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Abstract: When planning the development of future energy resources, electrical infrastructure, 

transportation networks, agriculture, and many other societally significant systems, policy makers 

require accurate and high-resolution data reflecting different climate scenarios. There is widely 

documented evidence that perceptual loss can be used to generate perceptually realistic results when 

mapping low-resolution inputs to high-resolution outputs, but its application is limited to images at 

present. In this paper, we study the perceptual loss when increasing the resolution of raw 

precipitation data by ×4 and ×8 under training modes of CNN and GAN. We examine the 

difference in the perceptual loss calculated by using different layers of feature maps and demonstrate 

how low- and mid-level feature maps can yield comparable results to pixel-wise loss. In particular, 

from both qualitative and quantitative points of view, Conv2_1 and Conv3_1 are the best 

compromises between obtaining detailed information and maintaining the overall error in our case. 

We propose a new approach to benefit from perceptual loss while considering the characteristics of 

climate data. We show that in comparison to calculating perceptual loss directly for the entire sample, 

our proposed approach can obtain detailed information of extreme events regions while reducing 

error. 
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1. Introduction 

A wide range of research areas can benefit from climatology data on a variety of spatial and 

temporal scales [1,2]. For example, in terms of temporal scales, short-term precipitation data can be 

used for flood forecasting, and long-term precipitation patterns can be utilized for urban planning 

and policy development. For spatial scales, it is possible to understand the characteristics of 
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temperature distribution on a global scale from large-scale temperature data, whereas small-scale 

solar data can provide information on the pattern of solar energy resource distribution at the regional 

level [3]. Analyzing small-scale climate data is particularly challenging since the data needs to be at 

a high resolution. Global climate model (GCM) is one of the most commonly used sources of climate 

data in current studies [4], from which climate data is provided at a coarse spatial scale. Additionally, 

because scale-specific physics, computational resources, and time frames are customized into 

numerical models for each application, simulating all desired scales is generally intractable. 

There are various types of interpolation methods available for the generation of high-resolution 

(HR) climate data from corresponding low-resolution (LR) data, but interpolation tends to smooth 

out the resulting high-resolution data, which removes texture and sharp edge information on small 

scales [5]. For this, recently interest in applying deep learning models, which originally were 

developed for computer vision, to generate high-resolution climate data has increased. Two examples 

of such models are super-resolution convolutional neural network (SRCNN) [6] and super-resolution 

generative adversarial network (SRGAN) [7]. While many studies have demonstrated superior 

performances by SRCNN and SRGAN to solve climate-related problems [8–10], recent 

developments in deep neural networks suggest new thinking and a huge potential in climate research. 

However, despite their impressive results, the loss function in such networks is pixel-wise where the 

mean squared error (MSE) is used to measure the difference between a network output and the 

ground truth . One disadvantage of pixel-wise loss functions is that they lead to blurry and 

over-smoothed HR data by forcing the model to generate a result which is the average of all plausible 

solutions [11]. When an algorithm tries to minimize per pixel MSE, it overlooks subtle textures 

crucial to human perception. 

In comparing two images, human vision does not compare pixels by pixels, but rather extracts 

and compares features. Inspired by this idea, more recently, perceptual loss functions have shown 

significant improvements in computer vision for dealing with HR image data [7,12,13]. Pixel-wise 

loss is calculated by directly comparing the high-resolution results generated by the model with the 

true values. In contrast to per-pixel loss functions, perceptual loss calculates the loss between the 

simulated and true values in the feature space, which are extracted by using pre-trained feature 

extractors such as very deep convolutional networks, for example, VGGs [14]. A pre-trained feature 

extractor is the basis of perceptual loss. In the early layers of the network, each neuron is connected 

to a smaller receptive field resulting in the extraction of predominantly low-level spatial information, 

which is primarily the detailed information of the input. As the network goes deeper, the receptive 

field gradually increases, and the information extracted in the deeper layer changes from low-level 

spatial information to global semantic information, while fine-grained spatial details are discarded 

[15,16]. By comparing model results with high-level information of ground truth, such as content 

and global structure, perceptual loss model results and ground truth are perceptually close. As a 

result, the problem of over-smoothing caused by per-pixel loss functions is resolved. 

The idea of perceptual loss has been applied not only to image problems, but also to solve audio 

pattern representation [17]. In terms of generating high-resolution climate data, the application of a 

perceptual loss function is, however, limited. Climate data are typically presented as raster type of 

data, with each raster representing the average value of a particular climate variable within the raster. 

Since feature extractors used in perceptual loss are usually trained with natural images, it is unknown 

whether they are suitable for extracting features from raster type of climate data [8]. The deep layer 
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of the neural network in pre-trained feature extractors contains all the semantic information in the 

input [18]. This may not be reliable for climate data. However, recent studies have demonstrated that 

pretrained models have more extraction power based on the network structure than on the trained 

weights. A multilayer CNN may be used to capture the dependencies between statistics of variables 

at multiple levels without the need for any learning [19]. Due to this insight, the limitation of 

pre-training and specific network structures (typically VGG), for which perceptual loss has been 

used, is weakened, thereby allowing a broader range of applications to be analyzed. 

Perceptual loss, especially VGGs-based perceptual loss, has been widely demonstrated in 

computer vision research to produce more realistic results compared to per-pixel loss, especially in 

solving image smoothing issues. However, the application of perceptual loss is currently limited to 

the image domain, and to our knowledge there are no relevant studies to verify the performance of 

perceptual loss for raster types of climate data. To fill this gap, in this study, we investigate whether 

perceptual loss which is trained on natural images using a pre-trained feature extractor could be used 

to generate high-resolution climate data. For this, we first verify the impact of using different layers 

of feature maps to calculate perceptual loss in generating high-resolution climate data and investigate 

its performance in CNN and GAN both qualitatively and quantitatively. According to the results of 

the study, low- and medium-level feature maps can provide comparable results compared to per-pixel 

loss with greater detailed information and relatively larger root mean square error (RMSE). Based on 

the understanding of the results from different levels of feature maps, we propose a new method to 

benefit from the traditional perceptual loss. Using the proposed method, we demonstrate that it can 

obtain good detailed information while losing less general accuracy than calculating perceptual loss 

directly for the whole sample. 

The structure of the paper is as follows: Section 2 introduces some related works about 

generating HR climate data and perceptual loss. Section 3 presents the methodology, and section 4 

presents the experimental setup. Section 5 describes the results. The paper concludes with a 

discussion in Section 6 and concluding remarks in Section 7. 

2. Related works 

In this section, we review relevant approaches that are used to generate HR climate data and 

perceptual loss in image related studies. 

Climate data are downscaled by means of dynamical and statistical approaches to mitigate the 

lack of spatial resolution. The process of dynamic downscaling, also called regional climate models 

(RCMs), is driven by low-resolution data with large-scale data as boundary conditions and result in 

high-resolution data with small-scale climate projections. Dynamic downscaling is not transferable 

across regions and is computationally demanding. On the contrary, statistical downscaling obtains 

HR climate data by establishing a statistical relationship between HR and LR pairs. In past studies, 

linear regression models [20], support vector machines [21], and random forests [22] have been 

applied to establish statistical relationships between HR and LR data. Considering that climate data 

and images are both in raster form, statistical downscaling is similar to image super-resolution issues. 

It is becoming increasingly common to use models designed to handle super-resolution image in 

order to generate high-resolution climate data. For example, super-resolution CNN (SRCNN) was 

the first deep learning model to be applied to generate high-resolution climate data [23]. [10] also 

proposed a deep CNN, which successfully improved the resolution of precipitation data by a factor 

of 5. By referencing the residual dense block (RDB) to the super-resolution network, [24] was able to 
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improve the performance of the HR data generated. In these works, the models were optimized by 

using pixel-wise loss functions. Adversarial training has also been applied in some studies. For 

example, [25] studied to determine whether Wasserstein generative adversarial networks (WGANs) 

could generate realistic weather conditions when trained by climate data of a general circulation 

model (GCM). The result of super-resolution generative adversarial network (SRGAN) showed an 

increase in resolution of climate data by a factor of 50 [8]. 

To generate realistic HR images, perceptual loss has been proposed as a solution to the problem 

of over-smoothing and lack of details in HR images based on the idea of perceptual similarity 

[7,12,26]. Perceptual loss, as opposed to pixel-wise loss, focuses on comparing the output with the 

ground truth in the feature domain, which is extracted by pre-trained networks such as VGG16 and 

VGG19 as commonly used pre-trained models [12,14]. Typically, perceptual loss is specified as the 

loss of one or several specific feature layers in a VGG network, and the loss depends on the 

application [27]. Visualizations of deep CNNs indicate that convolutional features at different levels 

provide different perspectives on objects and their surroundings [28]. For example, ReLU5_4 is 

chosen as a high-level feature layer in [7] and [29], while ReLU2_2 is selected as low-level feature 

layer in [30]. Instead of relying on one or multiple identified layers, some studies calculate the 

perceptual loss based on all feature layers [27]. A number of other studies divide the target image 

into several parts and calculate the loss of each part by using different feature layers [13,31] . 

Perceptual loss has also been applied to studies related to remote sensing images[32,33].  

3. Methodology 

3.1. Structure of SRGAN 

We require neural networks for this work in order to transform low-resolution climate data into 

high-resolution climate data. In light of the fact that previous studies have demonstrated that 

adversarial loss can lead to improved results when applied to high-resolution climate data [8], we 

compare pixel-wise loss and perpetual loss by using the SRGAN and validate the proposed 

climatological binary perceptual loss (using a mask of 1 and 0). SRGAN follows the same structure 

as [7] where the networks are deep and fully convolutional neural networks with 16 residual blocks 

and skip connections. All convolutional kernels are 3 × 3 and are followed by rectified linear unit 

activation functions. In contrast to the three-layer RGB channel of image data, as we only have one 

channel of climate input data, the input to the model is modified to one channel. The network 

consists of two parts: 1) a generator G and 2) a discriminator D. Generator G converts LR input into 

HR output. Discriminator D attempts to distinguish between real and fake HR output. Learning 

between the two networks forces G to produce more realistic HR output, whereas D is able to 

distinguish between real and generated HR data more accurately. In the discriminator network, the 

loss function is defined as follows: 

ℒ𝑑𝑖𝑠 =  − 𝑙𝑜𝑔 𝐷 𝑌𝐻𝑅  − log(𝐷(𝐺(𝑋𝐿𝑅)))                           (1) 

where 𝑋𝐿𝑅is the LR input data and 𝑌𝐻𝑅 is the HR target. Generator's loss function consists of two 

main components: 

ℒ𝑔𝑒𝑛 =  𝛼 ∙ ℒ𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙  𝑌𝐻𝑅 , 𝑋𝐿𝑅 + ℒ𝑐𝑜𝑛𝑡𝑒𝑛𝑡  𝑌𝐻𝑅 , 𝑋𝐿𝑅                  (2) 

where 𝛼 is a weight. The adversarial loss can be calculated as follow: 



156 

 

Applied Computing and Intelligence  Volume 2, Issue 2, 152–172 

ℒ𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙  𝑌𝐻𝑅 , 𝑋𝐿𝑅 =  −log((𝐷 𝐺 𝑋𝐿𝑅  )                     (3) 

This adversarial loss captures how effective the generator network is at fooling the discriminator. 

By comparing the generated data with the actual HR data, the content loss ℒ𝑐𝑜𝑛𝑡𝑒𝑛𝑡  is effectively 

conditioning the output of the generator network and we calculate it in the following three forms: 

ℒ𝑀𝑆𝐸 , ℒ𝑉𝐺𝐺 , and ℒ𝐶𝑇𝑃𝐿 . 

3.2. Content loss 

3.2.1. Pixel-wise loss 

The mean squared error (MSE) is used in this study to calculate the pixel-wise loss. This is 

currently the most widely used optimization target in generating high-resolution climate data. The 

pixel-wise MSE loss is calculated as follows: 

ℒ𝑀𝑆𝐸 =  
1

𝑊×𝐻
  (𝑌𝐻𝑅 𝑥,𝑦 − 𝐺 𝑋𝐿𝑅  𝑥,𝑦 )

2𝐻
𝑦=1

𝑊
𝑥=1                    (4) 

where 𝑊 and 𝐻 are the width and height of 𝑌𝐻𝑅 . Pixel-wise loss calculates the distance between 

𝑌𝐻𝑅  and 𝐺(𝑋𝐿𝑅) in the data field. With the MSE loss, the network attempts to find pixel-wise 

averages of plausible solutions, resulting in poor perceptual qualities and a lack of high-frequency 

details. 

3.2.2. Perceptual loss 

Instead of comparing 𝑌𝐻𝑅  and 𝐺(𝑋𝐿𝑅) directly from the data field, perceptual loss aims to 

compare 𝑙2 distance (Euclidean Distance) between the two in the feature domain. In this study, the 

feature domain is constructed by using the VGG19 network. VGG19 consists of 19 hidden layers, 

including 16 convolutional layers and 3 fully connected layers. As mentioned earlier, early layers can 

return low-level detailed spatial information, such as edges and speckles. Deeper layers of the 

network can return mid-level information, such as texture, and the final layers can return high-level 

features, which are indicative of global semantic understanding. The perceptual loss is calculated as 

follows: 

ℒ𝑉𝐺𝐺 =  
1

𝑊𝑖,𝑗 ×𝐻𝑖,𝑗
  (𝜙𝑖,𝑗 (𝑌𝐻𝑅 𝑥,𝑦 ) − 𝜙𝑖,𝑗 (𝐺 𝑋𝐿𝑅  𝑥,𝑦 ))2𝐻𝑖,𝑗

𝑦=1

𝑊𝑖,𝑗

𝑥=1                (5) 

where 𝜙𝑖,𝑗  indicates the feature map obtained by the 𝑗𝑡ℎ  convolution (before activation) within the 

VGG19 network prior to the 𝑖𝑡ℎ  max pooling layer. Within the VGG network, 𝑊𝑖,𝑗  and 𝐻𝑖,𝑗  

describe the dimensions of the corresponding feature maps. In order to investigate the effect of 

different levels of information, i.e., different depths of feature maps on the result, perceptual loss is 

calculated by using the feature maps obtained by conv1_1, conv2_1, conv3_1, conv4_1, and 

conv5_1, respectively. 

3.2.3. Climatological targeted perceptual loss 

Perceptual loss is computed by selecting different depths of feature maps. In image-related 

studies, most studies choose one single-layer feature maps to calculate the perceptual loss of the 

whole image. Application of this technique to an entire image without considering semantic 
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information limits its utility. Calculation of the perceptual loss of the whole image by a low-level 

feature map may cause the network to give unnecessary penalties for medium-level information, 

such as texture, resulting in a loss of informative features. In contrast, by using high-level feature 

maps to calculate perceptual loss, the model may lose some fine-grained spatial details, such as sharp 

edges. In contrast to images, samples of climate data often contain limited information. In the case of 

the precipitation data used in this paper, most regions in the sample have no precipitation values or 

relatively small precipitation values, which means that most regional grid values remain stable and 

do not show a gradient. Only a few areas in the sample receive a significant amount of precipitation, 

and these areas have a gradient. It is possible for the network to add useless information to those 

stable regions if the perceptual loss is calculated for the entire sample. In addition, these stable 

regions may have an impact on the feature map of regions with precipitation. On this basis, our 

climatological binary perceptual loss is calculated as follows: 

ℒ𝐶𝑇𝑃𝐿 = ℒ𝑀𝑆𝐸(𝑌𝐻𝑅 , 𝑋𝐿𝑅) + ℒ𝑉𝐺𝐺(𝑌𝐻𝑅 ∘  𝑀𝑇 , 𝑋𝐿𝑅 ∘  𝑀𝑇)                 (6) 

where ∘ denotes element-wise multiplication. 

 

Step 1. The first step is to calculate the MSE for the entire sample in order to ensure that the 

generated HR results and the ground truth remain similar. 

ℒ𝑀𝑆𝐸 𝑌𝐻𝑅 , 𝑋𝐿𝑅 =  
1

𝑊×𝐻
  (𝑌𝐻𝑅 𝑥,𝑦 − 𝐺 𝑋𝐿𝑅  𝑥,𝑦 )

2𝐻
𝑦=1

𝑊
𝑥=1                (7) 

Step 2. A certain sample of climate data usually has stable values across larger areas without gradient 

variation. As an example, in the precipitation data used in the paper, most regions in the sample have 

0 or very low values of precipitation. Calculating the perceptual loss for these regions may insert 

details into the generated HR that do not match the actual situation, which increases the error. 

Meanwhile, using perceived loss for those regions with higher precipitation helps to include more 

details in the generated HR. There is a general requirement for different loss functions in different 

regions. In this step, a mask 𝑀1 is generated to which the target region corresponds a raster value of 

1 and the other regions correspond to a raster value of 0. The target region can be defined as one of 

the following three scenarios: 1) a threshold lower limit, the region in the original sample that is 

larger than this value is the target region; 2) a threshold upper limit, the region in the original sample 

that is smaller than this value is the target region; 3) a threshold interval, the region in the original 

sample that is within this interval is the target region. In our experiment, most areas in the sample 

have relatively small precipitation, and only a limited number of areas have large precipitation. 

Therefore, 𝑀1 represents scenario 1 in the experiment, with a threshold of 75
th

 percentile for 

precipitation values in each sample. 

Step 3. In the third step, we first multiply the ground truth and the generated HR data with mask 

separately using element-wise multiplication. After multiplication only the target region retains the 

corresponding value in the obtained result, while the other regions have the value of zero. Then the 

ground truth and the generated HR data after multiplication are used as input to calculate the 

perceptual loss. As the same mask is used on both the ground truth and the generated HR data, the 

feature distance only reflects the difference between target regions. VGG has three input channels, as 

the ground truth and the generated HR data are duplicated in three layers as inputs for perceptual 

loss. 
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ℒ𝐶𝐵𝑃𝐿 =  
1

𝑊𝑖,𝑗 ×𝐻𝑖,𝑗
  (𝜙𝑖,𝑗 (𝑌𝐻𝑅 𝑥,𝑦 ∘  𝑀1) − 𝜙𝑖,𝑗 (𝐺 𝑋𝐿𝑅  𝑥,𝑦 ∘  𝑀1))2𝐻𝑖,𝑗

𝑦=1

𝑊𝑖,𝑗

𝑥=1         (8) 

4. Experimental setup 

In this work, we first study the effect of perceptual loss on the generation of high-resolution 

climate data by using Global Precipitation Measurement (GPM) data. GPM is an international 

network of satellites in collaboration with the National Aeronautics and Space Administration 

(NASA) and the Japan Aerospace Exploration Agency (JAXA), which provides the next generation 

of global observations of precipitation and snow [34,35]. GPM can provide precipitation data with a 

maximum resolution of 0.1° and has different versions, and in this study we used GPM_3IMERGDF, 

which is daily precipitation data that combines microwave-IR estimates with gauge calibration. We 

chose three patches (106.96°W-126.95°W,25.05°N-45.05°N; 86.85°W-106.85°W,25.05°N-45.05°N; 

66.75°W-86.75°W,25.05°N-45.05°N).  

Figure 1 shows the location of each patch. Each patch has daily precipitation data from 

06/01/2000 to 08/31/2021, with a total of 7756 samples. This provides us with a total of 23268 

samples with a dimension of 200 × 200. Since ground truth is required when we evaluate different 

models, we consider the raw resolution of GPM precipitation data as our HR data and ground truth. 

We study the results of perceptual loss with improved resolution of ×4 and × 8, where we 

downsample the raw GPM data by a factor of 4 and 8, respectively, using an average sample pooling 

of 4 × 4 rasters and 8 × 8 rasters. The coarsened 0.4° × 0.4° resolution data (50 × 50) and 0.8° × 0.8° 

resolution data (50 × 50) are used as the LR input for all the experiments; 10% of the training 

examples are held out for testing in each case. 

 

 
 

Figure 1. Location of data sources. 
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Daily precipitation dataset, by the GFDL-ESM4 model from Coupled Model Intercomparison 

Project (CMIP6), was obtained to verify the results of the proposed method applied to GCM 

data [36]. We used daily precipitation starting from January 2022 to January 2023 with a spatial 

resolution of 1° latitude ×1.25° longitude under the scenario of SSP1-2.6. For the purpose of 

minimizing distortion near the poles, we only use data from latitudes ±60°. For validation, we used 

the RMSE and Pearson’s correlation to evaluate the overall quantitative performance of the model. 

For training, we first trained the generator network alone for 1000 loops. This step, on the one 

hand, enabled the generator to learn the mapping relationship from LR to HR roughly before 

adversarial learning, which is a warm-up process before adversarial learning and helps to improve 

the results of GANs. In addition, the loss function of this process did not include adversarial loss, and 

we were able to compare the difference between pixel-wise loss and perceptual loss in the CNN 

training process. After the warm-up of the generator network iwas completed, we continued the 

training of GANs. The generator and discriminator were trained sequentially with 500 loops with 

0.001 as the value of 𝛼. The loss functions used in each network are summarized in Table 1. 

Table 1. Summary of all trained networks and their loss functions. 

Network Loss 

𝑷𝒓𝒆𝒕𝒓𝒂𝒊𝒏𝒆𝒅 𝑪𝑵𝑵𝑴𝑺𝑬 ℒ𝑀𝑆𝐸  

𝑮𝑨𝑵𝒔𝑴𝑺𝑬 ℒ𝑀𝑆𝐸 + ℒ𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙  

𝑷𝒓𝒆𝒕𝒓𝒂𝒊𝒏𝒆𝒅 𝑪𝑵𝑵# ℒ𝑉𝐺𝐺  using 𝑐𝑜𝑛𝑣#_1 feature map 

𝑮𝑨𝑵𝒔# ℒ𝑉𝐺𝐺  using 𝑐𝑜𝑛𝑣#_1 feature map + ℒ𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙  

5. Results 

5.1. VGG19 feature extractor 

Given that the VGG19 network is trained on natural images, its performance on climate features 

extracted from other raster types is unknown. For comparison, the feature maps obtained by VGG19 

are shown in Figure 2 along with the feature maps obtained by one natural image in corresponding 

layers. It is difficult to conduct a quantitative analysis of these feature maps, however, we can see 

that, similar to the results on natural images, conv1_1 pays more attention to detailed climate 

information, such as boundaries and edges. As the layers deepen, the information presented by the 

feature maps becomes more and more abstract, implying that the deeper layers pay attention to the 

global semantic information. Additionally, we find that the average percentage of neurons that are 

activated in each layer is similar in both climate data and natural images. As an example, the 

activation percentages for conv1_1 are 64% and 59%, respectively; these percentages are 23% and 

26% for conv5_1. The VGG network is therefore considered to be a reliable feature extractor for 

climate data. 
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Figure 2. Representative feature maps for natural image sample and climate data sample. 

5.2. Impact of different layers on perceptual loss 

We used various layers of feature maps to calculate the perceptual loss and examined the effect 

of different levels of information on the resulting HR climate data. Quantitative results are 

summarized in Table 2 and Table 3. As can be seen, the RMSE of 𝑃𝑟𝑒𝑡𝑟𝑎𝑖𝑛𝑒𝑑 𝐶𝑁𝑁𝑅𝑀𝑆𝐸  is the 

smallest for both ×4 and ×8 results, which are 0.67 and 1.19, respectively. With the deepening of 

the applied feature maps, the RMSE of perceptual loss increases and both 𝑃𝑟𝑒𝑡𝑟𝑎𝑖𝑛𝑒𝑑 𝐶𝑁𝑁 and 

𝐺𝐴𝑁𝑠 exhibit the same trend. Particularly, when the perceptual loss is calculated using conv5_1, the 

error increases significantly. As can be seen from the quantitative results, except for conv5_1, the 

results produced by all layers are not significantly different from those produced by using RMSE as 

the loss. We compared the results qualitatively in order to further illustrate the performance of 

perceptual loss. 

Table 2. Comparison of ability to generate HR data by using different layers as perceptual loss (×4). 

Loss function 
Pretrained CNN GAN 

RMSE (mm/day) Correlation RMSE (mm/day) Correlation 

MSE 0.67 0.98 0.73 0.98 

conv1_1 0.81 0.98 0.83 0.98 

conv2_1 0.93 0.98 0.96 0.98 

conv3_1 0.97 0.98 0.98 0.98 

conv4_1 1.12 0.98 1.02 0.98 

conv5_1 2.36 0.97 1.91 0.97 
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Table 3. Comparison of ability to generate HR data by using different layers as perceptual loss (×8). 

Loss function 
Pretrained CNN GAN 

RMSE (mm/day) Correlation RMSE (mm/day) Correlation 

MSE 1.19 0.97 1.30 0.97 

conv1_1 1.42 0.97 1.44 0.96 

conv2_1 1.51 0.96 1.59 0.96 

conv3_1 1.46 0.96 1.50 0.96 

conv4_1 1.81 0.96 1.71 0.95 

conv5_1 4.94 0.94 3.85 0.94 

 

Figure 3 shows the results of 𝑃𝑟𝑒𝑡𝑟𝑎𝑖𝑛𝑒𝑑 𝐶𝑁𝑁𝑅𝑀𝑆𝐸 and 𝐺𝐴𝑁𝑠𝑅𝑀𝑆𝐸 , with the first row 

representing the result of ×4 and the second row representing the result of ×8. In the training 

process of 𝑃𝑟𝑒𝑡𝑟𝑎𝑖𝑛𝑒𝑑 𝐶𝑁𝑁𝑅𝑀𝑆𝐸 , the loss is calculated by per-pixel loss (RMSE), while the loss in 

the training process of 𝐺𝐴𝑁𝑠𝑅𝑀𝑆𝐸  includes both pixel-wise loss and adversarial loss. In spite of the 

fact that 𝑃𝑟𝑒𝑡𝑟𝑎𝑖𝑛𝑒𝑑 𝐶𝑁𝑁𝑅𝑀𝑆𝐸 's results are slightly better than 𝐺𝐴𝑁𝑠𝑅𝑀𝑆𝐸 's in terms of metrics, we 

can see from the figure that the result of 𝑃𝑟𝑒𝑡𝑟𝑎𝑖𝑛𝑒𝑑 𝐶𝑁𝑁 is over-smoothed, resulting in a lack of 

detail information. As an example, in 𝑃𝑟𝑒𝑡𝑟𝑎𝑖𝑛𝑒𝑑 𝐶𝑁𝑁𝑅𝑀𝑆𝐸  corresponding to Ground Truth 

(20051216), there is a lack of detailed information in the lower right corner of the region. 

Nevertheless, when the adversarial loss is included, we can see that the results of 𝐺𝐴𝑁𝑠 are clearly 

superior to those of 𝑃𝑟𝑒𝑡𝑟𝑎𝑖𝑛𝑒𝑑 𝐶𝑁𝑁𝑅𝑀𝑆𝐸  with respect to detailed information. In contrast, Figure 

4 shows 𝑃𝑟𝑒𝑡𝑟𝑎𝑖𝑛𝑒𝑑 𝐶𝑁𝑁 and 𝐺𝐴𝑁𝑠 computed by using perceptual loss. In spite of the absence 

of adversarial loss, perceptual loss contributes some detailed information to the results of 

𝑃𝑟𝑒𝑡𝑟𝑎𝑖𝑛𝑒𝑑 𝐶𝑁𝑁. In the training of 𝐺𝐴𝑁𝑠, the addition of adversarial loss forces the detailed 

information generated by perceptual loss to be closer to the real results.  

 

 

Figure 3. Qualitative comparison of generated HR precipitation data from pretrained 

CNN and GANs by using per-pixel loss and corresponding reference HR target. 
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Figure 4. Qualitative comparison of generated HR precipitation data from pretrained 

CNN and GANs by using perceptual loss and corresponding reference HR target.  

The per-pixel loss (RMSE) used as the loss function is consistent with our final evaluation 

metric in Table 1 and Table 2. Accordingly, a model trained to minimize per-pixel loss would always 

outperform one trained to minimize perceptual loss or adversarial loss, which encourages the 

generated HR data to be perceptually similar to the target HR data, but does not require their exact 

match. This explains why 𝑃𝑟𝑒𝑡𝑟𝑎𝑖𝑛𝑒𝑑 𝐶𝑁𝑁𝑅𝑀𝑆𝐸  is best in terms of the metric. It is specifically 

𝑃𝑟𝑒𝑡𝑟𝑎𝑖𝑛𝑒𝑑 𝐶𝑁𝑁  to optimize the content-based loss, resulting in safer HR fields, i.e., 

over-smoothed ground truth predictions. According to the difference between the results of 

𝑃𝑟𝑒𝑡𝑟𝑎𝑖𝑛𝑒𝑑 𝐶𝑁𝑁 under per-pixel loss and perceptual loss, we find that, although the parameters of 

VGG19 are trained on natural images, the medium- and low-level feature maps from VGG19 remain 

effective for climate data. Even though perceptual loss achieves worse evaluation metrics, it makes 

more aggressive predictions, inserting significantly more small-scale features that better reflect the 

nature of real precipitation than the results under per-pixel loss. 
 

 

Figure 5. Qualitative comparison of generated HR precipitation data and corresponding 

reference HR target. 
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Figure 5 compares the results of 𝐺𝐴𝑁𝑠 for different loss conditions. We also show the results 

of Bicubic whose results are evidently over-smoothed when compared to the ground truth. By adding 

the adversarial loss, 𝐺𝐴𝑁𝑠𝑅𝑀𝑆𝐸  weakens the smoothing compared to 𝑃𝑟𝑒𝑡𝑟𝑎𝑖𝑛𝑒𝑑 𝐶𝑁𝑁𝑅𝑀𝑆𝐸  and 

adds more detailed information. It should be noted, however, that 𝐺𝐴𝑁𝑠𝑅𝑀𝑆𝐸  provides more 

smoothed result when compared to the results of 𝐺𝐴𝑁𝑠 using perceptual loss; for example, see the 

area with more precipitation on the right side of the region in Figure 5. For the 𝐺𝐴𝑁𝑠 using 

perceptual loss, we can observe that as the feature maps become deeper, i.e., from Conv1_1 to 

Conv5_1, the results are less smooth , and the HR data are produced with more detailed information . 

The negative effect of this very aggressive generation is the increase of RMSE, i.e., the deviation 

from the ground truth. It is important to observe from Table 1 and Table 2 that Conv5_1 produced 

significantly worst results metrics. In reviewing the results of Conv5_1, we identified two issues that 

contributed to this outcome. For some samples, the results of Conv5_1 deviate significantly from 

those of the ground truth. Secondly, some HR results are similar to the ground truth but contain 

significant checkerboard artifacts. In view of the large error and instability of the results generated by 

Conv5_1, we do not include Conv5_1 in subsequent analyses. 

 

 

Figure 6. Comparison of different perceptual loss by using feature maps and per-pixel 

loss for the extreme precipitation threshold (Left: ×4; Right: ×8). 

As previously stated, for climate data, we are more concerned with the performance of those 

regions with extreme events in the generated HR results. To compare the results of different loss 

functions in these regions, different quantitative thresholds are used to test the ability of each method 

to capture extreme events. At each grid cell in our study area, all precipitation values above the 

percentile threshold were selected first, and then the RMSE was calculated based on the selected data. 

This was performed in a range of percentages between 75 and 99.9 and averaged over all locations 

and all samples. As can be seen from Figure 6, in both the ×4 and ×8 models, the RMSEs 

corresponding to 𝐺𝐴𝑁𝑠1, 𝐺𝐴𝑁𝑠2, and 𝐺𝐴𝑁𝑠3 are smaller than those in the region of the extreme 

event. Specifically, for the ×4 model, 𝐺𝐴𝑁𝑠4 has the worst RMSE. There is a close relationship 

between the curves obtained in 𝐺𝐴𝑁𝑠2, 𝐺𝐴𝑁𝑠3 and 𝐺𝐴𝑁𝑠𝑅𝑀𝑆𝐸 , and the best result is obtained in 

𝐺𝐴𝑁𝑠1. Compared with 𝐺𝐴𝑁𝑠4 and 𝐺𝐴𝑁𝑠𝑅𝑀𝑆𝐸 , the results of 𝐺𝐴𝑁𝑠1, 𝐺𝐴𝑁𝑠2, and 𝐺𝐴𝑁𝑠3 are 

very close in the ×8 model. We can conclude that the results of 𝐺𝐴𝑁𝑠1, 𝐺𝐴𝑁𝑠2, and 𝐺𝐴𝑁𝑠3 are 

comparable to 𝐺𝐴𝑁𝑠𝑅𝑀𝑆𝐸  for the generation of extreme events region. In addition, we examine the 

spatial distribution of errors in the region of extreme events for 𝐺𝐴𝑁𝑠1 , 𝐺𝐴𝑁𝑠2 , 𝐺𝐴𝑁𝑠3  and 
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𝐺𝐴𝑁𝑠𝑅𝑀𝑆𝐸 . In the case of 𝐺𝐴𝑁𝑠1 and 𝐺𝐴𝑁𝑠𝑅𝑀𝑆𝐸 , the error distribution is wider, but the error 

values are relatively small. In the case of  𝐺𝐴𝑁𝑠2 and 𝐺𝐴𝑁𝑠3, the errors are concentrated in fewer 

grid cells, but the error values are relatively large. 

Figure 7 shows the precipitation distribution of the six samples, where the x-axis is the variation 

of precipitation in each raster, and the y-axis refers to the proportion of the corresponding raster. The 

first row is the result of the ×4 model and the second row is the result of the ×8 model. As can be 

seen from the figure, the distribution of 𝐺𝐴𝑁𝑠4 is significantly different from the distribution of the 

ground truth. The distributions of 𝐺𝐴𝑁𝑠1 , 𝐺𝐴𝑁𝑠2 , 𝐺𝐴𝑁𝑠3  and 𝐺𝐴𝑁𝑠𝑅𝑀𝑆𝐸  are gradually 

approaching the distribution of the ground truth as precipitation quantity increases. In contrast, the 

distributions of 𝐺𝐴𝑁𝑠𝑅𝑀𝑆𝐸  and 𝐺𝐴𝑁𝑠1 for the smaller precipitation are closer to the ground truth’s 

distribution than the distributions of 𝐺𝐴𝑁𝑠2 and 𝐺𝐴𝑁𝑠3. As an example, in sample 6, the density of 

𝐺𝐴𝑁𝑠2 and 𝐺𝐴𝑁𝑠3 are greater than the ground truth’s distribution in the interval of 0-3 mm. The 

same observation is also made for sample 1, sample 2, and sample 5. 

 

 
Figure 7. Comparison of the distribution of HR results obtained by different loss 

functions; Sample 1, 2, 3: ×4; Sample 4, 5, 6: ×8. 
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In order to better qualitatively evaluate the results corresponding to different feature maps, we 

set up a user experiment. In the experiment, we had a total of 40 participants. There were 20 samples 

of precipitation data provided to each participant. Each data sample consisted of HR ground truth, 

and generated results from 𝐺𝐴𝑁𝑠1 , 𝐺𝐴𝑁𝑠2 , 𝐺𝐴𝑁𝑠3 , 𝐺𝐴𝑁𝑠4 , and 𝐺𝐴𝑁𝑠5 . The order of the 

different results in each sample was randomized. User experiment results are presented in Figure 6. 

We collected a total of 790 votes. Among all the votes, the votes corresponding to 𝐺𝐴𝑁𝑠2 occupy 

32.4%, slightly higher than the 31.6 corresponding to 𝐺𝐴𝑁𝑠3. The results of 𝐺𝐴𝑁𝑠2 and 𝐺𝐴𝑁𝑠3 

are significantly higher than the results of the other models. As shown in Figure 8, the best results for 

each sample are determined by the principle of the largest number of votes, where 7 best results 

correspond to 𝐺𝐴𝑁𝑠3 and 8 best results correspond to 𝐺𝐴𝑁𝑠2. 

In summary, although low- and medium-level feature maps have slightly worse RMSE metrics 

than per-pixel loss, they can provide more detailed information for HR results, and with such detailed 

information, HR results perform well in regions of extreme events. In contrast to per-pixel loss, there 

is a difference between the distribution of perceptual loss and the ground truth in regions with less 

precipitation. By qualitatively and quantitatively comparing the results corresponding to different 

layers of feature maps, we use 𝐺𝐴𝑁𝑠2 and 𝐺𝐴𝑁𝑠3 to test the proposed perceptual loss, since we 

consider 𝐺𝐴𝑁𝑠2  and 𝐺𝐴𝑁𝑠3  as a balance of qualitative detail information and quantitative 

evaluation metrics. 

 

 

Figure 8. The results of user experiment. 

 

5.3. Using climatological binary perceptual loss 

In this section, we examine the performance of the results obtained by training the GAN via 

climatological binary perceptual loss. Table 4 shows the results for ×4 and ×8. In the table, 

although some metrics are still poor when compared to the 𝐺𝐴𝑁𝑠𝑅𝑀𝑆𝐸 , they are optimized when 

compared to the direct calculation with 𝐺𝐴𝑁𝑠2 and 𝐺𝐴𝑁𝑠3. In the case of ×4, 𝐺𝐴𝑁𝑠𝑏𝑝𝑙 2 and 

𝐺𝐴𝑁𝑠𝑏𝑝𝑙 3 improve by 0.11 and 0.10, respectively, and in the case of ×8, 𝐺𝐴𝑁𝑠𝑏𝑝𝑙 2 and 𝐺𝐴𝑁𝑠𝑏𝑝𝑙 3 

improve by 0.17 and 0.11, respectively. Some distributions of HR results based on climatological 

binary perceptual loss are shown in Figure 10. The results obtained with the proposed loss are closer 

to the ground truth in the interval with lower precipitation levels than the direct use of Conv2_1 and 

Conv3_1, which retain the advantage of calculating the loss by using per-pixel loss. In addition to 

improving the distribution of the samples, the proposed climatological binary perceptual loss is also 
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optimized for the regions of extreme events. In Figure 9, the results obtained by using Conv2_1 and 

Conv3_1 are directly compared with those obtained by using the proposed loss. It can be seen that 

the proposed loss provides detailed information in the area of extreme events that is closer to the 

ground truth. 

Table 4. Comparison of ability to generate HR data by using climatological targeted perceptual loss. 

Loss function 
×4 ×8 

RMSE (mm/day) Correlation RMSE (mm/day) Correlation 

MSE 0.73 0.98 1.30 0.97 

Conv2_1 0.96 0.98 1.59 0.96 

Conv3_1 0.98 0.98 1.50 0.96 

Proposed Loss with conv2_1 0.85 0.98 1.42 0.96 

Proposed Loss with conv3_1 0.88 0.98 1.39 0.97 

 

 

Figure 9. Qualitative comparison of generated HR precipitation data by using perceptual 

loss directly and climatological targeted perceptual loss (×4). 

5.4. Application to the GCM data 

In this section, we discuss the application of the proposed climatological targeted perceptual 

loss to the CMIP6 data. The original raster size is 120 × 288 with a resolution of 1° × 1.25°. By 

increasing the resolution by a factor of 4 and 8, we increase the size of the raster to 480 × 1152 and 

960 × 2304. Figure 10 shows the distribution of precipitation before and after the resolution 

improvement. To further illustrate the results of the model, we calculated the average precipitation of 

the raw CMIP6 data and the generated high-resolution data in the range of 25° N to 49° N, 70° W to 

130° W. This region roughly covers the contiguous United States range. The obtained time series are 

also presented in Figure 11. We combine the daily data into the corresponding monthly data, and 

there are 132 time points in the time series from January 2023 to January 2033. As we can see from 

the figure, the results of ×4 are very close to the precipitation process obtained from the original 

resolution. The results of ×8 have more error than the results of ×4 in some months, such as July 

2024, but it also basically follows the precipitation process as the original resolution. From the 
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samples, we can also see that the proposed climatological targeted perceptual loss increases the detail 

information of the extreme events regions. 

 

 

Figure 10. Comparison of the distribution of HR results by using perceptual loss directly 

and climatological targeted perceptual loss (Sample 1, 2, 3: ×4; Sample 4, 5, 6: ×8). 
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Figure 11. Qualitative comparison of generated HR precipitation data and quantitative 

comparison of average precipitation before and after downscaling in selected region (25° 

N to 49° N,70° W to 130° W. Top left: raw resolution from GCM; Bottom left: ×4 

resolution using proposed loss function with Conv2_1; Right: Time series of average 

precipitation for selected region:  

(A) comparison of ×4 enhancement and raw resolution (above)  

(B) comparison of ×8 enhancement and raw resolution (below). 

6. Discussion 

Obtaining high-resolution climate data from low-resolution climate data is an ill-posed problem, 

as for a given LR input, there may be multiple possible high-resolution outputs corresponding to it. 

On the one hand, we want the generated HR data to be quantitatively similar to the LR input. 

Additionally, we want the generated HR data to contain detailed information. There is often a 

conflict between the two during the training process. In general, qualitative similarity forces the 

model to provide smoother results, which, on average, are close to the input. The disadvantage, 

however, is that detailed information is lost. Including rich detailed information requires the model to 

insert possible high-resolution results, and this aggressive approach can lead to an increase in overall 

error. Our study examines both qualitative and quantitative aspects of perceptual loss in the 

generation of high-resolution climate data. In terms of multiplicity, we consider both cases of 

increasing the original resolution by a factor of 4 and 8. In terms of training mode, we examine the 

results of perceptual loss in the training process of CNN and the training process of GAN. Despite 

the fact that the parameters of the feature extractor used for perceptual loss are usually trained by 

using natural images, it still achieves promising results compared with the traditional pixel-wise loss 

for climatic data. Perceptual loss can provide more realistic HR results than pixel-wise loss during 

CNN training, though there is a trade-off in the overall RMSE. As the feature map used for 

perceptual loss becomes deeper, the results become less smooth. The addition of adversarial loss to 
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the GAN training process can solve the problem of pixel-wise loss results that provide less detailed 

information and are too smooth in nature. A comparison of the results of pixel-wise loss and 

perceptual loss in GAN indicates that the perceptual loss results are perceptually closer to those 

obtained by pixel-wise loss. In contrast, when deep feature maps, such as Conv4_1 and Con5_1, are 

used, the generated results are unstable. The results of Con5_1, in particular, show large errors as 

well as checkerboard artifacts. The VGG network is trained to solve classification problems, so the 

high-level semantic information expressed in the deep feature map is primarily used to distinguish 

between different labels. In the case of climate data, there may be zero or no significant change in 

most of the region, resulting in an insufficient amount of semantic information contained in the deep 

feature map. It may not be possible to accurately measure the difference between the generated 

results and the ground truth by comparing these feature maps. 

As a result of comparing the results obtained from feature maps with different layers, we find 

that the feature maps of the low and middle layers, in our case Conv1_1, Conv2_1, and Conv3_1, 

provide good results for regions with extreme events. They have slightly smaller RMSEs in these 

regions than the HR results obtained by using pixel-wise loss, and they provide richer detailed 

information as well. Based on our qualitative and quantitative analyses, Conv2_1 and Conv3_1are 

the best balance between obtaining detailed information and preserving the overall error. To solve the 

problem that perceptual loss has large errors in regions with small raster values and small gradient 

changes in the sample, we propose climatological targeted perceptual loss. In order to calculate the 

error for the whole sample, we first calculate the pixel-wise loss, and then for the targeted regions, 

that is, those containing extreme events, we further use the perceptual loss. In comparison to 

calculating perceptual loss directly for the entire region, our results show that climatological targeted 

perceptual loss can improve the detailed information of extreme events regions while reducing error. 

7. Conclusions 

In this work, we adapt the perceptual loss technique developed for super-resolution in image 

processing to obtain high-resolution climatological data. We present the difference between 

perceptual loss and pixel-wise loss by increasing the resolution of raw rainfall data by ×4 and ×8 

under two different training modes of CNN and GAN. We examine the difference in the perceptual 

loss calculated by using different layers of feature maps. Based on our results, it appears that low- 

and mid-level feature maps can yield comparable results to pixel-wise loss. Based on our qualitative 

and quantitative analyses, Conv2_1 and Conv3_1are the best balance between obtaining detailed 

information and preserving the overall error. In comparison with calculating perceptual loss directly 

for the entire region, our results show that the proposed climatological binary perceptual loss can 

improve the detailed information of extreme events regions. We also examine the performance of the 

climatological binary perceptual loss by using unseen GCM data. 
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