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Abstract: Biochemical oxygen demand (BOD) is an important water quality measurement but takes
five days or more to obtain. This may result in delays in taking corrective action in water treatment.
Our goal was to develop a BOD predictive model that uses other water quality measurements that are
quicker than BOD to obtain; namely pH, temperature, nitrogen, conductivity, dissolved oxygen, fecal
coliform, and total coliform. Principal component analysis showed that the data spread was in the
direction of the BOD eigenvector. The vectors for pH, temperature, and fecal coliform contributed
the greatest to data variation, and dissolved oxygen negatively correlated to BOD. K-means clustering
suggested three clusters, and t-distributed stochastic neighbor embedding showed that BOD had a
strong influence on variation in the data. Pearson correlation coefficients indicated that the strongest
positive correlations were between BOD, and fecal and total coliform, as well as nitrogen. The largest
negative correlation was between dissolved oxygen, and BOD. Multiple linear regression (MLR)
using fecal, and total coliform, dissolved oxygen, and nitrogen to predict BOD, and training/test
data of 80%/20% and 90%/10% had performance indices of RMSE=2.21 mg/L, r=0.48 and accuracy
of 50.1%, and RMSE=2.18 mg/L, r=0.54 and an accuracy of 55.5%, respectively. BOD prediction was
better than previous MLR models. Increasing the percentage of the training set above 80% improved
the model accuracy but did not significantly impact its prediction. Thus, MLR can be used successfully
to estimate BOD in water using other water quality measurements that are quicker to obtain.
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1. Introduction

Water treatment plants (WTPs) provide safe and portable water [1]. These facilities treat the water
to the appropriate standards before it can be released to the public. They also treat wastewater before it
can be discharged to the surface water bodies including rivers, lakes, dams, and canals [2–4]. Studies
have indicated effects of contamination from the wastewater discharged to the water bodies even after
treatment [5]. Thus, monitoring surface water quality can help determine any danger of contamination.

Biochemical oxygen demand (BOD) is the amount of dissolved oxygen necessary for the
microorganisms to break down organic matter in water [6]. BOD measurement is one way in which
organic matter contamination is measured in WTPs. It is used as one of the water quality indices [7].
BOD5 is the standard BOD measurement and takes five days to produce a result. This time lag may
result in a delay in any corrective action necessary [8]. Machine learning (ML) is a fast-growing
technology, expected to be one of the most transformative technologies of the 21st century [9];
therefore, its application in the field of water treatment is of great significance. Large volumes of
datasets are generated in WTPs, but there is low utilization of the collected data due the lack of data
science background for water treatment professionals, and the complexity of datasets generated [10].
The challenges associated with the intrinsic complexity of the processes in WTPs can be overcome
through modeling with machine learning methods [11]. ML can predict BOD5 based on the input of
other water quality parameters that can be determined in a shorter time and provide predictive results in
less than 5 days. Multiple linear regression (MLR) is a ML method that can be used for water quality
parameter prediction [12]. There is an opportunity for applying MLR to model BOD prediction using
water variables collected regularly from the surface water sources, which receive effluents from WTPs.

There are studies on applying MLR to predict water quality properties. Obasi et al. [13] used MLR
and adaptive neuro-fuzzy inference system (ANFIS) to predict the performance of WTP in terms of
conductivity, pH, iron content, BOD, chemical oxygen demand (COD), and total dissolved solids in
wastewater. They found out that an MLR model is more accurate in determining WTP performance
compared to ANFIS. Nourani et al. [14] carried out a study on WTP performance using MLR, ANFIS,
feed forward neural network and support vector machine to predict the performance of a WTP in terms
of effluent BOD, COD, and total nitrogen using different models of input and outputs. For the MLR
model, they found out that a model with five inputs and one output was the best in predicting BOD
and COD. Similarly, El Hammoudani and Dimane [15], successfully used MLR to characterize the
elimination of micropollutants in a WTP. On the other hand, Rahmat et al. [16], used MLR to predict
the water quality index using influent BOD, influent COD, and effluent COD. They found out that MLR
model performed well and could be used to predict water quality index for WTPs. Abyaneh [17], used
MLR to predict BOD using four water quality parameters and had promising results. Typically, the
number of water quality parameters collected in a WTP may go up to 20 [18], and it is possible that a
model with judicious choice of inputs from the array of parameters will have better prediction. There is
a need for an MLR model that can predict BOD from the diverse water quality data and that considers
the significance of the multiple water quality parameters.

The goal of this work was to develop a MLR model for BOD prediction that takes into account
the significance of the multiple water quality parameters. This goal was addressed using principal
component analysis (PCA) and Pearson correlation. Pearson correlation was used to identify the
correlation within a dataset containing eight water quality parameters. T-distributed stochastic neighbor
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embedding (t-SNE) and K-means clustering were used to identify the effect of BOD on data clustering.
Dissolved oxygen, nitrogen, fecal coliform, and total coliform had strong correlations to BOD and were
used to develop the MLR model. A comparison of the model results to the observed data showed that
the model had better performance than some of the existing MLR models of BOD.

2. Materials and methods

2.1. Experimental data

The data used in this work was obtained from the Kaggle database, which is freely accessible,
and consists of water quality parameters for over 100 rivers and five lakes in the Indian states of
Andhra Pradesh, Assam, Bihar, Goa, Gujarat, Himachal Pradesh, Jammu, Karnataka, Madhya Pradesh,
Maharashtra, Punjab, Rajasthan, Tamil Nadu, Uttar Pradesh, West Bengal, Uttarakhand as well as the
Union Territory of Delhi [19]. The database provides eight time averaged water quality parameters for
each river and lake at multiple sample points. The water quality parameters provided in the dataset are
temperature, dissolved oxygen, pH, conductivity, BOD, nitrogen, fecal coliform, and total coliform.
Nitrogen was in the form of both nitrate and nitrite.

2.2. Principal component analysis (PCA) and data clustering analysis

Data preprocessing was first done by dropping off all non-numeric data and accounting for the
missing data values by imputing them with column feature mean values. After the preprocessing, PCA
was carried out via Python code in Google Colaboratory. PCA was also used to detect the presence
of data clusters in a plot of the first two principal components. A biplot was also generated from the
PCA data and used to identify correlations to BOD. K-means clustering was used to determine the
number of data clusters present in the data set. T-distributed stochastic neighbor embedding (t-SNE) is
a powerful tool for identifying data clusters [20] and was used to identify clusters in the data based on
BOD.

2.3. Parameter selection

The selection of the parameters used in the ML was done through the analysis of the strength of
association of each parameter to BOD, which was the target variable. This was achieved through
the analysis of Pearson correlation of each independent variable to BOD in addition to the findings
obtained from PCA analysis. The parameters that showed strong correlation were chosen for use in the
ML model.

2.4. Machine learning

Machine learning was done with multiple linear regression through a linear model imported from
the scikit-learn library [21]. The training was done with both 80%/20% and 90%/10% training/test
data split. The data splitting was done randomly, using the train test split function, from the
sklearn.model selection module [22], in the scikit-learn library [21]. The general form of the MLR
model was

y = C1x1 + C2x2 + C3x3 + C4x4... + Cnxn + β0, (2.1)
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where y is the dependent variable, β0 is the y-intercept, C1,C2,C3....Cn are the coefficients for the
independent variables, and x1, x2, x3...xn are the independent variables of the model. Most of the data
(90.4% in total) had values of BOD between 0 and 11mg/L. The model was developed using this range
of values to eliminate the effect of outliers in the model.

2.5. Evaluation criteria

The evaluation criteria adopted in this study for evaluation of the model performance was the
coefficient of correlation (r), the root mean squared error (RMSE), and accuracy. The coefficient of
correlation (r) is a key common criterion for checking the goodness of the line of best fit [17]. It checks
the fitness of the regression model to the data rather than the capability of the model in prediction. A
well-fitting model results in predictions being close to the observed values. Nonetheless, it is worth
noting that the coefficient of correlation does not work well for all data and hence cannot be relied on as
the only measure of performance of the prediction model [23]. RMSE on the other hand indicates the
absolute fitness of the model to the data and has the advantage of being expressed in the same units as
the response variable. It is the best criterion for a fit when the main reason for the model is prediction.
When RMSE is low and r is high, the model is considered good [24].

Accuracy was used because it gives a glimpse of the performance of a model. It is however
not a dependable option for the evaluation of the model performance [25]. Algorithms with lower
accuracy could be preferred over those with higher accuracy upon consideration of the other factors of
performance [26]. The average prediction accuracy for a model to be acceptable is 50% [27].

3. Results and discussion

A ML algorithm was developed by first checking the consistency of the training data for water
quality parameters available in the dataset used. The size of the dataset is 534 samples and each
sample contain eight possible water quality parameters. A summary of the data obtained in its original
form is shown in Table 1. As seen in Table 1, some measurements are missing. Of the eight water
quality parameters available, there is only one case where more than 10% of the data is missing. The
highest percentage of the missing measurements is found in fecal coliform and is 15.40% or 82 out
of 534 measurements. The missing values were imputed with the mean value for each parameter
before training the model.

Table 1. The structure of the dataset before imputation [19].

Water quality parameters Available measurements Missing measurements
Temperature 529 0.94 %
Dissolved oxygen 532 0.37 %
pH 534 0.00 %
Conductivity 504 5.62 %
BOD 528 1.12 %
Nitrogen 532 0.37 %
Fecal coliform 452 15.40 %
Total coliform 495 7.30 %
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PCA was carried out for dimension reduction, to relate the different parameters to the level of
variation and identify correlations to BOD. Figure 1 shows the the results of data visualization by PCA.
The first two principal components, as shown in the scree plot, accounts for 38.8% of the variation in
the data. The algorithm used to carry out PCA in Figure 1 identified three clusters in the data, in
accordance with the plot for the first two principal components. However, there is no clear separation
between the clusters. This may indicate that the parameters may be closely associated. The overall
variation of the data is oriented towards a direction tilted to the right lower corner of the plot, away
from the point of the major centroid.

The size of the vectors from the biplot of PC1 and PC2 indicate that BOD, pH, temperature and
fecal coliform contribute the greatest in terms of variation in the data [28]. The orientation of the
variation of data identified in the plot for the first two principal components is in the direction of
BOD loading. The biplot further suggests the existence of a positive correlation between BOD, total
coliform, nitrogen and fecal coliform. The correlation of pH, conductivity and temperature with BOD
is weak. Dissolved oxygen shows a strong negative correlation to BOD. PCA suggests clustering in
the data and correlations between BOD, dissolved oxygen, nitrogen, fecal coliform and total coliform.

Scree plot. Two principal components.

Biplot of PC1 and PC2.

Figure 1. PCA analysis of the water data showing the scree plot, a plot of the first two
principal components, and a biplot of the first and second principal components.
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To explore existence of any unique information in the data that would inform on the modeling
approach for BOD prediction, K-means clustering was applied to the data. K-means is a most widely
used algorithm, applicable to clustering for numeric data [29]. Figure 2 shows the K-means results.
According to elbow rule [30], we should select the number of clusters using the visual plot at the point
in which the curve bends most. Following this, we select 3 clusters. This agreed with the PCA findings
in Figure 1.

Figure 2. K-Means clustering of the data. Three clusters selected in the data structure in line
with the elbow rule.

Further cluster analysis was carried out with t-SNE. The target variable for the t-SNE analysis was
BOD because the orientation of the variation of the data was in the direction of BOD vector and BOD
had significant contribution to the variation in the data (Figure 1). Figure 3 shows the results of t-SNE
analysis on normalized BOD. From Figure 3, it can be seen that the clusters are easily identified on
the basis of levels of BOD. Low values of BOD are in the right half of the plot. From the plot of
normalized BOD data, we can identify three broad normalized BOD range of values where most of the
data values lie. These are 0–0.3, 0.3–0.7 and 0.7–1.0. The data in the 3 levels of normalized BOD data
plot is represented in terms of high, medium and low BOD values. There is clustering of data based
on normalized BOD values and three clusters are easily identified. This supports the data obtained in
Figures 1 and 2. Clearly, BOD has a significant impact in clustering of the water quality parameters and
a significant effect on the variation in water quality data. This makes it an ideal target for a regression
model.

Pearson correlation analysis was carried out to determine the strength of correlations between BOD
with temperature, pH, dissolved oxygen, conductivity, nitrogen, fecal coliform, and total coliform.
Table 2, summarizes the results of Pearson correlation analysis among all the variables in the dataset.
The highest positive correlation coefficients obtained were between BOD and fecal coliform, nitrogen
and total coliform indicating a positive correlation between these water quality parameters with BOD.
The largest negative correlation coefficient was between BOD and dissolved oxygen, indicating a
negative correlation between these two variables. These findings are in line with the findings from
PCA.
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Normalized BOD data. 3 levels of normalized BOD data.

Figure 3. t-Distributed Stochastic Neighbor Embedding using normalized BOD values as
the target. The transformation on the right is based on low (0–0.3), medium (0.3–0.7), and
high (0.7–1.0) normalized BOD levels.

Table 2. Summary of the Pearson correlation coefficients for the variables in the dataset [19].

Temperature pH
Dissolved

oxygen Conductivity BOD Nitrogen
Fecal

coliform
Total

coliform
Temperature 1.000
pH 0.018 1.000
Dissolved
oxygen

-0.185 0.066 1.000

Conductivity 0.074 0.012 -0.105 1.000
BOD -0.071 -0.056 -0.522 0.099 1.000
Nitrogen 0.089 -0.019 -0.269 0.084 0.285 1.000
Fecal coliform 0.004 -0.013 -0.080 -0.001 0.299 0.018 1.000
Total coliform -0.003 -0.030 -0.230 0.001 0.174 0.131 0.036 1.000

The data in Table 2 was further summarized with respect to the BOD and all the other water quality
parameters. Table 3 shows the summary with respect to the strength of the correlations. From the
results in Table 3, it is clear that three of the parameters had a medium to strong level of correlation
with BOD. These are: dissolved oxygen (-0.522), nitrogen (0.285) and fecal coliform (0.299). Next
was total coliform which had correlation coefficient of 0.174 with BOD. Temperature, conductivity
and pH all showed very low strength of correlation with BOD (≤ |0.1|). The findings by Abyaneh, on
the other hand, showed a high significance of pH in prediction of BOD [17]. This difference between
our work and that of Abyaneh can be attributed to the difference in the parameters under review in this
study and those selected by Abyaneh. Abyaneh used total suspended solids, temperature and pH for the
study. Our study on the other hand has considered a broader set of parameters, that is dissolved oxygen,
temperature, pH, conductivity, nitrogen, fecal coliform, and total coliform. We found out that dissolved
oxygen had a negative correlation to BOD, which is in agreement with the work of others [6,31]. These
studies show that the effects of high levels of BOD results is low dissolved oxygen concentration in
water. The strength of these correlations agreed with the results of PCA analysis and informed on the
principle water quality parameters to be used in the training of the linear model.
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Table 3. The correlation coefficients of the individual parameters and the BOD. The
correlation strength was classified with reference to [32] and [33].

Parameters Temperature pH Dissolved
oxygen

Conductivity Nitrogen Fecal
coliform

Total
coliform

Correlation -0.071 -0.056 -0.522 0.099 0.285 0.299 0.174
Correlation
Strength

Small
Negative

Small
Negative

High
Negative

Small
Positive

Medium
Positive

Medium
Positive

Small
Positive

Multiple linear regression was developed to determine the coefficients in Eq (2.1) using two sets
of data split: 80%/20% and 90%/10% training to test data. Table 4 is a summary of the regression
coefficients for the two sets of training/test data. The absolute values of the coefficients C1–C4 are
indicative of the order of importance of the independent variables in their contribution in the model;
with the highest absolute value implying relatively most important variable in the model [34]. From
the absolute values of the coefficients C1–C4, it is evident that dissolved oxygen made the highest
contribution to the model, followed by nitrogen, fecal coliform, and total coliform, respectively. This
is in agreement with the findings of the Pearson correlation analysis as summarized in Table 3.

Table 4. Regression coefficients, C1–C4 and the y-intercept, β0, for a linear model of BOD
(Eq (2.1)) with dissolved oxygen (x1), nitrogen( x2), fecal coliform (x3) and total coliform
(x4) respectively.

Training/test
data split ratio

C1 C2 C3 C4 β0

80%/20% −6.02 × 10−1 2.50 × 10−1 1.26 × 10−5 −2.80 × 10−6 6.92
90%/10% −6.34 × 10−1 2.89 × 10−1 6.76 × 10−6 −1.11 × 10−6 7.09

Hydrographs with scatter plots for both the 80%/20% and 90%/10% training/test data split were
generated to determine how well the model agreed with the observed data, as shown in Figure 4.
From the hydrograph for the 80%/20% training/test data split, it is clear that the predicted values of
BOD closely mirror the observed values. The r value for the 80%/20% scatter plot , which is an
indicator of how well the model and the observed data agreed with each other, is 0.48. The RMSE
value in this case was 2.21 mg/L. Similarly, the hydrograph for 90%/10% training/test data split shows
a good agreement between the predicted and observed BOD values. The r value of the predicted and
observed BOD values was 0.54. The RMSE for the 90%/10% data split was 2.18 mg/L, which is a
negligible change compared to that of the 80%/20% split. An increase in the training/test split ratio
beyond 80%/20% does not significantly improve the prediction capability of the MLR model. Our
results agree with the findings by Rácz et al. [35]. They used four split ratios of 50%, 60%, 70%
and 80% and found that the 80%/20% split ratio achieved the best performance. In modeling water
treatment plants, the 80%/20% data split ratio for model training/testing is a common ratio. Güçlü
and Dursun [36] used approximately 80%/20% split ratio while modeling WTP using ANN. Similarly,
Hamed et al. [37], obtained a good fit for BOD and suspended solids prediction with 80%/20% data
split ratio.
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80%/20% hydrograph. 80%/20% scatter plot.

90%/10% hydrograph. 90%/10% scatter plot.

Figure 4. Comparison of observed and predicted BOD values for the 80%/20% and
the 90%/10% training/testing data split. An accuracy of 50.1% and 55.5%, RMSE of 2.21
mg/L and 2.18 mg/L, and r values of 0.48 and 0.54 were achieved for the for the 80%/20%
and 90%/10% training/test data splits respectively.

The accuracy of the two models obtained from the 80%/20% and 90%/10% training/testing data
splits was assessed. The 80%/20% data split had an accuracy of 50.1% while that of 90%/10% data
split had a higher accuracy of 55.5%. The model accuracy met the minimum acceptable average
prediction accuracy of 50% [27]. It is evident from these results that the accuracy of a model increases
by increasing the ratio of training/test set of the data.

Abyaneh [17], predicted BOD using MLR. The author found an r value of 0.53 and a RMSE
of 37.8 mg/L. The r values achieved in this study were 0.48 and 0.54 for 80%/20% and 90%/10% split
ratios, respectively. These values were in close agreement with the value obtained by Abyaneh (0.53).
Lower RMSE values of 2.21 mg/L and 2.18 mg/L were obtained for the 80%/20% and 90%/10%
split ratios, respectively. Notably, the lower RMSE values achieved in this investigation suggest that a
judicious choice of input parameters contributes to enhanced prediction capabilities. MLR is an easy
to develop and easy to implement technique for water quality prediction and can easily be deployed in
surface water quality monitoring to check on any potential contamination even in low resource settings
including the countries in the global south.
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3.1. Limitations and future directions

An understanding of the limitations of the MLR model developed in this study is crucial for
refining predictive capabilities and advancing research in water treatment. Despite its simplicity, the
model exhibits inherent constraints that warrant acknowledgment and consideration. The reliance on
linear relationships may not have captured the complexity of BOD dynamics in real-world scenarios.
Similarly, factors such as data quality and variable selection influence the model’s predictive accuracy
and could explain the low accuracy achieved in this study. Addressing these limitations necessitates
a multifaceted approach, including data augmentation, feature engineering, and the exploration of
alternative modeling techniques such as nonlinear regression [38, 39].

Additionally, we employed k-means clustering with the elbow method as an exploratory tool,
however, we acknowledge the limitations of this approach in identifying natural clusters within the
dataset. There is a need to conduct a more in-depth cluster analysis using alternative techniques,
such as internal clustering validity indices [40], to accurately evaluate the presence and structure of
potential clusters. Other algorithms such as Random Swap [41] or variants of k-means, like the
M-algorithm [42], can also be employed for detailed clustering. This will ensure a more robust
understanding of the underlying structure in the data and provide more insight in the modeling.
The work presented here is essential for future studies on enhancing the robustness and reliability
of predictive tools for BOD levels in water treatment.

4. Conclusions

We wanted to develop a predictive tool for BOD using measurements that were easier to obtain. We
found that BOD influenced organization and clustering of the water quality data. Out of eight water
quality parameters, four strongly correlated to BOD. A MLR regression model was used to develop
a linear model for BOD prediction based on these four water quality parameters with two sets of
training/test split ratios. In both cases, the model was able to account for over half the variation of
the data. MLR is a simple model and the work herein establishes a foundation for the development of
more complex models on BOD.
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35. A. Rácz, D. Bajusz, K. Héberger, Effect of dataset size and train/test split
ratios in qsar/qspr multiclass classification, Molecules, 26 (2021), 1111.
http://dx.doi.org/10.3390/molecules26041111
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40. Q. Zhao, P. Fränti, Wb-index: a sum-of-squares based index for cluster validity, Data Knowl.
Eng., 92 (2014), 77–89. http://dx.doi.org/10.1016/j.datak.2014.07.008

41. P. Fränti, Efficiency of random swap clustering, J. Big Data, 5 (2018), 13.
http://dx.doi.org/10.1186/s40537-018-0122-y

42. P. Fränti, S. Sieranoja, K. Wikström, T. Laatikainen, Clustering diagnoses from 58 million
patient visits in finland between 2015 and 2018, JMIR Med. Inform., 10 (2022), e35422.
http://dx.doi.org/10.2196/35422

c© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Applied Computing and Intelligence Volume 4, Issue 2, 125–137.

http://dx.doi.org/http://dx.doi.org/10.1016/j.jenvman.2008.06.004
http://dx.doi.org/http://dx.doi.org/10.1213/ANE.0000000000002864
http://dx.doi.org/http://dx.doi.org/10.1088/1757-899X/780/3/032045
http://dx.doi.org/http://dx.doi.org/10.1016/j.sbspro.2013.12.027
http://dx.doi.org/http://dx.doi.org/10.3390/molecules26041111
http://dx.doi.org/http://dx.doi.org/10.1007/s00449-010-0430-x
http://dx.doi.org/http://dx.doi.org/10.1016/j.envsoft.2003.10.005
http://dx.doi.org/http://dx.doi.org/10.1016/j.uclim.2021.100837
http://dx.doi.org/http://dx.doi.org/10.1016/j.datak.2014.07.008
http://dx.doi.org/http://dx.doi.org/10.1186/s40537-018-0122-y
http://dx.doi.org/http://dx.doi.org/10.2196/35422
https://creativecommons.org/licenses/by/4.0

	Introduction
	Materials and methods
	Experimental data
	Principal component analysis (PCA) and data clustering analysis
	Parameter selection
	Machine learning
	Evaluation criteria

	Results and discussion
	Limitations and future directions

	Conclusions

