

https://www.aimspress.com/journal/aci

Applied Computing and Intelligence

4 (1): 93–106.

DOI: 10.3934/aci.2024006

Received: 30 July 2024

Revised: 28 August 2024

Accepted: 03 September 2024

Published: 09 September 2024

Research article

Modification of coot optimization algorithm (COA) with adaptive

sigmoid increasing inertia weight for global optimization

Elvis Twumasi*, Ebenezer Archer, Emmanuel O. Addo and Emmanuel A. Frimpong

Department of Electricals and Electronics Engineering, Kwame Nkrumah University of Science and

Technology, Kumasi, Ghana

* Correspondence: Email: etwumasi.coe@knust.edu.gh.

Academic Editor: Pasi Fränti.

Abstract: In this paper, the classical coot optimization algorithm (COA) is modified to improve its

overall performance in the exploration phase by adding an adaptive sigmoid inertia weight-based

method. The modified coot optimization algorithm (mCOA) was successfully assessed using 13

standard benchmark test functions, which are frequently used to evaluate metaheuristic optimization

algorithms. The MATLAB software was utilized to conduct simulation tests, and the outcome was

compared with the performance of the original COA, the particle swarm optimization, and the genetic

algorithm reported in the literature. The findings showed that the proposed algorithm outperformed

the other algorithms on ten (10) of the 13 benchmark functions, while it maintained a competitive

performance on the remaining three benchmark test functions. This indicates that mCOA provides a

significant improvement to the original COA, thus making it suitable for resolving optimization

problems in diverse fields. As a result, the proposed algorithm is recommended for adoption to solve

real-life engineering optimization problems.

Keywords: coot optimization algorithm; modification; algorithm; adaptive weight

1. Introduction

Nature-inspired algorithms are well-known algorithms for finding near-optimal solutions to

optimization problems. These algorithms have successfully solved optimization problems in different

domains [1,2]. The natural behaviors or events among living creatures inspire these nature-inspired

algorithms Examples of such events include the mountain gazelle's social behavior, and the behavior

of birds, monkeys, and other animals in the wildlife [3]. These algorithms have shown promise in

https://www.aimspress.com/journal/aci

94

Applied Computing and Intelligence Volume 4, Issue 1, 93–106.

solving real-world engineering problems and problems in many fields. Among the plethora of

algorithms that have been designed by researchers over the years, new algorithms are still of interest

among optimization enthusiasts to solve the common problem of these algorithms, which are mainly

entrapped in local optima solutions and slow convergences. The Coot Optimization Algorithm (COA)

has shown promise in solving these difficulties in classical nature-inspired algorithms. COA is inspired

by the social lifestyle exhibited by coots. It is an effective and straightforward metaheuristic algorithm

to find near-optimal solutions [4]. Despite the great prosperity of COA, it suffers from a slow

convergence in solving very complex problems [5]. This weakness caused COA to require an

extremely high number of iterations to produce substantially good results, especially on large-scale

complex optimization problems [5,6].

The poor balance of the exploration and exploitation stages significantly contributes to the slow

convergence [6,7]. While exploitation guarantees the refinement of solutions in attractive parts of the

search space, exploration is essential for the global search and to prevent a premature convergence to

the local optima [8]. An imbalance between these two stages can seriously impair the algorithm's

effectiveness, thus resulting in wasted searches and higher processing expenses that ultimately yield

less-than-ideal outcomes [9].

In the literature, scholars have employed a range of corrective measures to enhance the

performance of certain algorithms that have comparable shortcomings [10,11]. A typical example is

the truncation parameter selection technique, which was adopted to improve the general performance

of the Mountain Gazelle Optimizer (MGO) on standard benchmark test functions [12]. To enhance the

overall performance of the Gorilla Troop Optimizer (GTO), A. Bright et al. [13] integrated a step

adaptive simulation concept into the GTO.

In the case of the COA, Aslan et al. [14] proposed a modification by integrating a randomized

mutation technique into the original COA to enhance its global search ability. However, excessive

randomization within algorithms causes significant instabilities. Additionally, R. R. Mostafa et al. [7]

modified COA by introducing an opposition-based learning and an orthogonal-based learning

approach to improve the algorithm’s performance. Moreover, authors in [15] proposed control

randomization and a transition factor-based strategy to enhance the COA. This modification was

geared towards solving the battery parameters estimation problem. Hence, its performance in a variety

of optimization fields was not established.

Similarly, this work seeks to modify the COA to improve its general performance through an

adaptive sigmoid increasing inertia weight in the "Leader Movement" phase [16]. This is a crucial

stage of the COA because it determines how the coots are led by their leader coot on the surface of the

water. This influences the dynamics of the search as a whole [6]. The integrated adaptive weight is

intended to dynamically balance the exploration and exploitation mechanisms throughout the search

process.

To achieve this aim, the exploration is dominant at the early stages of the optimization search

process and then gradually improves the exploitation mechanism in the later stages. Therefore, the

adaptive sigmoid rising inertia weight is designed to begin with a smaller value and gradually increase

[16].

The rest of the paper is organized as follows: the original COA and the proposed modification are

presented in Section 2; the performance of the simulation's outcome is discussed in Section 3; and

lastly, Section 4 concludes the paper by providing a thorough synopsis of the research and suggestions

for potential future studies as recommendations.

95

Applied Computing and Intelligence Volume 4, Issue 1, 93–106.

2. Adaptive sigmoid increasing inertia weight-based modification of COA

This section presents the methodological approach followed in this research, which consists of

the original COA, the proposed modification, and the test implementation.

2.1. The original coot optimization algorithm

The COA mimics the behavior of American coots as they navigate through seas or lakes.

American coots have four distinct movement strategies: random movement, chain formation, moving

toward group leader positions, or leading the group [6]. The initial generation is created randomly

using Eqs (1) and (2):

𝐶𝑜𝑜𝑡𝑃𝑜𝑠(𝑖) = 𝑟𝑎𝑛𝑑(1, 𝑑) × (𝑢𝑏 − 𝑙𝑏) + 𝑙𝑏, (1)

𝑙𝑜𝑏 = [𝑙𝑜𝑏1, 𝑙𝑜𝑏1, … , 𝑙𝑜𝑏𝑑], 𝑢𝑜𝑏 = [𝑢𝑜𝑏1, 𝑢𝑜𝑏2, … , 𝑢𝑜𝑏𝑑], (2)

where CootPos denotes the position of the ith coot, d represents the dimension number, uob and lob

signify the upper and lower boundaries, respectively, and rand denotes a random vector within the

range [0, 1].

Random movement:

If coots exhibit random movement, then they will consequently migrate towards a position

denoted as Q, which can be determined through Eq (3):

𝑄 = 𝑟𝑎𝑛𝑑(1, 𝑑) × (𝑢𝑏 − 𝑙𝑏) + 𝑙𝑏. (3)

To prevent getting trapped in local optimal areas, if coots encounter a failure within a local region,

then they will employ a position as determined through Eq (4):

𝐶𝑜𝑜𝑡𝑃𝑜𝑠(𝑖) = 𝐶𝑜𝑜𝑡𝑃𝑜𝑠(𝑖) + 𝐴 × 𝑅2 × (𝑄 − 𝐶𝑜𝑜𝑡𝑃𝑜𝑠(𝑖)), (4)

where R2 ∈ [0, 1] and A can be calculated using Eq (5):

𝐴 = 1 − 𝐿 × (
1

𝐼𝑡𝑒𝑟
), (5)

where L and Iter represent the current iteration and the maximum number of iterations, respectively.

Chain movement:

To mathematically represent the movement of the chain phase, we address the following equation,

denoted as Eq (6):

𝐶𝑜𝑜𝑡𝑃𝑜𝑠(𝑖) = 0.5 × (𝐶𝑜𝑜𝑡𝑃𝑜𝑠(𝑖 − 1) + 𝐶𝑜𝑜𝑡𝑃𝑜𝑠(𝑖)). (6)

Moving towards group leader:

When adjusting its position according to the leader’s position, the coot’s movement is governed

by the following equation, denoted as Eq (7):

𝐾 = 1 + (𝑖 𝑀𝑂𝐷 𝑁𝐿). (7)

Here, 𝑖 represents the total number of coots, NL represents the number of leaders, and K denotes

a specific leader. The update process utilizes the following equation, referred to as Eq (8):

𝐶𝑜𝑜𝑡𝑃𝑜𝑠(𝑖) = 𝐿𝑒𝑎𝑑𝑒𝑟𝑃𝑜𝑠(𝐾) + 2 × 𝑅1 × cos(2𝑅𝜋) × (𝐿𝑒𝑎𝑑𝑒𝑟𝑃𝑜𝑠(𝐾) − 𝐶𝑜𝑜𝑡𝑃𝑜𝑠(𝑖)). (8)

96

Applied Computing and Intelligence Volume 4, Issue 1, 93–106.

Leading the group by the leader (Leader movement):

Finally, to update their positions, the leaders employ the following Eq (9): to update their

positions.

𝐿𝑒𝑎𝑑𝑒𝑟𝑃𝑜𝑠(𝑖) = {
𝐵 × 𝑅3 × cos(2𝑅𝜋) × (𝑔𝐵𝑒𝑠𝑡 − 𝐿𝑒𝑎𝑑𝑒𝑟𝑃𝑜𝑠(𝑖)) + 𝑔𝐵𝑒𝑠𝑡, 𝑖𝑓 𝑅4 < 0.5,

𝐵 × 𝑅3 × cos(2𝑅𝜋) × (𝑔𝐵𝑒𝑠𝑡 − 𝐿𝑒𝑎𝑑𝑒𝑟𝑃𝑜𝑠(𝑖)) − 𝑔𝐵𝑒𝑠𝑡, 𝑖𝑓 𝑅4 ≥ 0.5,
 (9)

where gBest is the best position, R ∈ [−1, 1], both R3 and R4 ∈ [0, 1], B can be calculated using Eq (10):

𝐵 = 2 − 𝐿 × (
1

𝐼𝑡𝑒𝑟
), (10)

where L represents the current iteration, and Iter represents the maximum number of iterations.

2.2. Proposed modification

The original COA has a great potential of being adopted for applications in various optimization

fields [7]. However, the COA has a slow convergence, which makes it require a lot of iterations to

produce a good optimization result [6]. This drawback is caused by a poor exploration and exploitation

balance to ensure an efficient search.

To remedy this weakness, an adoptive sigmoid increasing inertia weight [16] is incorporated in

the Leader Movement phase. This phase of the original COA is expressed in Eq (9), which indicates

how the leader coots lead the coots’ group to move on the water surface. The proposed weight is

incorporated as shown in Eq (11):

𝐿𝑒𝑎𝑑𝑒𝑟𝑃𝑜𝑠(𝑖) = {
𝐵 × 𝑅3 × cos(2𝑅𝜋) × (𝑔𝐵𝑒𝑠𝑡 − 𝐿𝑒𝑎𝑑𝑒𝑟𝑃𝑜𝑠(𝑖)) + 𝑔𝐵𝑒𝑠𝑡, 𝑖𝑓𝑅4 < 0.5,

𝐵 × 𝑅3 × cos(2𝑅𝜋) × (𝑔𝐵𝑒𝑠𝑡 − 𝐿𝑒𝑎𝑑𝑒𝑟𝑃𝑜𝑠(𝑖)) − 𝜔 × 𝑔𝐵𝑒𝑠𝑡, 𝑖𝑓𝑅4 ≥ 0.5,
(11)

where the value of the weight, 𝜔, is calculated using the sigmoid increasing inertia weight expressed

in Eq (12):

𝜔(𝑖) = 𝜔𝑚𝑖𝑛 +
𝜔𝑚𝑎𝑥−𝜔𝑚𝑖𝑛

1+𝑒
𝑎−𝑏×

𝑖
𝑀𝑎𝑥𝐼𝑡𝑒𝑟

 , (12)

where a and b are parameters for adjustment, which are carefully chosen through numerical

simulations. The weights 𝜔𝑚𝑖𝑛 and 𝜔𝑚𝑎𝑥 represent the minimum and maximum weight values,

respectively, and i and MaxIter represent the current iteration and the maximum number of iterations,

respectively.

Finally, 𝜔(𝑖) represents the adaptive weight value at the ith iteration. The proposed weight is

integrated in Eq (11) when R4 ≥ 0.5 to gain the full benefit of the inertia weight technique while

avoiding its drawback of a possible premature convergence. In algorithms with the inertia weight

techniques, they might converge too quickly to suboptimal solutions, especially when the weight

parameter is not tuned properly. However, they are good at providing an effective and fast convergence

to global solutions when properly implemented. To tap the good qualities of the coot technique, the

developers of the algorithm incorporated the weighting factor when R4 ≥ 0.5. In this contribution, the

eight has been designed to ensure the versatility of the algorithm during each iteration while avoiding

its weaknesses. Depending on the value of R4, Eq (11) is executed with the proposed weight, where

the good qualities can be utilized, or without the weight, where the algorithm can freely search within

97

Applied Computing and Intelligence Volume 4, Issue 1, 93–106.

the space without solely focusing on the temporarily best individual members of the population.

The implementation (pseudocode) of the modified COA (mCOA) is presented as shown in

Algorithm 1:

Algorithm 1. The pseudo-code of mCOA.

Initialize the first coot population randomly using Eqs (1) and (2).

Initialize the parameters of P=0.5, NL (Number of leaders), Ncoot (Number of coots), ωmin ,

ωmax, a, b, and MaxIter (max iteration).

Random selection of coot leaders.

Calculate the fitness of coots and leaders.

Find the best coot or leader as the global optimum (gBest).

While (Iter≤MaxIter)

Calculate A, B, and 𝜔 using Eqs (5), (10), and (12) respectively.

If rand < P

R1, R2, and R3 are random vectors along the dimensions of the problem.

Else

R1, R2, and R3 are random numbers.

End

For i=1 to the number of coots

Calculate K by Eq (7).

If rand > 0.5

Update the positions of the coots by Eq (8)

Else

If rand < 0.5 i ≠1

Update the positions of the coots by Eq (6)

else

Update the positions of the coots by Eq (4)

End-if

End-for

Calculate the fitness of the coot

If the fitness < the fitness of leader(k)

Temp = leader(k); leader(k)=coot; coot=Temp

End

End-????

For the number of leaders

If rand < 0.5

Update the position of the leader by Eq (11.1)

Else

Update the position of the leader by Eq (11.2)

End-if

If the fitness of the leader < gBest

Temp =gBest; gBest=leader; leader=Temp; (update Global optimum)

End-if

End

Iter=Iter+1;

End-while

98

Applied Computing and Intelligence Volume 4, Issue 1, 93–106.

The pseudo-code serves as a guide for the implementation of the proposed mCOA.

3. Simulation test setup on benchmark functions

The proposed mCOA was tested on thirteen commonly used standard benchmark test functions

to establish its performance [17]. The test functions consist of the same functions used in the literature

of the original COA, the details of which can be found in the reference [6]. The algorithm was coded

in the MATLAB software (R2018a), using an HP Pavilion laptop computer with AMD A-8-6410 APU,

an AMD Radeon R5 Graphics processor of a 2.00GHz clock speed, a RAM size of 4.00GB, and a 64-

bit operating system. Table 1 provides detailed information on the benchmark function.

Table 1. Detail information of benchmark functions.

No. Function Search range Global optimum Dimension

1 F1 [-100, 100] 0 30

2 F2 [-10, 10] 0 30

3 F3 [-100, 100] 0 30

4 F4 [-100, 100] 0 30

5 F5 [-30, 30] 0 30

6 F6 [-100, 100] 0 30

7 F7 [-1.28, 1.28] 0 30

8 F8 [-500, 500] -12,569 30

9 F9 [-5.12, 5.12] 0 30

10 F10 [-32, 32] 0 30

11 F11 [-600, 600] 0 30

12 F12 [-50, 50] 0 30

13 F13 [-50, 50] 0 30

The simulation parameter settings used in the simulation experiment are presented in Table 2.

These contain all the parameter settings used in the simulation of the original COA in the literature to

facilitate a fair comparison.

Table 2. Simulation parameters settings.

Parameter Value

Population size 30

a 0.5

B 1.2

𝜔𝑚𝑖𝑛 0.001

𝜔𝑚𝑎𝑥 0.8

Maximum iteration 1000

Number of runs 30

On each test function, the simulation was executed thirty (30) times, and some relevant statistical

indicators were calculated, including the best value (Min), the worst value (Max), the mean value

(Avg), and the standard deviation (Std). This depicts the possible best performance, the worst

performance, the average performance, and the possible deviation when applied to a real-world

optimization problem. Since no algorithm has been deemed globally optimal, relatively better-

performing algorithms were searched for based on these statistical indicators [18].

To establish the efficacy of the proposed mCOA, the simulation results were compared to the

99

Applied Computing and Intelligence Volume 4, Issue 1, 93–106.

original COA and some other state-of-the-art metaheuristic algorithms in [6], namely the genetic

algorithm (GA) and the particle swarm optimization (PSO) algorithm. The comparison of simulation

results on the thirteen (13) test functions are presented in Table 3, where the boldened numbers

represent the best performances.

Table 3. Results comparison on benchmark functions.

Function GA PSO COA mCOA

F1 Min

Max

Avg

Std

1.5245E+00

7.4966E+00

3.6872E+00

1.3063E+00

9.3905E-08

5.0237E-05

2.8706E-06

9.0693E-06

2.8240E-47

4.3670E-23

1.4570E-24

7.9728E-24

3.9156E-165

1.114 E-104

3.7133 E-106

2.0339 E-105

F2 Min

Max

Avg

Std

2.2110E-01

6.5960E-01

4.7510E-01

1.0590E-01

1.1259E-04

1.0800E-02

1.8000E-03

2.4000E-03

4.0984E-24

9.0834E-13

5.6782E-14

1.8801E-22

3.6289 E-86

3.3722 E-51

1.1241 E-52

6.1568 E-52

F3 Min

Max

Avg

Std

2.8924E+03

1.1739E+04

5.1669E+03

2.1462E+03

3.1124E+01

4.5637E+02

1.5501E+02

1.0194E+02

9.1935E-48

8.5873E-22

2.8626E-23

1.5678E-22

1.829E-161

5.1103E-76

1.7034E-77

9.3301E-77

F4 Min

Max

Avg

Std

4.9927E+00

2.1162E+01

9.1426E+00

3.0510E+00

1.0955E+00

6.1639E+00

2.5264E+00

1.0886E+00

9.1191E-25

3.0541E-12

1.4861E-13

6.0000E-13

5.5155E-82

3.8707E -34

1.2902E-35

7.0669E-35

F5 Min

Max

Avg

Std

1.7212E+02

9.0158E+02

4.1400E+02

1.7821E+02

1.6161E+01

1.0518E+02

3.7766E+01

2.4842E+01

2.8344E+01

6.6751E+01

3.1804E+01

7.8738E+00

2.7475E+01

2.8597E+01

2.8173E+01

2.5579E-01

F6 Min

Max

Avg

Std

1.5385E+00

7.5916E+00

3.6049E+00

1.5701E+00

3.8856E-08

9.8496E-06

1.5514E-06

2.4394E-06

4.7900E-02

5.4550E-01

1.9360E-01

1.2700E-01

2.8573E-03

2.1669E-02

7.6979E-03

3.7623E-03

F7 Min

Max

Avg

Std

5.5600E-02

2.0180E-01

1.2240E-01

3.9000E-02

1.0200E-02

5.6100E-02

2.5300E-02

1.0300E-02

3.0816E-04

2.2100E-02

4.4000E-03

4.8000E-03

9.8849E-05

3.7090E-03

1.1750E-03

1.0394E-03

F8 Min

Max

Avg

Std

-1.1491E+04

-1.0316E+04

-1.0872E+04

3.0684E+02

-7.8895E+03

-4.8503E+03

-6.5312E-03

8.0228E+02

-9.2190E+03

-6.3040E+03

-7.5838E+03

7.3974+02

-8.9888E+03

-6.3108E+03

-7.4229E+03

6.1435E+02

F9 Min

Max

Avg

Std

2.8791E+00

1.4370E+01

7.7912E+00

2.8269E+00

9.5516E+01

9.5516E+01

4.8255E+01

1.6229E+01

0.0000E+00

5.0591E-12

1.8948E-13

9.2219E-13

0.0000E+00

0.0000E+00

0.0000E+00

0.0000E+00

Continued on next page

100

Applied Computing and Intelligence Volume 4, Issue 1, 93–106.

Function GA PSO COA mCOA

F10 Min

Max

Avg

Std

3.2410E-01

1.6306E+00

7.3590E-01

3.1770E-01

4.6059E-05

2.8136E+00

1.2718E+00

8.2150E-01

8.8818E-16

1.9263E-08

6.4475E-10

3.5164E-09

8.8818E-16

4.4409E-15

1.2434E-15

1.0840E-15

F11 Min

Max

Avg

Std

9.1080E-01

1.0681E+00

1.0221E+00

3.0900E-02

3.8588E-08

7.0900E-02

1.4800E-02

1.6700E-02

0.0000E+00

6.1950E-14

2.1057E-15

1.1305E-14

0.0000E+00

0.0000E+00

0.0000E+00

0.0000E+00

F12 Min

Max

Avg

Std

2.9000E-03

2.4180E-01

3.1500E-02

4.5400E-02

3.0857E-01

9.3380E-01

1.7650E-01

2.4850E-01

1.2000E-03

1.3627E+00

9.7700E-02

2.8540E-01

5.3217E-05

5.4852E-04

1.4757E-04

1.1308E-04

F13 Min

Max

Avg

Std

7.6300E-02

6.1460E-01

3.0580E-01

1.3670E-01

3.4979E-07

6.2250E-01

3.4600E-02

1.1420E-01

7.0200E-02

2.9777E+00

5.4750E-01

5.7420E-01

4.2545E-03

2.8156E+00

2.3575E-01

5.2133E-01

4. Results

The results presented in Table 2 show the performance of the proposed mCOA compared to GA,

PSO, and COA. It produced improvements for the GA, PSO, and COA on functions F1–F12. In these

test functions, the mCOA produced the least values of the min, max, avg, and std, which indicates a

better performance for minimization optimization problems, and represents ten (10) out of the

thirteen (13) benchmark test functions tested. This represents an average performance of 76.92% on

the test functions. For the cases of F6 and F13, the PSO outperformed the other algorithms, while the

GA outperformed the other algorithms on F13.

The convergence of the two algorithms is presented in Figures 1–13, which indicate the

convergence process from the first iteration to the last iteration. This provides a clearer comparison of

the performances of the two algorithms to effectively justify the superior performance of the mCOA

over the COA.

Figure 1. Convergence characteristics of function F1.

101

Applied Computing and Intelligence Volume 4, Issue 1, 93–106.

Figure 2. Convergence characteristics of function F2.

Figure 3. Convergence characteristics of function F3.

Figure 4. Convergence characteristics of function F4.

102

Applied Computing and Intelligence Volume 4, Issue 1, 93–106.

Figure 5. Convergence characteristics of function F5.

Figure 6. Convergence characteristics of function F6.

Figure 7. Convergence characteristics of function F7.

103

Applied Computing and Intelligence Volume 4, Issue 1, 93–106.

Figure 8. Convergence characteristics of function F8.

Figure 9. Convergence characteristics of function F9.

Figure 10. Convergence characteristics of function F10.

104

Applied Computing and Intelligence Volume 4, Issue 1, 93–106.

Figure 11. Convergence characteristics of function F11.

Figure 12. Convergence characteristics of function F12.

Figure 13. Convergence characteristics of function F13.

105

Applied Computing and Intelligence Volume 4, Issue 1, 93–106.

In F1–F4, F7, F9, and F10, the mCOA has better convergence characteristics than the COA with

a great margin. It starts performing better effectively from the initial iteration to the final iteration, thus

producing a better final optimization value on these benchmark functions. In the cases of F6, F8, and

F11–F13, the mCOA produced a slightly better convergence, on average, than the COA. The two

algorithms, mCOA and COA, produced fast convergences in F5.

5. Conclusions

A modification of the COA was developed to improve its global performance by incorporating

an adaptive sigmoid inertia weight-based technique in the exploration phase. The mCOA was tested

on the same 13 standard benchmark test functions used for the original COA. The simulation outcome

using the MATLAB software was compared to that of the COA, PSO algorithm, and the GA. The

mCOA outperformed the other algorithms on most of the test functions, with a score of 10 out of the 13

functions, while maintaining a competitive performance on the other 3 test functions. Therefore, an

enhanced version of the COA was developed for a better global performance. Based on the exceptional

simulation performance of the mCOA, it is recommended for applications in real-life optimization

problems, especially in the field of engineering without any reservation.

All tests were obtained by Matlab software publicly available in

https://github.com/etwumasi/code_appendix.

Conflict of interest

All authors declare no conflict of interest regarding the publication of this paper.

References

1. V. Soni, A. Sharma, V. Singh, A critical review on nature inspired optimization algorithms, IOP

Conf. Ser.: Mater. Sci. Eng., 1099 (2021), 012055. https://doi.org/10.1088/1757-

899x/1099/1/012055

2. A. F. Seini Yussif, T. Seini, Improved F-parameter mountain gazelle optimizer (IFMGO): a

comparative analysis on engineering design problems, IRJET, 10 (2023), 810–816.

3. N. Khodadadi, E. S. M. El-Kenawy, F. De Caso, A. H. Alharbi, D. S. Khafaga, A. Nanni, The

mountain gazelle optimizer for truss structures optimization, Appl. Comput. Intell., 3 (2023), 116–

144. https://doi.org/10.3934/aci.2023007

4. R. Rani, S. Jain, H. Garg, A review of nature-inspired algorithms on single-objective optimization

problems from 2019 to 2023, Artif. Intell. Rev., 57 (2024), 126. https://doi.org/10.1007/s10462-

024-10747-w

5. P. Agarwal, S. Mehta, Nature-inspired algorithms: state-of-art, problems and prospects,

International Journal of Computer Applications, 100 (2014), 14–21.

https://doi.org/10.5120/17593-8331

6. I. Naruei, F. Keynia, A new optimization method based on COOT bird natural life model, Expert

Syst. Appl., 183 (2021), 115352. https://doi.org/10.1016/j.eswa.2021.115352

7. R. R. Mostafa, A. G. Hussien, M. A. Khan, S. Kadry, F. A. Hashim, Enhanced COOT optimization

algorithm for dimensionality reduction, Proceedings of Fifth International Conference of Women

in Data Science at Prince Sultan University, 2022, 43–48. https://doi.org/10.1109/WiDS-

PSU54548.2022.00020

https://github.com/etwumasi/code_appendix
https://doi.org/10.1088/1757-899x/1099/1/012055
https://doi.org/10.1088/1757-899x/1099/1/012055
https://doi.org/10.3934/aci.2023007
https://doi.org/10.1007/s10462-024-10747-w
https://doi.org/10.1007/s10462-024-10747-w
https://doi.org/10.5120/17593-8331
https://doi.org/10.1016/j.eswa.2021.115352
https://doi.org/10.1109/WiDS-PSU54548.2022.00020
https://doi.org/10.1109/WiDS-PSU54548.2022.00020

106

Applied Computing and Intelligence Volume 4, Issue 1, 93–106.

8. P. K. Mandal, A review of classical methods and nature-inspired algorithms (NIAs) for

optimization problems, Results in Control and Optimization, 13 (2023), 100315.

https://doi.org/10.1016/j.rico.2023.100315

9. M. Jain, V. Saihjpal, N. Singh, S. B. Singh, An overview of variants and advancements of PSO

algorithm, Appl. Sci., 12 (2022), 8392. https://doi.org/10.3390/app12178392

10. A. F. Seini Yussif, E. Twumasi, E. A. Frimpong, Modified mountain gazelle optimizer based on

logistic chaotic mapping and truncation selection, IRJET, 10 (2023), 1769–1776.

11. A. F. Seini Yussif, E. Twumasi, E. A. Frimpong, Performance enhancement of elephant herding

optimization algorithm using modified update operators, Jurnal Nasional Teknik Elektro, 2 (2023),

109–118. https://doi.org/10.25077/jnte.v12n2.1124.2023

12. N. K. Prah II, E. A. Frimpong, E. Twumasi, Modified individual experience mayfly algorithm,

Carpathian Journal of Electrical Engineering, 16 (2022), 62–74.

13. A. Bright, A. K. Emmanuel, T. Elvis, F. A. Emmanuel, Enhanced adaptive simulated based

artificial gorilla troop optimizer for global optimisation, IJEEAS, 6 (2023), 63–76.

14. M. Aslan, İ. Koç, Modified coot bird optimization algorithm for solving community detection

problem in social networks, Neural Comput. Appl., 36 (2024), 5595–5619.

https://doi.org/10.1007/s00521-024-09567-4

15. E. H. Houssein, F. A. Hashim, S. Ferahtia, H. Rezk, Battery parameter identification strategy

based on modified coot optimization algorithm, J. Energy Storage, 46 (2022), 103848.

https://doi.org/10.1016/j.est.2021.103848

16. Z. Chen, Y. Wang, T. H. T. Chan, X. Li, S. Zhao, A particle swarm optimization algorithm with

sigmoid increasing inertia weight for structural damage identification, Appl. Sci., 12 (2022), 3429.

https://doi.org/10.3390/app12073429

17. T. Seini, A. F. S. Yussif, I. M. Katali, Enhancing mountain gazelle optimizer (MGO) with an

improved F-parameter for global optimization, IRJET, 10 (2023), 921–930.

18. N. Moniz, H. Monteiro, No free lunch in imbalanced learning, Knowl.-Based Syst., 227 (2021),

107222. https://doi.org/10.1016/j.knosys.2021.107222

© 2024 the Author(s), licensee AIMS Press. This is an open access

article distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/4.0)

https://doi.org/10.1016/j.rico.2023.100315
https://doi.org/10.3390/app12178392
https://doi.org/10.25077/jnte.v12n2.1124.2023
https://doi.org/10.1007/s00521-024-09567-4
https://doi.org/10.1016/j.est.2021.103848
https://doi.org/10.3390/app12073429
https://doi.org/10.1016/j.knosys.2021.107222

