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Abstract: Classification using supervised learning requires annotating a large amount of 

classes-balanced data for model training and testing. This has practically limited the scope of 

applications with supervised learning, in particular deep learning. To address the issues associated 

with limited and imbalanced data, this paper introduces a sample-efficient co-supervised learning 

paradigm (SEC-CGAN), in which a conditional generative adversarial network (CGAN) is trained 

alongside the classifier and supplements semantics-conditioned, confidence-aware synthesized 

examples to the annotated data during the training process. In this setting, the CGAN not only serves as 

a co-supervisor but also provides complementary quality examples to aid the classifier training in an 

end-to-end fashion. Experiments demonstrate that the proposed SEC-CGAN outperforms the external 

classifier GAN (EC-GAN) and a baseline ResNet-18 classifier. For the comparison, all classifiers in 

above methods adopt the ResNet-18 architecture as the backbone. Particularly, for the Street View 

House Numbers dataset, using the 5% of training data, a test accuracy of 90.26% is achieved by 

SEC-CGAN as opposed to 88.59% by EC-GAN and 87.17% by the baseline classifier; for the highway 

image dataset, using the 10% of training data, a test accuracy of 98.27% is achieved by SEC-CGAN, 

compared to 97.84% by EC-GAN and 95.52% by the baseline classifier. 

Keywords: image classification; small datasets; data imbalance; co-supervised learning; conditional 

generative adversarial networks 
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1. Introduction 

Modern machine learning methods require a large amount of data for training and testing. In 

supervised learning methods, data annotation is laborious and time-consuming and sometimes requires 

professional judgement. This has practically limited the scope of applications with supervised learning 

algorithms, in particular deep learning. In some cases, the overall quantity of data is adequate, but class 

distribution of the data is imbalanced, where minority classes are rarely observed. For example, in the 

case of classifying weather from highway images, some weather conditions (e.g., foggy and snowy) 

are rare than others (e.g., sunny and cloudy). However, these rare cases often lead to dangerous driving 

situations for motorists, and thus demand a high classification accuracy in the context of road weather 

alert. This nature-inherited data imbalance imposes a learning bias, which is undesirable for 

classifying rare events of severe consequences. This paper aims to improve supervised classification 

tasks for either a small size and/or imbalanced datasets constrained by class distribution. 

For small and imbalanced datasets, researchers usually resort to data augmentation techniques to 

attain better performance. For image data augmentation, the traditional method is label-preserving 

transformations [1], such as rotation, flipping, cropping, and reflection; another method is using 

synthetic data. For the latter, GANs have been used for augmentation in data scarce domains, such as 

medical images [2], where synthetic data is generated and utilized to augment small datasets for 

training classification models, leading to improved classification results. This is due to the fact that the 

traditional augmentation methods do not contribute novel features rather sample from a low-level, 

high-dimensional feature space, while GAN-generated images contain distinctive high-level features 

sampled from a low-dimensional feature space or manifold. However, professional knowledge may 

still be needed to manually screen qualified synthetic data for classification. The screening process can 

be laborious. For synthetic images selection, different sampling methods based on class conditional 

probability, realism conditional probability, or reinforcement learning were studied in [3], which 

showed that class conditional probability produced by a pretrained classifier outperformed the realism 

condition probability and RL-based sampling methods. More recently, Conditional GANs 

(CGANs) [4] have been used for image augmentation. Synthetic images generated by pretrained 

CGAN were utilized to augment real data, resulting in improved classification accuracy for fruit 

quality classification [5]. In addition, research [6] demonstrated that deep conditional generative 

models, including deep CGANs, have the ability to balance the imbalanced data, which lead to better 

classification performance. However, these GAN-based methods rely on synthetic images from 

pretrained GAN models, and the training is not end-to-end. 

There are some existing end-to-end, semi-supervised shared architecture network for 

classification [7‒9]. But sharing a base network by the discriminator and the classifier can be too 

restrictive and likely degrade performance of both. Some efforts have been attempted to disentangle 

the discriminator and classifier networks, such as Triple-GAN [10] and EC-GAN [11]. Nonetheless, 

Triple-GAN focuses more on the discrimination task and does not use synthesized data for 

augmentation for the classification. On the other hand, EC-GAN tackles low-sample classification 

task by combining GANs and semi-supervised learning but does not have control over the semantics 

(labels) of generated images and the sampling distribution. Thus, it does not address the data 

imbalance issue. With the popularity of unsupervised and self-supervised learning methods in recent 

years [12‒14], supervised learning can benefit from using backbones pretrained with these label-free 

methods. Nevertheless, this does not solve the data imbalance problem.  
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In summary, we propose a simple end-to-end paradigm that deals with small and imbalanced 

datasets for supervised classification. The goal is to properly augment small and imbalanced datasets 

with quality synthesized data to improve supervised classification. 

Synthesized samples are commonly produced by generative models that learn the underlying 

distribution of data. Image synthesis models provide a unique opportunity for performing 

semi-supervised learning as these models build a rich prior over natural image statistics that can be 

leveraged by classifiers to improve predictions on datasets for which few labels exist [15]. Generative 

adversarial networks (GANs) [16] is one of the most popular generative modeling frameworks. Since 

its inception, many variants of the GAN have been proposed to improve the quality of generated 

images [17‒22]. 

 We adopt Conditional GANs (CGANs) [4] in the proposed SEC-CGAN paradigm to generate 

synthesized samples with underlying labels that resemble real data. It should be noted that the 

proposed paradigm is generic and can be extended to other types of conditional GANs, such as 

AC-GANs [23] and IcGANs [24]. 

Particularly, we leverage the image-synthesizing capacity of CGANs to address the limitations of 

small or imbalanced datasets for supervised classification tasks. A new learning framework is 

introduced, which consists of a sample-efficient classifier (SEC) learned in a fully supervised fashion 

from both annotated data and synthesized data generated by a CGAN that is trained alongside the 

classifier. We refer to this method as SEC-CGAN and the learning scheme from both annotated data 

and synthesized data as co-supervised learning in this paper. In this setting, the classes (labels) of 

generated images can be controlled, leading to efficient sampling of minority classes. The generated 

images come with labels as well as associated confidences. The latter is used to ensure that the quality 

synthesized samples are used for the classifier training, which is similar to the realism conditional 

probability sampling in [3]. The key difference lies in that the GAN in [3] is pretrained while the 

CGAN in the proposed SEC-CGAN method is trained together with the classifier in an end-to-end 

fashion. Our experiments demonstrate the superiority of the SEC-CGAN over the state-of-the-art 

small-sample method, EC-GAN [11], and a baseline classifier. 

The remainder of this paper is organized as follows. The related works are first reviewed and 

discussed in Section 2. The proposed SEC-CGAN is introduced in Section 3, followed by the 

experiments in Section 4. Conclusions are presented in Section 5. 

2. Related works 

In this section, the existing work pertaining to the scope of this study is discussed. We first 

introduce the background of GANs, followed by CGANs. Then, pseudo-labeling and shared 

architecture, which are current existing end-to-end works that leverage GANs for better classification 

or other tasks, are discussed subsequently. 

2.1. GANs 

GANs are designed to generate images by training two neural networks: a generator G and a 

discriminator D. In this framework, the generator tries to generate samples approximating the implicit 

distribution of real data while the discriminator tries to differentiate the generated data from the real 

data by predicting the likelihood that a generated sample is from the real data. This can be viewed as 
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two networks playing a minmax game. During the training process, the generator is updated to produce 

better images to fool discriminator, while the discriminator improves at differentiating images as real 

or fake. The minmax objective function is defined as: 

 

𝑚𝑖𝑛
𝐺

 max  
𝐷

𝑉(𝐷, 𝐺) = 𝐸𝑥[𝑙𝑜𝑔(𝐷(𝑥))]  + 𝐸𝑧 [𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑧)))]       (1) 

 

where Ex is the expectation over the data, log[D(x)] is the discriminator’s predicted log probability of 

an image being real, and Ez is the expectation over the noise prior 𝑝𝑧. Theoretically, the loss is 

minimized with a value of -log4 when the distribution of G(z) converges to the distribution of the 

data [16], signaling the equilibrium is reached, at which point the generator is creating perfectly 

realistic images and the discriminator has a 50% chance to differentiate the generated one from real 

one. For the proposed method, the deep convolutional GAN (DCGAN) architecture [17] is adopted, 

which is a commonly used GAN architecture for image synthesis. In DCGAN, the generator 

sequentially up-samples the input features using fractionally-strided convolutions, whereas the 

discriminator uses regular convolution to classify the input images. 

2.2. CGANs 

The CGANs [4] are a special class of GANs that incorporate a conditional setting for generator 

and discriminator based on some prior attributes. Examples of conditions are class labels [15, 23, 24], 

text [25, 26], or images including image translation [22, 27] and style transfer [28]. Most CGANs 

apply auxiliary conditional information on both generator and discriminator networks by 

concatenating it to the inputs. Apart from that, the condition information had been included in the 

batch normalization [28]. Similar to GANs, CGANs can also be viewed as a two-player game with the 

following value function: 

𝑚𝑖𝑛
𝐺

 𝑚𝑎𝑥 
𝐷

 𝑉(𝐷, 𝐺)  = 𝐸𝑥∝𝑝𝑑𝑎𝑡𝑎(𝑥)[𝑙𝑜𝑔𝐷(𝑥|𝑦)]  + 𝐸𝑧∝𝑝𝑧(𝑧) [𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑧|𝑦)))]   (2) 

 

where D (x | y) and G (z | y) are the discriminator and generator functions for given label y, respectively. 

V is the value function. E denotes expectation. 

One desirable feature of CGANs is that the generated images already have auxiliary conditional 

information (i.e., labels), which can be leveraged in supervised learning for classification tasks. Patel 

et al. [29] proposed data augmentation with CGANs for automatic modulation classification and 

indicated that CGANs can benefit classification with limited data. In the proposed SEC-CGAN, a 

conditional DCGAN is utilized to generate synthesized images, which are then passed along with their 

labels for supervised classification tasks. We set a confidence threshold for the discriminator to decide 

on the quality of synthesized images for use in classifier training since using poorly generated images 

would hurt the learning of the classifier.  

2.3. Pseudo-Labeling 

Another data augmentation approach is pseudo-labeling. Pseudo-labeling aims to produce 

artificial labels for unlabeled images [30]. In most cases, it pseudo-labels the unlabeled data by 
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learning from the labeled dataset. The model simply chooses the class that has the highest predicted 

probability according to its current state as the ‘label’ for unlabeled data. Pseudo-labeling is similar to 

entropy regularization [31]. 

Recently, Haque [11] applied pseudo-labeling for the fake, unlabeled images generated by the 

GAN models for classification; the method was named EC-GAN. However, the EC-GAN does not 

have control over the semantics (labels) of the generated data and likewise the class distribution of the 

data. This may cause a bias due to the unbalanced data sampling. In contrast with pseudo-labeling, our 

proposed SEC-CGAN controls which classes to generate as well as the quality of the synthesized 

images, leading to efficient sampling of minority classes and high quality of synthesized images. 

2.4. Shared architecture 

Many existing methods using GANs for semi-supervised learning adopted a single network (see 

Figure 1) for classifier and discriminator [7‒9]. There are two main mechanisms to combine GAN with 

a classifier network: one is to consider two different final layers coming from the same network for 

discriminator and classifier, and the other is to consider two separate head networks from the same 

base network with one for discriminating between ‘real’ and ‘fake’ (discriminator) and one for 

predicting class labels (classifier). However, sharing a base network for two different tasks, i.e., 

discrimination and classification, may degrade performance for both tasks [11]. The loss function for 

the shared discriminator model is expressed as: 

 

𝐵𝐶𝐸 (𝐷𝑑 (𝐷(𝐺(𝑧))) , 0)  + 𝐵𝐶𝐸(𝐷𝑑(𝐷(𝑥)), 1)  + 𝐶𝐸(𝐷𝑐(𝐷(𝑥)), 𝑦)        (3) 

 

where x is the real data and y is the corresponding label, z is a randomly generated vector from a prior 

distribution, BCE denotes binary cross-entropy, CE denotes cross-entropy, Dd denotes the 

discriminator head, Dc denotes the classifier head, D denotes the discriminator backbone, and G is the 

generator. In this shared architecture, the discriminator head and classifier head each independently 

update the shared base network parameters along with their own individual final layers. This means 

that the network attempts to minimize two separate losses with the shared backbone parameters, which 

is the primary concern for the performance degradation. 

 

 

Figure 1. Shared discriminator architecture. 
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There have been some other efforts on disentangling the discriminator and classifier by allowing 

the discriminator to have its sole task for discrimination. For example, the Triple GAN method in [10] 

applies a separate classifier network for semi-supervised learning using GANs, resulting in three 

different sub-networks: a generator, a discriminator, and a classifier. The generator generates 

synthesized image-label pairs while the classifier uses pseudo-labelling to label the unlabeled images 

in the training dataset. The discriminator only has the role of identifying fake image-label pairs. 

Similar to the Triple GAN, the proposed SEC-CGAN uses separate discriminator and classifier. 

Instead of pseudo-labeling, our method employs a CGAN as a co-supervisor that controls the class 

distribution and quality of generated samples to enhance the classifier training. 

3. SEC-CGAN 

The SEC-CGAN consists of three networks: a conditional generator, a conditional discriminator, 

and a classifier as Figure 2 depicts, which is different from the traditional shared architecture, where 

the discriminator and classifier shared the same deep convolution architecture and weights [7‒9]. 

 

 

Figure 2. The proposed SEC-CGAN paradigm. 

3.1. Model architecture 

The conditional generator, the conditional discriminator, and the classifier each has its 

independent architecture as depicted in Figure 2. A random vector and a label are fed to the conditional 

generator to generate an image. We use the conditional generator in the conditional DCGAN 

architecture [4], which has an embedding layer, convolutional-transpose layers, batch normalization 

layers, and ReLU activations. For the conditional discriminator, we use an architecture similar to the 

generator, but substitute convolutional-transpose layers with strided convolutional layers and use 

leakyReLU activations. The discriminator uses one-hot vector of the label to indicate the condition for 

the discriminator output. For the classifier network, we use ResNet-18, a classic image classification 

model with proven empirical success [32]. For the classifier training, both the real data and synthesized 

samples are utilized. Specifically, the generator supplements classifier training with synthesized 
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samples along with labels. The quality of synthesized samples is controlled by a confidence threshold 

of the discriminator. This ensures that only the qualified synthesized images are utilized. 

3.2. Training 

At every training iteration, the conditional generator is given random vectors and labels for 

producing synthesized images. The discriminator is then employed to distinguish between real and 

generated samples. Simultaneously, a classifier is trained in a supervised fashion not only on available 

real data-label pairs, but also on qualified synthesized images and their conditional labels. 

To decide whether a synthesized sample is qualified or containing useful information for 

classifier training, the synthesized images and labels are fed to the discriminator and a confidence 

threshold is used to determine the desired quality of the synthesized samples. This means if the 

probability of a synthesized sample to be real is larger than the confidence threshold, the sample is 

qualified for use in training of the classifier. Otherwise, it will be discarded. The role of the 

discriminator is not only to differentiate the fake samples from real ones, but also to serve as a 

‘guardian’ to select high-confidence synthesized samples to enhance the classifier training. In the 

training setting, the newly synthesized images are produced for each minibatch and immediately fed to 

the classifier training if their confidences exceed the predetermined threshold. Weighted batch 

sampling is adopted to balance the class distribution within each batch during training to mitigate the 

data imbalance problem. For every minibatch, the generated synthesized data is balanced before 

feeding to the discriminator to decide whether it can be used for classifier training. It should be noted 

that the weighted batch sampling can be adapted with other suitable sampling methods for different 

tasks, such as [33]. For the SEC-CGAN, the discriminator loss is defined as: 

 

 𝐿𝐷(𝑥, 𝑦, 𝑧) = 𝐵𝐶𝐸[𝐷(𝑥, 𝑦), 1] + 𝐵𝐶𝐸[𝐷(𝐺(𝑧, 𝑦̂), 𝑦̂), 0]         (4) 

  

where BCE denotes binary cross-entropy, D is the discriminator, G is the generator, x is real input, y is 

the real label.  z is a random vector and 𝑦̂ is the label for synthesized image, 𝐺(𝑧, 𝑦̂). The first term is 

the loss of the discriminator on real images. The second term is the loss of the discriminator on 

synthesized images produced by the generator. The generator loss and classifier loss are computed by 

Eq. (5) and Eq. (6), respectively. 

 

 𝐿𝐺(𝑥, 𝑦, 𝑧) = 𝐵𝐶𝐸[𝐷(𝐺(𝑧, 𝑦̂), 𝑦̂), 1]             (5) 

𝐿𝐶(𝑥, 𝑦, 𝑧, 𝑦̂) = 𝐶𝐸[𝐶(𝑥), 𝑦] + 𝜆 ∙ 𝐶𝐸[𝐶(𝐺(𝑧, 𝑦̂)), 𝑦̂ | 𝐷(𝐺(𝑧, 𝑦̂), 𝑦̂) ≥ 𝛽]     (6) 

where λ is a weighting multiplier that controls the relative contribution of generated data to the 

classifier training and β is the confidence threshold that controls the quality of data to be used for 

training. In Eq. (6), the first term is the loss computed from the training of the classifier on the real data. 

The second term is the loss computed from the training of the classifier on the synthesized data 

selected by the discriminator with a confidence being greater than or equal to β. Algorithm 1 

demonstrates the stochastic gradient descent method for training the SEC-CGAN. In the experiment, 

we adopted Adam optimizer [35], which is an adaptive moment method that computes adaptive 

learning rates for different parameters from estimates of first and second moments of the gradients. 

The implementation code is available at https://github.com/SMIL-AI/SEC-CGAN. 

https://github.com/SMIL-AI/SEC-CGAN
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Algorithm 1 SEC-CGAN training 

Input: Minibatch, which includes m real sample pairs (𝑥, 𝑦) and class-balanced k noise and label pairs 

(𝑧, 𝑦̂). 

for number of iterations do 

  Update the parameters for discriminator D on real data (𝑥, 𝑦). 

      𝜃𝑑 ← 𝜃𝑑 + η∇𝜃𝑑

1

𝑚
∑ 𝑙𝑜𝑔(𝐷(𝑥(𝑖), 𝑦(𝑖)))𝑚

𝑖=1                     per the first loss term in Eq. (4) 

  Update the parameters for discriminator D on generated data (𝐺(𝑧, 𝑦̂), 𝑦̂). 

       𝜃𝑑 ← 𝜃𝑑 + η∇𝜃𝑑

1

𝑘
∑ 𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑧(𝑖), 𝑦̂(𝑖)), 𝑦̂(𝑖)))𝑘

𝑖=1       per the second loss term in Eq. (4) 

  Update the parameters for generator G on generated data (𝐺(𝑧, 𝑦̂), 𝑦̂). 

       𝜃𝑔 ← 𝜃𝑔 + η∇𝜃𝑔

1

𝑘
∑ 𝑙𝑜𝑔 (𝐷(𝐺(𝑧(𝑖), 𝑦̂(𝑖)), 𝑦̂(𝑖)))𝑘

𝑖=1            per Eq. (5) 

  Update the parameters for classifier C on real data (𝑥, 𝑦). 

       𝜃𝑐 ← 𝜃𝑐 + η∇𝜃𝑐

1

𝑚
∑ 𝑦(𝑖)𝑙𝑜𝑔(𝐶(𝑥(𝑖)))𝑚

𝑖=1                      per the first loss term in Eq. (6) 

  Collect 𝑘′generated samples that satisfy 𝐷(𝐺(𝑧, 𝑦̂), 𝑦̂) ≥ 𝛽. 

       Update the parameters for classifier C on the qualified 𝑘′ generated sample pairs.  

         𝜃𝑐 ← 𝜃𝑐 + 𝜆η∇𝜃𝑐

1

𝑘′
∑ 𝑦̂(𝑖)𝑙𝑜𝑔(𝐶(𝐺(𝑧(𝑖), 𝑦̂(𝑖))))𝑘′

𝑖=1          per the second loss term in Eq. 

(6)  

end for 

 

4. Experiments 

To demonstrate the effectiveness of the proposed SEC-CGAN, we evaluated it against the 

EC-GAN and a baseline classifier using two datasets. The first one is the public Street View House 

Numbers (SVHN) dataset [34] and the second one is a road weather dataset collected by our team in 

Smart Mobility and Infrastructure Lab at the University of Georgia. We used Adam optimizer [35] for 

training. 

4.1. SVHN dataset 

To test SEC-CGAN’s performance on small sample datasets, we define 5 scenarios of 

incremental training datasets, including randomly sampled 5%, 10%, 15%, 20%, 25% of the original 

training dataset. The models are evaluated using the full test dataset, containing 26,032 images. The 

learning rate for the generator, the discriminator, and the classifier are all set to 2e-4. The multiplier λ 

and threshold β are set to 0.6 and 0.7, respectively. For comparison, we also evaluated two additional 

models: EC-GAN [11] and a baseline ResNet-18 classifier [32]. The EC-GAN is the state-of-the-art 

semi-supervised method for small-sample classification, which uses pseudo labeling method to 

connect the GAN with an external classifier. All classifiers adopt the ResNet-18 architecture. The 

baseline ResNet-18 classifier is trained only with the annotated data. 
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All models are trained with label-preserving data augmentation, including random crop with 

padding 4 and random rotation between -10 and 10 degrees. The batch size is set as 64. For a visual 

comparison, the real images and the generated images by the SEC-CGAN are shown in Figure 3, 

indicating good quality of synthesized images for enhancing classifier training. The test results of all 

models are summarized in Table 1. The SEC-CGAN shows the best performance across the five 

dataset scenarios. When the training dataset is smaller, the SEC-CGAN performs much better than the 

other two models. For the 5% training dataset scenario, the SEC-CCAN shows 1.7% accuracy 

improvement over the EC-GAN, and 3.1% improvement over the baseline classifier. This indicates 

that the synthesized data generated by the SEC-CGAN is beneficial for training the classifier when the 

annotated data is limited.  

Table 1. Classification accuracy with SVHN dataset. 

Training set Baseline Classifier [32] EC-GAN [11] SEC-CGAN (proposed) 

5% 87.2% 88.6% 90.3% 

10% 90.4% 91.6% 91.8% 

15% 91.9% 93.2% 93.6% 

20% 93.0% 93.4% 94.0% 

25% 93.2% 93.4% 94.2% 

 

 

Figure 3. Left: images in the SVHN dataset; Right: synthesized images generated by 

SEC-CGAN; From left to right, images on each column denote class 0 to 9. 

4.2. Highway image dataset 

One of the motivations for this study is to classify different road weather conditions for travel 

alerts. It is well known that the accident risk increases substantially for people travelling under poor 

weather conditions, such as foggy, rainy, and snowy, when both the visibility and pavement surface 

friction are significantly impaired. Thus, accurate weather classification using live images from 

existing traffic cameras would be of practical importance for safety advisory. It helps to lower the 

accident risk by providing timely, location-specific risk warnings to the traveling public. For this 

reason, we trained the SEC-CGAN on a weather classification task with a self-collected highway 

image dataset, which was gathered from four states in the United States as summarized in Table 2. All 
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the data were collected in the form of images from publicly accessible traffic cameras. The dataset 

includes four classes of weather types: foggy, rainy, snowy, and sunny. Examples of road weather 

images are shown in Figure 4. 

Table 2. Sources of highway image dataset. 

Department of Transportation Weather Images 

California  foggy 2,594 

Washington rainy 1,698 

Minnesota snowy 1,348 

Georgia sunny 3,901 

Total  9,541 

 

 

Figure 4. Sample images of road weather conditions. 

For the training of the SEC-CGAN, the learning rate is set to 5e-5 for the discriminator and 2e-4 

for the generator. In the parameters tuning trials, we found that a lower learning rate for the 

discriminator helps to prevent the collapse of conditional DCGAN. For data augmentation, a random 

horizon flip method is used. Since the collected images are in varied sizes, they are resized to 

128 x 128 with a batch size of 64. Same as the training with SVHN dataset, the multiplier λ is set to 0.6, 

and the threshold β is set to 0.7.  

Four train/test split scenarios are evaluated: 0.1/0.9, 0.2/0.8, 0.3/0.7, 0.4/0.6. The results are 

summarized in Table 3. 

Table 3. Classification accuracy with highway image dataset. 

Dataset split 

(train/test) 
Baseline Classifier [32] EC-GAN [11] SEC-CGAN (proposed) 

0.1/0.9 95.5% 97.8% 98.3% 

0.2/0.8 96.1% 97.3% 98.8% 

0.3/0.7 95.6% 98.8% 99.3% 

0.4/0.6 96.8% 99.4% 99.6% 
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As shown in Table 3, with the 10% training dataset, the SEC-CGAN can reach 98.3% 

classification accuracy. The proposed SEC-CGAN outperforms the EC-GAN and baseline classifier in 

all four scenarios, evidencing the effectivity of the SEC-CGAN paradigm. The better performance of 

the SEC-CGAN and the EC-GAN over the baseline classifier attests to the benefit of using 

GAN-synthesized data in the classifier training. 

For visualization purposes, exemplar synthesized images produced by the SEC-CGAN are shown 

in Figure 5. In each grid of 4 by 4, from left to right, they are synthesized images of foggy, rainy, 

snowy, and sunny weather conditions, respectively. It is clear that the synthesized images by the 

SEC-CGAN capture salient weather semantics that enhance classifier training and lead to improved 

classification performance.  

 

Figure 5. Three examples of synthesized images from the proposed SEC-CGAN. For each 

grid, the columns from left-to-right are: foggy, rainy, snowy, sunny. 

5. Conclusions 

In this paper, we introduce a SEC-CGAN method that employs a co-supervised paradigm and 

exploits the generative power of a CGAN to improve classification accuracy for small and imbalanced 

datasets. Particularly, the SEC-CGAN uses an independent classifier for the classification task while 

leveraging a conditional DCGAN to provide semantics-conditioned, confidence-aware synthesized 

examples. In this setting, the conditional DCGAN serves as a co-supervisor that controls which classes 

to generate and selects qualified synthesized images by their confidence scores. This leads to efficient 

sampling of minority classes and high quality of synthesized images for improving classifier training. 

Our experiments demonstrated that the SEC-CGAN is sample-efficient and outperforms EC-GAN, the 

state-of-the-art semi-supervised method for small-sample classification.  

In summary, the practical benefit of the SEC-CGAN is two-fold: (1) generating distinct images to 

supplement small datasets along the classifier training process, in which a quality control for 

synthesized data is naturally embedded with the discriminator of conditional GAN (CGAN), and (2) 

creating more balanced class distribution through efficient sampling of minority classes during model 

training by delicately exploiting CGAN’s inherent structure with labels. The former addresses the 

limitation of small datasets while the latter alleviates the issue of data imbalance, which is common in 

real-world settings. 

In addition, the proposed SEC-CGAN paradigm is generic, end-to-end, flexible, and effective, 

and can be applied to various classification tasks across domains. For our experiments, the deep 
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convolutional conditional GAN and ResNet-18 backbone are used in the proposed SEC-CGAN 

paradigm. Other network architectures can be used to suit task-specific applications for desirable 

performance. 
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