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Abstract: Clustering accuracy (ACC) is one of the most often used measures in literature to evaluate 

clustering quality. However, the measure is often used without any definition or reference to such a 

definition. In this paper, we identify the origin of the measure. We give a proper definition for the 

measure and provide a simple bug fix which allows it to be used also in the case of a mismatch in the 

number of clusters. We show that the measure belongs to a wider class of set-matching based 

measures. We compare its properties to centroid index (CI) and normalized mutual information 

(NMI). 
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1. Introduction 

Clustering accuracy (ACC) is a frequently used measure in literature to evaluate clustering 

performance despite it is not well-defined anywhere. The definition is seemingly intuitive and 

closely related to classification accuracy used in supervised learning. However, clustering is 

unsupervised learning where ground truth lacks class labels. It is therefore not clear how ACC should 

be calculated. Many papers do not even define the measure or cite its source. If a citation is given, it 

is usually just a citation to another paper also using the same measure. 

In classification, we have class labels so that a unique matching between the predicted and 

ground truth classes can be easily made. Classification accuracy is then simply the percentage of 

correctly classified objects. Measures like precision and recall are also used in binary classification. 

In clustering, however, the cluster label is just an arbitrary number without any correspondence to the 

labels used in the ground truth, see Figure 1. The number of clusters can also differ. 

https://www.aimspress.com/journal/aci
https://dx.doi.org/10.3934/aci.2024003
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In this paper, we review the history of the clustering accuracy measure and discover its origin. 

No single paper to date has defined this measure precisely. Two early papers used a vaguely 

described measure which was most likely inspired by other similar measures born around 2000 [1,2]. 

The clustering accuracy measure started to become popular probably due to its intuitive name and 

publicly available Matlab implementation1. 

In this paper, we provide a precise definition for the measure and demonstrate the effect of its 

main design components. In particular, we show that clustering accuracy is a variant of a wider class 

of set-matching based measures [3]. The clustering accuracy measure itself is valid despite a minor 

issue of not allowing a mismatch or clustering sizes between the detected and ground truth clusters. 

We revise the measure by fixing this minor problem and provide Python software available in 

Github2. We include two variants: a variant that is backward compatible with the existing measure 

(ACC-pair), and another simpler variant (ACC-match) that avoids using the Hungarian algorithm. 

The rest of the paper is organized as follows. Section 2 reviews the existing approaches for 

evaluating clustering performance. The history of the clustering accuracy measure is presented in 

Section 3. A definition for the measure is given in Section 4, and a revised variant in Section 5 with 

pseudo code and time benchmarking results. Conclusions are then drawn in Section 6. 

  

Figure 1. Measures such as precision, recall, and classification accuracy can be trivially 

calculated if we know the class labels. In clustering, this information is missing. 

2. Evaluating clustering performance 

Three common approaches exist for evaluating clustering: 

• Internal evaluation 

• External evaluation 

• Application performance 

Internal evaluation measures how well a given objective function is optimized. The most 

common function for this is sum-of-squared errors (SSE) used by k-means and its variants [4–7]. 

This approach is preferred when the goal is to invent an algorithm with the best possible optimization 

performance. Internal evaluation is also useful when no ground truth exists. 

 
1 http://www.cad.zju.edu.cn/home/dengcai/Data/Clustering.html 
2 https://github.com/uef-machine-learning/ClusterAccuracy 

http://www.cad.zju.edu.cn/home/dengcai/Data/Clustering.html
https://github.com/uef-machine-learning/ClusterAccuracy
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Internal validity indexes can also be used when the number of clusters (k) is unknown and a part 

of the problem. The main advantage of internal indexes is that they allow comparison when the 

number of clusters differs. Measures with reasonably good performance include Silhouette 

coefficient [8], Calinski-Harabasz [9], WB-index [10], and kCE-index [11]. For an implementation of 

these and others, we refer to [12]. In the case of internal evaluation, it would be sensible to use the 

same function also as the objective function in the algorithm. Note that many complex and highly 

heuristic algorithms do not use any explicit objective function. 

External evaluation can be used when we have ground truth clustering for the data. Such 

measures are called external validity indexes. The most common indexes found in the literature are 

adjusted rand index (ARI) [13], normalized mutual information (NMI) [14], and the mysterious 

measure called clustering accuracy (ACC), which belongs to a wider class of set-matching based 

measures [3]. These measures first make a mapping between the detected and ground truth clusters. 

The matched clusters are then compared to find out how many same points they share. The overall 

measure is obtained by summing the total number of shared points. All measures in this class have 

the same general principle and differ only in the design details. 

The third approach is to measure the performance of the application where clustering is used 

merely as a component in a large and complex pattern recognition application. The evaluation is 

done simply by comparing how much better the application performs by changing the clustering 

component. Measures such as classification accuracy and prediction errors can be used here. This 

approach is useful especially when we do not have ground truth, and when it is not clear which 

clustering method or objective function would best fit the application. 

Measuring application-level performance has two major drawbacks. First, the effect of a single 

component (clustering) tends to remain marginal. For example, the exact choice of clustering 

algorithm had only a minor effect on the overall speaker verification performance [15] as long as 

some reasonably good algorithm was chosen. Even the simple k-means (with repeats) performed 

well. Only the poorest clustering algorithm showed inferior results and only in the case of the 

smallest model size (k = 16). 

Second, this measure often leads to a biased comparison because researchers tend to add 

application-specific features to their clustering component. This may lead to a flawed interpretation 

that the improvement was due to better clustering even if the actual improvement was caused by 

adding the application-level enhancement hidden within the clustering. Examples are Olivetti faces 

and Letters datasets, which are thumbnail versions of the face- and character-recognition applications. 

In image data, even a small spatial shift of the pixels can cause major changes that prevent the object 

from clustering correctly. It is also easy to improve the performance simply by utilizing spatial 

correlations via some hidden pre-processing step. Thus, the improvement may be due to 

incorporating application-specific knowledge into the clustering process, and such results would not 

generalize to other types of data. 

3. History of clustering accuracy 

We next summarize the use of clustering accuracy in recent pattern recognition papers based on 

a literature review. We searched on Pattern Recognition3 (PR), Pattern Recognition Letters4 (PRL), 

 
3 https://www.sciencedirect.com/journal/pattern-recognition 
4 https://www.sciencedirect.com/journal/pattern-recognition-letters 

https://www.sciencedirect.com/journal/pattern-recognition
https://www.sciencedirect.com/journal/pattern-recognition-letters


27 
 

Applied Computing and Intelligence                                                                    Volume 4, Issue 1, 24–44. 

 

and IEEE Xplore5 (IEEE) archives using "clustering accuracy" as the keyword. We downloaded the 

papers for further screening and selected those that presented a new clustering method or used 

clustering in some other application. The search was performed in August 2021, and it covered 

papers published during 2021 thus far. The aim was to have a reasonable size sample instead of 

trying to discover all possible clustering-related papers. The final list has 60 papers as summarized in 

Table 1. 

Table 1. Summary of papers using normalized mutual information (NMI), clustering 

accuracy (ACC) and purity. The number of papers citing the source of ACC, or defining 

it, are also shown. 

 Papers NMI ACC Purity 
ACC 

cited 

ACC 

defined 

PR 26 19 18 7 4 5 

IEEE 24 4 5 1 4 3 

PRL 10 4 5 4 1 - 

Total 60 27 26 12 9 8 

3.1. Literature analysis 

The most common themes mentioned in the papers are subspace clustering (10), multi-view, 

ensemble, fusion, or co-clustering (8), spectral clustering (6), time series (3), and non-negative 

matrix factorization (3). Among different algorithms, k-means (7), fuzzy c-means (4), deep learning 

(4), and agglomerative clustering (3) were the most common. Others mentioned include genetic 

algorithm, DBSCAN, Gaussian mixture model, kernel k-means, kernel FCM, multitype, semi-

supervised, feature extraction, motion clustering, gene expression, geo-locations, location points, 

trajectories, video summarization, watershed segmentation, graphs and graph-based. 

Table 1 also summarizes the measures used. The most common are NMI (27), clustering 

accuracy (26), and purity (12). Clustering error was sometimes named and defined as 1 ACC [16,17]. 

Other external indexes used are F measure (10), adjusted Rand index (8), precision (5), Rand index 

(4), and entropy (3). For more detailed documentation of these we refer to [3]. 

Application-specific measures were also commonly used (17), especially in IEEE journals and 

conferences which often had more application-oriented themes. Among these, classification and 

prediction error were the most typical measures used. Internal indexes were occasionally used 

including Silhouette (4), Calinski-Harabasz, Davies-Bouldin, Elbow method, Gap statistics, Hartigan, 

I-nice, and Kappa. 

Among the 26 papers that used clustering accuracy, only nine gave citations, and only eight 

made any attempt to define the measure. IEEE papers are the most precise in this regard, whereas 

only one PRL paper cites any source, and none documented the measure. A typical citation refers to 

another paper (often by the same authors) that uses the same measure. 

Additional citation is sometimes provided to a textbook such as [18], which includes an 

explanation of the Hungarian algorithm by Kuhn and Munkres [19,20]. This is an optimal method for 

the pairing (assignment) problem used in set-matching-based measures to pair the clusters, but this 

does not document the overall measure properly. 

 
5 https://ieeexplore.ieee.org/search/advanced 

https://ieeexplore.ieee.org/search/advanced
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We have provided some examples showing how the clustering accuracy has been cited: 

• “Permutation mapping function that maps the predicted cluster label to the 

equivalent ground truth label”; [21–23]. 

• “Best mapping function that permutes the clustering results to match the 

ground truth labels”; [24]. 

• “Mapping function map that is optimized overall all possible one-to-one 

mappings between the clusters and the ground truth labels”; [25] 

These might be understandable for an expert reader, but many times the papers describe this step 

vaguely as “discover the one-to-one relationship between predicted clusters and real classes” [26], or 

as “we have to match cluster labels first, then use the matched labels to calculate precision by Kuhn-

Munkres” [27]. These leave too much guessing and do not help the reader. 

3.2. Origin of the accuracy measure 

We followed the citations to trace the source of the accuracy measure. The searches most often 

came to a dead end for one of the following reasons: 

• The search ended with another paper using the accuracy measure; usually containing a brief 

definition of the measure [28–33]. 

• The search ended with a paper that uses a completely different measure, such as 

entropy-based [34], adjusted mutual information, adjusted rand index [35], F-measure [36–38], or 

a review paper studying other methods but not clustering accuracy. 

A likely source for many citations is the web page by Deng Cai6, which includes simple Matlab 

code for the measure. The web page refers to two papers, of which one is from 2005 [39]. This paper 

further cites [33] as its source. The paper [33] is the first (among those we found) that has a clear 

description of the measure, including a mapping equation (see Table 2). It also cites the Kuhn-

Munkres algorithm by a book reference [18], which then became a common citation in other papers. 

The paper [33] does not cite any source, but the reference list includes another paper which is 

the likely source: [40]. This paper defines the mapping problem as perfect matching of a complete 

weighted bipartite graph and gives a textbook citation to Kuhn-Munkres [18]. However, a greedy 

algorithm was used in their experiments in [40] instead of the optimal Hungarian algorithm. 

Zha et al. [40] cite Slonim and Tishby [41] as the source for the clustering accuracy measure. It 

is likely the first to describe the measure, since other set-matching based measures were invented 

around the same time: Criterion-H (CH) in 2001 by Meila and Heckerman [2], and Normalized van 

Dongen (NVD) by van Dongen in 2000 [1]. The description in [41] is very brief and difficult to 

understand, but they correctly recognized what many others have ignored: the number of clusters 

must be the same as in the ground truth. We will return to this limitation a bit later. 

The history of the clustering accuracy measure is summarized in Figure 2. After 2005, papers 

mostly cite [39], or more recent papers that use the same measure. 

 

 

 
6 http://www.cad.zju.edu.cn/home/dengcai/Data/Clustering.html 

http://www.cad.zju.edu.cn/home/dengcai/Data/Clustering.html
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Table 2. Definitions of clustering accuracy from existing papers. Similarity refers to the 

measurement of a cluster A and the mapped ground truth cluster G. 

Measure Year Ref. Similarity Mapping 

ACC 2000 Several authors |A ∩ G| Optimal pairing 

NVD 2000 [1] |A ∩ G| Matching (2-ways) 

CH 2001 [2] |A ∩ G| Greedy pairing 

Purity 2011 [42] |A ∩ G| Matching (G®P) 

FM 2012 [43] |A| × SD Matching (G®P) 

CI 2014 [44] 0/1 Matching (2-ways) 

CSI 2014 [44] |A ∩ G| Matching (2-ways) 

CR 2014 [45] 0/1 Greedy pairing 

GCI 2016 [46] 0/1 Matching (2-ways) 

PSI 2016 [3] BB Optimal pairing 

 

Figure 2. History of the clustering accuracy measure. Arrows represent citations. Blue 

means a direct citation, and gray a citation not directly related to clustering accuracy. 

4. Definition of clustering accuracy 

The goal of clustering is to partition n points {xi} into k clusters. The cluster assignment of a 

point xi is denoted as ai[1, k]. The ground truth label of the point is denoted as gi. The clustering 

accuracy measure was first defined formally in [33] as: 

1

𝑛
∙ ∑ 𝛿𝑛

𝑖=1 (𝑔𝑖 , 𝑚𝑎𝑝(𝑎𝑖)),                                                        (1) 

where d is Kronecker delta which gives value 1 when the two parameters are equal (gi=map(ai)) 

and 0 otherwise. In other words, we measure the number of points that are correctly clustered with 

respect to the mapping. This definition itself is valid but insufficient without defining the map 

function. Another slightly different notation for the same has also been presented as: 
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1

𝑛
∙ ∑ 1 ∙𝑛

𝑖=1 {𝑔𝑖 = 𝑚𝑎𝑝(𝑎𝑖)}.                                                    (2) 

The main question is how to map between the cluster labels and the ground truth. This is 

illustrated in Figure 3 (right), where cluster 3 matches perfectly to the ground-truth cluster 2, and the 

best match for the cluster 1 is the ground-truth cluster 1. However, there are O(k!) possible 

mappings, and it is not trivial which one should be selected. 

Clustering accuracy belongs to a wider class of set-matching-based measures [3]. Selecting the 

mapping is one of the three design questions that must be answered: 

• How to map the clusters and the ground truth? 

• How to measure similarity between two clusters? 

• Do we normalize and how? 

The earliest works appeared around 2000, leading to three different measures: normalized van 

Dongen (NVD) [1], Criterion H (CH) [2], and clustering accuracy (ACC), the focus of this paper. 

Other measures in this class include Purity, FM, centroid index (CI, GCI), centroid similarity index 

(CSI), centroid ratio (CR) and pair set index (PSI). Table 2 summarizes the set-matching-based 

measures. 

 

Figure 3. Example of pairing (left) and matching (right). In pairing, every cluster can 

have only one matching cluster in the ground truth, and vice versa. Matching is 

asymmetric and a cluster can be mapped several times. 

4.1. Mapping 

Most papers that use clustering accuracy refer to the mapping as an assignment problem and 

solve it optimally using the Hungarian algorithm, which was originally published by Kuhn [19], and 

later shown to be solvable in polynomial time by Munkres [20]. In the context of clustering accuracy, 

it is usually referred to as Kuhn-Munkres, with a citation to a textbook [18]. 

The methods in Table 2 differ in how they perform the mapping. Only ACC and PSI use the 

optimal pairing method, whereas CH, CR and ACC variant in [40] use greedy pairing instead. In 

fact, it is not even necessary to consider the problem as a pairing problem. NVD and most other 

methods perform nearest-neighbor matching, which allows the same cluster to be matched several 

times. This avoids the problem of having a mismatch in the number of clusters. 

The direction of the matching also matters. It should be performed in both directions, which is 

the case with NVD, CI, CSI, and GCI. Purity and FM perform matching only from the clustering to 
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the ground truth. However, this can provide erroneous results when there are more clusters than in 

the ground truth. For example, purity would provide the maximum score if all clusters were perfect 

subsets of the ground truth, regardless of how many clusters there are. 

4.2. Similarity measure and normalization 

Mapping also requires a similarity measure. The classical measures (NVD, CH) and Purity 

count the total number of shared points in the mapped (or paired) clusters. The literature covering 

ACC does not document how this is done, but the existing implementation follows the above-

mentioned approach. However, this is not the only approach. One could normalize the score by the 

cluster size, which would make the measure invariant to the cluster sizes. 

Normalization by clustering size can be done using any classical-set-matching measure. FM 

uses Sorensen-Dice but only regarding the size of the ground truth clusters. PSI uses Braun-Banquet. 

Surprisingly, the only measure using the well-known Jaccard is GCI. The other measures (CI, CSI, 

and CR) perform the matching by finding the nearest centroid without any point-level calculations. 

This limits their use to centroid-based clustering, whereas GCI [46] uses cluster similarity in the 

matching step to overcome this limitation. 

A similarity measure is also needed in the calculation of the final score, which is usually in the 

range [0,1]. This is done by summing up the total number of shared points (|A ∩ G|) in every cluster 

pair divided by the total number of points (n). FM and PSI sum the normalized similarity scores of 

each cluster. PSI is the only chance-corrected measure which have 0 as the expected value for 

random clustering [3]. 

Cluster-level indexes (CI, CR, GCI) perform a cluster-level measure providing a score in the 

range [0, k] so that value 0 indicates that all clusters are correctly located. Any value higher than 0 

indicates how many wrongly detected clusters. This result is very intuitive and can indicate whether 

the correct clustering was found. Normalization by the number of clusters can be done by dividing as 

CI/k if wanted [3]. 

4.3. Summary 

Most measures work reasonably well in practice. It is difficult to find a research paper where the 

clustering result differs significantly with different measures, such as ACC or NMI. The relative 

performance of the clustering methods remains consistent regardless of the measure used. 

The most challenging condition is reported in [47]. It used a stability-based approach to solve 

the number of clusters. The approach works if all parameters (e.g., sampling rate) are properly set, 

the assumption of having spherical clusters holds, and an accurate clustering algorithm such as 

random swap [5] or genetic algorithm [4] is used (k-means did not work). The choice of clustering 

evaluation measure was shown not to be critical. All point-level measures worked except Rand 

index. 

The result in [47] indicates that the exact choice of the clustering-evaluation measure is not 

critical as long as Rand index is not used. Otherwise, the choice is practical: does the measure 

generalize to all types of data, is there a software package available, and is the measure fast enough? 

Centroid index is a cluster-level measure that gives an intuitive and easy-to-interpret result by 

telling exactly how many of the clusters are incorrect. In specific, CI = 0 explicitly tells that all 
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clusters are roughly at their correct location with respect to the ground truth. Due to this intuitive 

interpretation, we recommend using CI as a cluster-level measure. 

ACC provides a point-level measure with more fine-tuned result where every point contributes. 

However, the result is just a number in scale [0,1] without any clear interpretation. For example, 

ACC = 0.84 is better than ACC = 0.79 but how much better? And what does it mean in practice? 

The precision of ACC becomes important when the measure is used by an algorithm instead of 

given to a human to interpret the result. For instance, the stability-based measure [47] requires a very 

precise measure to detect even small variations between the two clustering results compared. To sum 

up, we recommend CI as cluster-level and ACC as a point-level measure. Although ACC does not 

apply any normalization, there is nothing fundamentally wrong with it because in a point-level 

measure it is expected that all points contribute equally. 

5. Clustering accuracy revisited 

There is no fundamental flaw in the existing clustering accuracy measure. It has only a minor 

issue in that the number of clusters must match the ground truth because of pairing. However, a 

simple patch for this is to add empty clusters to the one (clustering or ground truth) with fewer 

clusters. Figure 4 demonstrates the idea. 

Nearest-neighbor matching does not have this problem. It is also faster than the optimal pairing 

which requires O(k3) time, which can be impractical for a large number of clusters. The Hungarian 

algorithm is also more complex to implement, but this is not an issue for are using an existing 

package. So, which method should we choose? 

  

Figure 4. Example of optimal pairing (left) and nearest-neighbor matching (right). The 

result of pairing is 5/10 = 50%, and the result of matching (5+10)/20 = 75%. Matching 

tends to provide a higher score since it can find a perfect match when mapping from 

solution B to solution A. 

5.1. Pairing versus matching? 

To answer the question, we compare the two variants (ACC-pair, ACC-match) with artificially 

generated data with ten clusters each consisting of 500 points. There is no actual data but only the 

ground truth class labels, see Figure 5. The total size of the dataset is n = 5000. Clustering is then 
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created by making random errors to the cluster labels as detailed in the following. The process is 

adopted from [3]. 

 

Figure 5. Artificially generated n = 5000 data (http://cs.uef.fi/sipu/datasets/) divided into 

k=10 clusters organized from left to right. The top row (0%) corresponds to the ground 

truth. The other rows represent the clustering results generated by swapping random 

points into a wrong cluster. The percentage is the proportion of swapped points. In the 

above (single labels), the points are swapped independently. In the below (ranges), the 

points are swapped in groups of 100. 

In the first experiment, errors are created by changing the cluster label of a randomly chosen 

datapoint to another (randomly chosen) cluster label. The number of errors is a parameter which we 

vary from 0% to 100%. The effect is demonstrated on GCI, NMI and two variants of ACC, one using 

pairing and the other using matching. The results are reported in Figure 6 (left). 

The most important observation is that both ACC variants perform identically. It does not 

matter which variant is used, both NMI and ACC decrease consistently with the increasing error rate. 

The behavior of ACC is linear but does not reach zero. The behavior of NMI is slightly curved but 

reaches zero due to normalization. GCI reacts only for error rates above 90%. This is because the 

location of the clusters remains correct even with high rates of point-level errors. 

The second experiment tries to simulate the type of non-uniform errors that clustering 

algorithms typically commit. We randomly select 100 consecutive points and change all their cluster 

labels to another randomly chosen cluster. Results are reported in Figure 6 (right). 

The results of the second experiment do not differ much from the first. The two variants of ACC 

(pairing and matching) give nearly identical values. There is a slight difference with the higher 

number of errors (randomized %), where matching provides slightly higher scores. The results of 

NMI are less curvy but do not reach zero. GCI reacts earlier due to the errors being grouped and 

some clusters can no longer be correctly detected. 

Figure 7 demonstrates cases when ACC with matching provides a higher score than ACC with 

pairing. In the case of 3-vs-3 clustering, pairing always gives a 50% score, whereas matching 

http://cs.uef.fi/sipu/datasets/
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gives 75% because it allows multiple clusters to map to the same cluster. The same tendency shows 

in the cases of mismatching number of clusters (3-vs-4 and 3-vs-2). Here the pairing variant gives 

a 75% score and the matching variant 87%. 

 

Figure 6. Effect of random errors created for each point independently (single labels), 

and jointly for groups of 100 points (ranges). The number of errors (Randomized %) is 

the parameter to control the error rate. Results are averaged over 20 runs. 

 

Figure 7. Pathological cases when the matching variant provides a higher score than the 

pairing variant. Here two clustering results (red and blue) are compared. Cluster borders 

are shown for the blue. Arrows are shown only for the mapping from red to blue. 
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5.2. Algorithm 

The pseudo code of clustering accuracy is given below with two variants: accuracy with pairing 

(ACC-pair) and accuracy with matching (ACC-match). The first variant is backward-compatible so 

that the result is directly comparable to those reported in literature. The only difference is the minor 

fix so that the number of clusters can be different in the two solutions (kA  kB). This is done by 

adding empty rows or columns to the contingency matrix, whichever is smaller. 

The new variant is recommended for two reasons. First, it avoids the use of the Hungarian 

algorithm completely. Second, it is computationally more efficient. The matching can also be 

performed in cases of different cluster sizes without any modifications. The key idea in the 

implementation is to apply the matching twice, once for each direction. This is implemented by 

switching the order of the partition label parameters (La and Lb) before calling the function second 

time. The final score is the minimum of two matching results. 

The time complexity of the matching variant is O(N). A straightforward implementation of the 

contingency table requires O(max{k2, N}) where k = max{kA, kB}. However, when k2 > N, most 

elements in the contingency table will become zero as it can have at most N non-zero elements. For 

this reason, we use a hash table implementation for the sparse matrix, which speeds up the 

ARGMAX step in the pseudocode from O(k) to O(N/k) and maintains the total time complexity at 

O(N). 

The time complexity of the pairing variant is O(k3). A straightforward implementation of the 

Kuhn-Munkres algorithm would yield to time complexity of O(max{k3, N}). We use the Jonker-

Volgenant variant [48] of the Kuhn-Munkres algorithm, which has the same worst-case time 

complexity, but it works faster for sparse matrices. This helps when k3 > N. We will show in the next 

section that the O(k3) worst case does not necessarily occur, but the actual observed processing times 

closely follow the simulated curve of O(k2). 

ACC-pair(La,Lb,mappingMethod): 

kA = Number of unique labels in La 

kB = Number of unique labels in Lb 

N = length of La and Lb 

contg = ContingencyMatrix(La,Lb,N,kA,kB,"pairing") 

mapAtoB = hungarian(-contg) 

return CountMatches(La,Lb,mapAtoB) 

ACC-match(La,Lb): 

acc1 = MatchOneWay(La,Lb) 

acc2 = MatchOneWay(Lb,La) 

return min(acc1,acc2) 
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MatchOneWay(La,Lb): 

contg = ContingencyMatrix(La,Lb,N,kA,kB,"matching") 

FOR i=1:kA 

  mapAtoB[i] = ARGMAX{contg[i][j]: j=1,...,kB} 

return CountMatches(La,Lb,mapAtoB) 

CountMatches(La,Lb,N,mapAtoB): 

correct=0 

FOR i=1..N 

  IF Lb[i] == mapAtoB[La[i]] 

    correct+=1 

return correct/N 

ContingencyMatrix(La,Lb,N,kA,kB,mappingMethod) 

IF mappingMethod == "pairing" 

  contg = matrixOfZeros(MAX{kA,kB},MAX{kA,kB}) 

ELSE 

  # Sparse matrix implemented using hash tables 

  contg = matrixOfZeros(kA,kB) 

FOR i=1..N 

  # Number of points belonging to both clusters 

  contg[La[i]][Lb[i]] += 1 

5.3. Time benchmark 

We conducted a short benchmark to test the time complexity performance of the two Python 

implementations. We generated random labels for datasets of varying size and number of clusters. 

The dataset size varied from N = 10,000 to N = 50,000; and the number of clusters from k = 100 to k 

= 50,000 (restricting to k < N). We then measured the processing time to calculate ACC. 

The results in Figure 8 show that the processing time for ACC-match increases linearly with 

respect to both the number of clusters, k, and the size of the dataset, N. As the number of clusters is 

always smaller than the size of the data, k < N, the implementation has O(N) time complexity. 

The ACC-pair variant runs much faster than the theoretical O(k3) worst-case time complexity. It 

seems to be very close to O(k2) due to the sparsity of the input matrix. For example, if k = 1,000 and 

N = 10,000, at most 1% of the cells contain non-zero values. We can see also that the size of the 

dataset does not significantly affect the processing time, and that the number of clusters is the 

limiting factor. 

We managed to run the pairing algorithm up to N = 50,000 and k = 46,300. For larger k the 

implementation ran out of memory. However, clustering with values of k this high is rarely 

performed, so we conclude that the ACC-pair is useful for all relevant clustering problems. 
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Figure 8. Run-time benchmarking with varying number of clusters (k) of the ACC-pair 

(left) and ACC-match (right) implementations. The theoretical time complexities are 

shown with red and blue lines. 

6. Conclusions 

We have documented the widely used clustering accuracy measure (ACC) and its development 

history in a literature review. It is a valid measure and belongs to a wider class of set-matching-based 

measures. Compared to normalized mutual information (NMI), ACC decreases linearly with the 

amount of clustering errors but does not reach zero because it lacks normalization. Otherwise, there 

is no significant difference in their performance. 

The popularity of the clustering accuracy is addressed mostly to its appealing name and a 

publicly available Matlab package. We have modified the measure by correcting the inability to deal 

with mismatched numbers of clusters. In addition to the optimal pairing of the Hungarian algorithm, 

we also implemented the nearest-neighbor matching variant. Both variants provide identical values 

or with minor differences in the case of high error rates in certain pathological cases. In our view, 

both variants are useful. The matching variant has lower time complexity and has become the 

preferred choice as it can also work for a very high number of clusters. 
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