without the
synthetic data layer. When data accuracy is the highest priority, secure data analytics protocols
are likely to yield better results than sharing differentially private synthetic data.

(2) At present, the legal implications of privacy-preserving synthetic data are not fully resolved,
and new frameworks like DP are challenging traditional approaches to statistical disclosure
control. As the regulatory practice is forming, forerunner organizations would benefit from public
guidelines and benchmarks on how to provide strong enough privacy guarantees. Data protection
authorities and governmental organizations worldwide have already taken action, and Finland is
well-positioned to coordinate strategic work on a national level.

(3) From legal and ethical perspectives, privacy-preserving synthetic data links to the broader
discussion of AI in health care. Avoiding overuse and misuse (sensu [64]) is equally important
as recognizing the opportunities. We argue that synthetic datasets should be used as a
complementary tool to mitigate the current issues on data availability, not as an alternative
solution that would replace or restrict current efforts focusing on RWD. For example, using
synthetic data to cut costs should not justify lower recruitment rates for clinical trials or less
representative sampling in medical studies. Real data should remain at the core of health-
related research, and high-quality RWD remains essential for validating any results obtained using
synthetic data.
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5. Generating synthetic data

Synthetic data generation can be based on domain knowledge (a knowledge-driven process),
existing data (a data-driven process), or a combination of both. Synthetic data generated through a
knowledge-driven process [65] can resemble simulated data, especially when it comes to synthetic
longitudinal data. As a rough distinction, synthetic datasets could be interpreted as snapshots in time,
whereas simulated datasets tend to be more process-oriented overall (see Section 2). In this paper, we
focus on the data-driven approach.

The computational methods for data-driven synthetic data generation encompass a variety of
techniques, from statistical modeling to ML and other AI technologies, including generative AI [9].
Many methods have also been published as privacy-preserving versions, for example, by applying
DP guarantees [46–48]. All methods have their strengths and weaknesses, and selecting the best
possible one for any given task requires understanding the underlying data as well as the generative
model [66]. The selection can be guided by metrics that describe the utility and privacy of synthetic
datasets [67,68] or model properties like robustness and explainability [69]. However, any quantitative
metrics are inherently imperfect, as they cannot capture the full complexity of technical, legal, and
ethical considerations involved.

When it comes to narrowing down the options, the first step is to filter based on the type of data.
One main category of methods is formed by generative models for unstructured data (images, video,
audio) and the other one for structured data (tabular data, time series). In addition, the methods for
generating synthetic tabular data may support only certain types of variables (categorical, numeric
discrete, or numeric continuous) [70]. Specifically, the methods for generating synthetic time series are
still relatively rare [71], as high-dimensional datasets are the most challenging ones to model without
losing the characteristics of RWD. An illustrative overview of generative models for specific data types
has been published by Jordon et al. [13].

5.1. The general overview of data-driven methods for synthetic data generation (SDG)

In statistical modeling, data is generated based on the statistical properties of the original dataset.
In the simplest form, one could generate new data points based on a predetermined probability
distribution. More complex approaches include models like Bayesian networks with conditional
probabilities [72, 73]. There is no clear boundary between statistical methods and ML, as Bayesian
networks have also been applied in ML algorithms.

AI-driven synthetic data generation covers ML approaches such as GANs [74] and variational
autoencoders (VAEs) [75]. GANs involve a dynamic process where two neural networks, a generator
and a discriminator, compete to produce realistic data samples (see [76] for a comparison of several
GAN-based SDG methods and Table 7 for work conducted in PRIVASA). VAEs, on the other hand,
use probabilistic encodings to generate new data points [77]. Large language models (LLMs) excel at
producing realistic outputs as free-form text, but can also handle other types of data such as tabular
data [68].

Table 8 presents an overview of the data-driven workflow for synthetic data generation. We note that
evaluating the amount of data preprocessing, if any, also requires technical expertise: Latner et al. [66]
mentioned data cleaning as an essential step before synthetic data generation, whereas Dankar and
Ibrahim [78] provided evidence that data synthesis from raw data yields good results. For a practical
reference, a paper by Yan et al. [79] includes a tutorial to describe the process of GAN-based synthetic
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data generation.
Table 7. Empirical evaluation of a GAN-based method for generating synthetic tabular
data [80].

PRIVASA results: Generating differentially private synthetic tabular data with GANs.

The goal of this empirical work was to explore the combined effectiveness of DP and various
rates of subsampling in the private generation of synthetic tabular data with GANs. The
subsampling increases privacy by dividing the privacy budget across mutually exclusive subsets
of training data. This way, each individual data subset will have limited influence on the
trained model. The higher subsampling rates were associated with more training iterations
before reaching higher model accuracies [80]. The increased cost of training was reasonable
considering the privacy gains but had an impact on how the work was conducted in practice
(e.g., relying on a single dataset). Generating synthetic tabular data of high quality, however,
proved difficult. Some of the effects were observable as artificially reinforced or even reversed
correlations.

Table 8. General aspects to consider on different stages of synthetic data generation. The list
is indicative.

The process of synthetic data generation.

1. Defining the use case:
• Specifying what the synthetic data will be used for and by who.
• Conducting an ethical and regulatory assessment.
• Defining the utility criteria.
• Defining the privacy criteria.

2. Setting up the training data for generative models.
• Identifying potential data sources and gaining access to suitable datasets.
• Determining the subset of variables that need to be synthesized.
• Checking for potential biases and outliers of the RWD.
• Checking other potential limitations such as missing values.
• Evaluating the need for data preprocessing or augmentation.

3. Building the data synthesis pipeline:
• Adjusting technical specifications to match the utility and privacy criteria.
• Addressing other use case requirements (legal, ethical, or technical).
• Documenting the work and choices made (e.g., code annotations, model cards).

4. Evaluating the generative model and quality of synthetic data:
• Model evaluation (e.g., model stability, privacy, and fairness)
• Qualitative metrics for synthetic data (e.g., expert opinion)
• Quantitative metrics for synthetic data (e.g., general utility, case-specific utility)
• Level of privacy protection
• Documenting the work (e.g., metadata and data catalogues).

5. Using synthetic data:
• Sharing relevant results (synthetic data, generative model, analysis results, metadata).
• Sharing supporting documentation, when relevant (e.g., instructions for use).
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5.2. Evaluating the quality of synthetic data

The quality of synthetic data can be assessed indirectly by looking at the properties of the generator
or directly by looking at the properties of the output, i.e., the synthetic data. Several authors have
presented their own frameworks for evaluating the quality of synthetic data (see, for example, [81]
and [67]) and measuring privacy (see, for example, [82] and [83]). Recent work by Vallevik et al. [84]
aims to consolidate the existing evaluation metrics for synthetic tabular data.

The quality of synthetic data is typically described using attributes such as utility, fidelity and
privacy [13]. Utility is a measure of how well synthetic data performs in the task it was generated
for. In hypothesis testing, one could empirically assess the probabilities of landing a false conclusion
(Figure 3) [49]. Fidelity is a measure of how much synthetic data resembles the original data. Privacy
metrics describe the level of data protection achieved, usually indicating either overall similarity to
RWD or protection against a specific privacy attack.

Real distribution Synthetic data

True negative

True positive

False 
negative

False 
positive

x

x

x

x

Figure 3. PRIVASA study on assessing the reliability of DP synthetic datasets in hypothesis
testing [49]. A simple statistical test that compares two distributions can produce four
different outcomes, and false positives (Type I error) or false negatives (Type II error) can
lead to misguided conclusions. Redrawn from Montoya-Perez et al. [49].

Utility and fidelity are often tightly interlinked, but sometimes even synthetic data that has little
resemblance to RWD can be very useful. Similarly, privacy and fidelity may be hard to separate. As a
rule of thumb: the more similar synthetic data is to RWD, the weaker the protection of privacy. Utility is
a highly context-specific feature that often requires benchmarking with RWD. The model performance
with RWD versus synthetic data can be compared using metrics such as prediction accuracy and
overlap (%) of confidence intervals in model coefficients. Fidelity indicates the structural and statistical
similarity to RWD by focusing on individual variables, interactions between two variables, or dataset
properties at the population level. It can be quantitatively measured by calculating basic descriptive
statistics or analyzing distributions. The potential metrics include the structural similarity index
(SSIM; for images), pair-wise correlations, and the Hellinger distance or Kolmogorov-Smirnov test
for measuring the distance between synthetic data and RWD. Especially with unstructured data like
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images and video, a qualitative expert evaluation could be the ultimate test of similarity.
Considering the typical inverse relationship between privacy and utility or fidelity, some of the

metrics could be applied in both categories. It must be noted, however, that this inverse relationship is
not a simple linear one, but represents a case-specific optimization challenge. The privacy metrics often
reflect the distinguishability of synthetic data from RWD (e.g., Propensity score [78]) or the distance
between synthetic and real data points. Instead of using these indirect measures, the risk for privacy
breaches such as re-identification could also be calculated or empirically tested.

A somewhat contrasting approach is presented by DP [42], which provides a value for the privacy
parameter epsilon (ε). Lower values translate into stronger privacy protection, which in the case of DP
means that the inclusion or exclusion of any individual’s data does not significantly affect the observed
model output. In contrast to other privacy metrics, DP guarantees apply to the generative model and
not the data per se. Other properties that could be evaluated at the level of the generative model include
bias and stability assessments [30, 67].

5.3. Future research directions for synthetic data generation

We conclude Section 5 with the following recommendations for implementing synthetic data
generation techniques and future research:

(1) We support the idea that synthetic datasets should be created for a predefined purpose that serves
as the basis for method selection. More empirical research is needed to help evaluate the synthetic
data approach against other privacy-enhancing technologies like federated learning [85].

(2) When producing synthetic data, it is important to examine its quality from multiple perspectives.
While establishing common standards and benchmarks remains an important goal in the field,
employing a diverse set of metrics should be encouraged to avoid setting unrealistically narrow
optimization targets. Qualitative evaluations, preferably in collaboration with clinical experts or
other healthcare professionals, should not be neglected. The case-specific evaluation frameworks
should integrate the relevant quantitative and qualitative aspects, and this information should be
made available as metadata.

(3) In line with Hernandez et al. [86], we recognize the need for collaborative, secure protocols for
synthetic data generation and validation. Especially in the health sector, we expect an increasing
demand for federated synthetic data generation [87].

(4) Data on individual lifestyles has high relevance for preventive healthcare, and it covers many
types of data. Future work is needed to generate synthetic data from each of these modalities
individually (e.g., trajectory data [88]), but also in ways that support producing multimodal
datasets.

6. Conclusions

Synthetic data is often put forward as a solution for data-driven innovation in the face of escalating
privacy concerns. As the technology matures, on-demand synthetic data generation could help address
different data requirements in research and development, but also knowledge-based management and
policy-making in the health sector [89]. Privacy-preserving synthetic data has the potential to support
more streamlined access to individual-level health data without compromising privacy. The emerging
opportunities for testing and development would benefit company R&D, public-private partnerships as
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well as international collaboration. When deciding on the use of synthetic data, one should consider the
legal requirements and ethical code of conduct, and assess the technical trade-offs. Where appropriate,
these should be compared to the alternative approaches available.

Establishing sufficient levels of data protection remains a challenging task, which forms a barrier
to adoption of new privacy-enhancing technologies, including synthetic data. The dichotomy between
anonymous and non-anonymous data present in data protection laws is not realistic [90], because data
protection forms a continuum with low-risk data at one end and high-risk data at the other. Quantitative
metrics such as differential privacy can promote the development of sustainable data strategies and
support transparent communication with data subjects. In assessing the overall risk of privacy breaches,
however, applying synthetic data generation as a privacy-preserving mechanism represents only one
part of the equation. The strength of privacy guarantees could be adjusted based on other safeguards
applied, such as restricting the data to be processed within a secure operating environment only.

As with any emerging technology, the wider adoption of synthetic data as a privacy-preserving
mechanism also requires research, conceptualization, testing, and reassessment of existing practices.
Technological breakthroughs, such as generative AI, should not be seen merely as threats to privacy but
also recognized for their potential for enhanced data protection. Enabling legislation has been identified
as one of the key areas for development in, for example, recently published growth and competitiveness
vision for the Finnish health sector [91] and the Sotedigi toolkit produced in collaboration with the
business sector organizations [92].

Applying synthetic data in healthcare needs further ethical discussions and research to establish
shared guidelines and best practices among public and private stakeholders, including dialogue with
citizens. Public sector organizations such as Research Data Scotland (United Kingdom and Northern
Ireland), South Australian Health (SA Health, Australia), the Personal Data Protection Commission
(PDPC, Singapore), the United Nations Economic Commission for Europe (UNECE) and the Financial
Conduct Authority (FCA, United Kingdom and Northern Ireland) have taken steps to explore the
potential of synthetic data, either by launching strategic initiatives, setting up expert groups, or
producing guidelines. In Germany, a National Data Infrastructure project known as NFDI4Health
developed a SYNDAT platform for synthetic data [93]. Finland also has the expertise, infrastructure,
and data reserves to explore the opportunities on a national level. It is important to recognize that
synthetic data generation offers limited options for linking data from different sources, which is why
the future EHDS capabilities will play a significant role in determining the collaborative potential.
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