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Abstract: Anomaly detection strategies in industrial control systems mainly investigate the
transmitting network traffic called network intrusion detection system. However, The measurement
intrusion detection system inspects the sensors data integrated into the supervisory control and data
acquisition center to find any abnormal behavior. An approach to detect anomalies in the measurement
data is training supervised learning models that can learn to classify normal and abnormal data. But,
a labeled dataset consisting of abnormal behavior, such as attacks, or malfunctions is extremely hard
to achieve. Therefore, the unsupervised learning strategy that does not require labeled data for being
trained can be helpful to tackle this problem. This study evaluates the performance of unsupervised
learning strategies in anomaly detection using measurement data in control systems. The most accurate
algorithms are selected to train unsupervised learning models, and the results show an accuracy of 98%
in stealthy attack detection.
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1. Introduction

Industrial control system (ICS) is a general term used to describe various kinds of control systems
and related instrumentation. ICSs consist of the equipment and networks employed to operate
industrial processes such as manufacturing, energy, and transportation. These systems include different
types of control systems, e.g., supervisory control and data acquisition (SCADA) and distributed
control systems (DCS). In the last decades, the growing complexity of industrial and automated
systems has made control designs more sophisticated. The entanglement of control designs increases
the vulnerability of control systems against any kind of fault. For instance, it is possible that a very
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simple fault or a warning leads to a cascade failure in the system, and if it does not get detected and
compensated, it will lead to a failure. Therefore, the reliability of control systems has attracted many
research studies recently.

The reliability of a system can be increased by a multitude of methods such as fault-tolerant control
(FTC) [1], network intrusion detection system (NIDS) [2], or measurement intrusion detection system
(MIDS) [3]. Generally, in most of these methods, anomaly detection is considered the major step
of the whole process. Anomaly detection means searching for any abnormal data in a system that
does not conform to the expected behavior, and it can be caused by an attack or a malfunction [4].
Anomaly detection methods can be categorized into two main types: model-based and learning-
based. The model-based anomaly detection uses the mathematical model of a control system to
inspect the behavior and find any abnormal activity, while the learning-based methods, regardless of
the mathematical model, just rely on the historical data obtained from the input/output of the system.
The learning-based approach is handy when the system is complex, or the mathematical model is
not available. This approach employs artificial intelligence (AI), particularly machine learning (ML),
to find the patterns in the system’s behavior and learns to distinguish outliers based on the achieved
patterns.

The most significant step of building a machine learning model in the learning-based methods is
to generate a reliable and accurate dataset. The dataset includes some inputs called features, and
if possible, some outputs as the target data. The input data involve the historical log of the system
consisting of sensors data or network traffic. Moreover, the output data could be any captured attacks
or faults in the system. The supervised learning algorithms employ a targeted dataset to train an ML
model for detecting anomalies [5]. It is clear that building a labeled/targeted dataset would not be easy
due to the difficulties in collecting a large quantity of attacks data or faulty situations. One solution to
tackle this problem is injecting attacks or faults into the system and collecting system data to generate
a labeled dataset. But, in critical infrastructures, such as power plants, it is impossible to shut down
the system to generate this kind of dataset. Even worse, injecting intentional attacks or faults into the
system could cause irreversible damage to the system. In [3], we discussed the solution to address the
dataset generation problem using hardware-in-the-loop (HIL) devices to simulate the system’s critical
parts. This device substitutes the sensitive components of the system to protect them from intentional
attacks. For instance, the generator can be simulated using a HIL device to prevent damaging the
dynamic components in a power plant. However, this technique is expensive and time-consuming. It
can be sensible to be used when the system is critical infrastructure, and its reliability is extremely
significant.

Nevertheless, it is possible to train an ML model using a dataset excluding any targeted data.
This method is called an unsupervised learning approach for anomaly detection. The privilege of
an unsupervised learning algorithm is the independence of this method from a targeted dataset. This
means it is possible to train an ML model using the historical normal behavior data log. However, its
accuracy in comparison with supervised learning is questionable and requires to be investigated. Many
research studies focused on the unsupervised learning strategy to address the problem of anomaly
detection in ICSs. Goh et al. leveraged unsupervised learning to detect faulty sensors in a water
treatment system [6]. They employed recurrent neural networks (RNN) algorithm to investigate the
behavior of incoming data and showed that their approach could effectively detect attacks. However,
the accuracy of their method is not clarified in detail. In [7], Javaid et al. introduced a deep learning
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method to differentiate the abnormal and normal network traffic data. Their unsupervised algorithm
consists of three layers of input, features, and output in which the output layer should classify the input
data by adjusting the network parameters. Then, the trained model was used to classify the normal
and abnormal data. However, their method could not reach satisfactory accuracy in anomaly detection.
Choi et al. [8] developed a NIDS using an unsupervised learning autoencoders algorithm. Based on
the main selected features, the original input data was reconstructed, and the normal and abnormal data
were classified regarding the reconstruction error threshold. In their method, the network traffic data is
used for generating the unlabeled dataset.

Most of the related studies used transmitting network traffic data packets, including internet
protocols (IPs) and data packet headers, to investigate the behavior of the system. On the other hand,
the measurement data obtained from the SCADA has the potential to be used as the input data for
training an unsupervised model. In [3], we investigated the performance of supervised MIDS, and
the effectiveness of this method was approved. But, the performance of unsupervised MIDS in fault
detection requires to be evaluated. In this study, the unsupervised learning algorithms in detecting
anomalies using the measurement data is investigated. Moreover, A real-world testbed dataset is used
to approve the effectiveness of the proposed method.

Overall, this work has made the following contributions to the attack detection domain.
First, most existing studies detect anomalies from the network traffic as evidence of intrusion.

Instead, we detect anomalies from the measurement data acquired from system sensors. This approach
is not limited to detecting malicious activities from outside the system but is capable of detecting
insider sabotage.

Second, existing methods are supervised and require a trained model with labeled ground truth data
because the system log normally does not include a variety of abnormal behavior. Generating such
labeled dataset, including attack cases, are potentially harmful to the system and can cause irreversible
damages. We, therefore, focus on an unsupervised learning strategy that does not require labeled
training data. Instead, unsupervised anomaly detection is applied for normal system logs without the
need for labeled data.

Third, the proposed method is capable of detecting stealthy attacks. These cannot be detected from
the network traffic directly because stealthy attacks imitate the normal behavior of the system. In this
study, simulate the stealthy attacks and evaluate the performance of the selected anomaly detection
approaches.

The remainder of this study is organized as follows. In Section 2, the methodology of building an
unsupervised learning ML model is explained. Section 3 describes the testbed and dataset generation
methods. The results of this study are shown in Section 4. Finally, Section 5 presents the conclusion
and future work directions.

2. Methodology

The unsupervised learning approach for anomaly detection in ICSs is illustrated in Fig. 1. This
approach consists of four main steps: data collection, feature selection, model training, and decision-
making. In the following, the concept of anomalies, feature selection in the training process, and ML
models are described.
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Figure 1. The framework of unsupervised MIDS in ICS.

2.1. Anomaly description

Anomaly detection in ICSs includes a wide range of research studies. It can be considered as
intrusion detection, fault detection, or event detection in sensors network. Generally, any deviation
from a standard behavior can be conformed as an anomaly. It can occur due to a multitude of reasons,
such as insider sabotage, components malfunction, or a malicious activity known as a cyber-attack.
The concept of an anomaly in this study refers to any fault or intrusion in the system. For instance,
searching for a malfunction in system components is known as fault detection, while investigating any
attempt to intrude the system’s control center would be considered intrusion detection.

While the NIDS investigates the network traffic to find any anomaly in the transmitting data, the
MIDS relies on the measurement data collected in the SCADA system obtained from the sensors. The
MIDS approach could be more reliable if a stealthy intrusion is happening in the system. It means
that an attacker is trying to intrude the system by imitating the normal behavior, aiming at changing
set-points, manipulating the measured data, or turning off a vital component. For instance, in 2020, a
state-of-the-art attack was detected at an international airport [9]. In this attack, a set of nonsensical
commands were injected into the ICS communication network and forced the system to reboot or cause
it to fail. Then, the attackers intruded into the system and spanned several days targeting different parts,
such as the building management system (BMS). This kind of attack, known as a stealthy attack, can
cause significant financial and reputational effects. For example, the BMS manages temperature, fire
suppression system, lighting, and doors, which any malfunction would be disastrous. Therefore, if
the NIDS cannot detect the attack, the IDS has to detect it using the MIDS. The privilege of MIDS is
independent of data packages, and it only relies on the measurement data, making it extremely hard to
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be tricked by attackers. This study tries to evaluate the MIDS performance in stealthy attack detection.

2.2. Unsupervised feature selection

In ICSs, the measured data from the system’s sensors is collected in the SCADA and stored for a
specific period of time. To build an unlabeled dataset, the measurement data from the SCADA can
be employed. In an unsupervised approach, the dataset does not need to contain many quantities of
abnormal behavior. Therefore, the problem of injecting attacks or faults into the system does not
exist in an unsupervised learning anomaly detection approach. It should be mentioned that in real-life
problems, the stored system log in the SCADA includes both normal and abnormal data. Usually,
the portion of abnormal data would be far lower than the normal one, but the unsupervised learning
mechanism does not require the abnormal data for the training process.

Nevertheless, in large-scale ICSs, a massive number of sensors are embedded in the system.
Therefore, it is essential to select the optimum number of sensors (features) in the training process.
Many techniques can be used to address the problem of feature selection, such as Pearson correlation
[10], z-test [11], and principal component analysis (PCA) [12]. However, the feature selection method
could be varied due to the individual features for pattern recognition. Furthermore, some feature data
would show redundancy between sensor measurements. Hence, computation time could be increased
because of having useless features, and the ML model classification suffers from overlapping data.

In methods like PCA employed for dimensionality reduction, the new generated features would not
have the same characteristics as the original ones. Therefore, characterizing the reduced data space
would not be simple. This could cause difficulties whenever required to find a specific faulty feature
(sensor) in the system. Generally, unsupervised feature selection strategies that do not change the
original feature data could be categorized as wrapper [13], filter [14], and embedded methods. The
wrapper method requires a complex mathematical calculation leading to a very high computation cost.
In the wrapper approach, for all possible feature combinations, a subset search is generated, and the
selected learning method is used for each subset. Since a control system has a large number of sensors,
wrappers are not a suitable strategy for feature selection due to the high computation cost.

In this study, the z-test method is employed to select the most significant features of the dataset. This
method is a statistical test to figure out whether two population means are similar when the variances
are calculated, and the dataset size is large. Moreover, Zscore represents the outcome result from the
z-test. In this paper, the system logs are considered as the population of the z-test, and the limited
sample of abnormal behaviors mentions the z-test samples. Also, the test would be a two-tailed z-test
with a 0.01 level of significance and a corresponding critical value of 2.58. The Z critical value can be
found regarding the significance level using Z-table. For more information associated with the critical
value and Z-table, please visit [15]. In addition, in Fig. 2, a step-by-step flowchart of the method is
described. If there is no difference between the two tails, the feature would be considered insignificant,
and vice versa. The following equation shows the Zscore value computation:

Zscore =
x̄ − µ
√

s2
(1)

where x̄ indicates the average of the abnormal samples, µ is the population mean, s2 represents the
variance.
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The reason for choosing z-test is two-folded: first, it is required to keep the sensors data untouched
to find the origin of an occurred fault; therefore, PCA that changes the original features cannot be used;
second, the z-test would perform more appropriately when the population of data is large. Hence, it is
sensible to use this strategy in this specific problem, and the result implies the proper performance of
this method.

2.3. Anomaly detection algorithms

Unsupervised anomaly detection based on the MIDS classifies the measurement data into two
categories of outliers and inliers. Many unsupervised learning algorithms can be applied to the
unlabeled dataset, but the most fitted ones are selected based on the obtained results in this study.
Indeed, the unsupervised learning algorithm learns the system’s normal behavior and tries to find any
data that is behaving out of a defined normal zone.

2.3.1. Isolation forest

The first algorithm is called isolation forest (IF), which identifies anomalies using isolation by
recursively generating partitions on the data. This algorithm randomly selects an attribute, and then a
split value for the attribute, between the min and max amounts allowed for the selected attribute. This
algorithm performs quickly for high-dimensional datasets and could work even if no abnormal data is
present in the training dataset. The key features of this algorithm can be described as follows [16]:

• It can build partial ML models and extract sub-sampling. This algorithm does not need to use a
large part of the data for anomaly detection; therefore, a small number of samples would generate
a better model due to the reduction of swamping and masking impacts.
• It does not measure any distance or density, which extremely reduces the calculation time.
• Its computation time increases linearly by growth in the complexity of the problem [17].
• It is capable of handling very large databases that have a wide range of irrelevant features.

These characteristics make the isolation forest algorithm a potential candidate for this study.

2.3.2. Local outlier factor

The second algorithm is known as the local outlier factor (LOF), which is based on the concept
of local density. In this algorithm, the k-nearest neighbors are used to obtain the locality, and the
distance between the data is employed for density estimation. Then, by comparing the local density of
an outlier with the local densities of neighbor points, the similar density of the outlier can be identified
and implies a substantially lower density than the neighbors [18]. The main step of this algorithm is
computing the relative density as follow:

ζ =
ρ

µ
(2)

where ζ is the relative density of a data point X with k neighbors. ρ and µ are the density of X and the
average density of neighbor data points. Moreover, the density of X can be calculated by inverting the
mean distance of k nearest neighbors [19].
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Figure 2. Step by step flowchart of unsupervised MIDS.
* For more information about Z-table, see [15].
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2.3.3. Elliptic envelope

Finally, the third algorithm is the elliptic envelope (EE). This algorithm is based on the assumption
that regular data comes from a specific distribution; then, it tries to find the shape of the data and defines
the outliers that are far from the fitted shape [20], using the FAST-minimum covariance determinant
(FAST-MCD) [21]. The FAST-MCD computes the mean and the covariance matrix of all features
in non-intersecting subsets of data. Then, the algorithm calculates the Mahalanobis distance [22] to
determine the outliers based on a specific threshold. The Mahalanobis distance, distMH, is defined as
below:

distMH =
√

(A − mean)TCov−1(A − mean) (3)

where A is a multidimensional data vector, mean and Cov are the mean and covariance matrix,
respectively. The distMH will be considered as Euclidean distance if the Cov is an identity matrix.

2.4. Evaluation metric

The accuracy of ML models can be calculated by division of the number of true predicted normal
data and the total number of predicted values. The ML model accuracy calculation is shown as below:

ηn =
T P
Tn

(4)

where ηn shows the accuracy of the ML model in the prediction of the normal situation, T P indicates
the true predicted number of normal situations, and Tn is the total number of a normal population.
Moreover, the accuracy of the abnormal condition can be obtained from the following equation:

ηa =
T N
Ta

(5)

where ηa is the accuracy of the ML model in the prediction of abnormal situations, T N shows the true
predicted number of abnormal situations, and Ta represents the total number of abnormal populations.
Due to the low number of abnormal cases in the system log, using a confusion matrix [23] for
performance evaluation would lead to an unfair comparison of anomaly detection. Generally, less than
4% of cases in a dataset of measured data are associated with abnormal data. Therefore, it would be
better to calculate the accuracy of normal and abnormal detection separately. However, it is possible
to leverage balancing methods, such as SMOTE [24], to level the dataset. This would increase the
computation cost and time, which is not suggested in unsupervised learning approaches. The SMOTE
method is used for the supervised learning approach in [3].

3. Experimental setup

3.1. ICS testbed

The performance of unsupervised learning MIDS is evaluated on a power system with two
generators [25]. This system consists of four primary processes: turbine, water treatment, boiler,
and HIL simulator. Two distinct datasets are exploited from the system, in which one of them is used
for the training of the ML algorithms, and the other one is applied for the accuracy testing process.
The testbed framework is shown in Fig. 3.
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system 2.png

Figure 3. HIL-based augmented ICS.

In this power system, the boiler process has four controllers loop, including level controller, pressure
controller, temperature controller, flow-rate controller, and is in charge of heating the water pumped
from the main tank. In the turbine process, a motor speed controller is responsible for rotating the
tribune. Also, two controllers are embedded to manage the water level using a pump and a valve.
Finally, the HIL simulates two power generators that supply the demand.

3.2. Dataset

This study provides two different datasets, including the system log collected for several days of
the system’s performance. The dataset with the larger size is used for the training process, and the
other one is used as the testing dataset. These datasets consist of 59 sensor measurements that are
sampled every one second during four days of operation. The datasets are generated and published by
the affiliated institute of ETRI on Feb. 2020, which are available in [26]. For more information about
the dataset, please see [27, 28].

The system log includes some incidents data in real-life problems, such as faults, warnings, or
attacks. This kind of data will not be used for the training of the ML model but can be used for the
testing process. In this paper, the attack data is used to test the accuracy of the ML algorithms.
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distribution 2.png

Figure 4. Distribution of measurement data in normal and attack cases. The solid line is
associated with the normal cases, and the dashed line is related to attack cases.

4. Results and discussion

The proposed unsupervised MIDS approach is implemented on the introduced testbed, and the
ML model’s accuracy in the detection of anomalies is evaluated. The training and testing process is
performed by Python, and some unsupervised machine learning algorithms are examined to reach the
most accurate ones. These algorithms include isolation forest, elliptic envelope, local outlier factor,
support vector machine, and k-nearest neighbor. Moreover, the most significant features are selected
using the z-test method, and 49 sensors are chosen among the 59 available sensors in the system. This
selection is based on the distribution of the incoming data (features).

Fig. 4 shows the distribution of normal and attack situations for 4 sensors of the testbed. This figure
is a density plot made by integrating continuous curves at each individual data point. It means that
for every data point, a Gaussian kernel curve is assumed, then all of the curves are added together to
make the final density plot. The x-axis shows the measured value of the sensor, while the y-axis is
the probability density function for the kernel density estimation. The difference between probability
and probability density is that the probability density indicates the probability per unit on the x-axis.
If the area under the curve of an interval on the x-axis is calculated, then the actual probability of that
interval could be found. Therefore, the y-axis can have values greater than one. The density plot can
relatively compare normal and abnormal data for a specific sensor on the y-axis.
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Table 1. Models’ performance comparison.

Isolation forest Local outlier factor Elliptic envelope
Normal detection accuracy 0.7436 0.9624 0.8367

Abnormal detection accuracy 0.9021 0.8801 0.9848
Training time [s] 8.58 25.7 371.4

Prediction time [s] 6.83 14.3 0.291

Nevertheless, as shown in Fig. 4, the distribution of data in normal and attack cases are similar.
This could make anomaly detection harder due to the similarity of the data values in stealthy
attacks. Sometimes, the NIDS is blind to the changes in the data values, and the system requires a
complementary IDS for detection of these kinds of attacks, such as MIDS. When the measured data
are employed as the features of an ML model, the feature selection strategy plays a critical role in the
whole system’s performance. The z-test method tries to find the most related features to the attack
cases regarding the distributions of the measurement data for normal and attack situations. In the z-test
feature selection method, the system log would be considered as the population of the test, and the
abnormal data would be the sample data. This test has two hypotheses, including H0 : null hypothesis
and H1 : alternative hypothesis. The H0 assumes that the feature is redundant, while the H1 suppose
that the feature is significant and independent from other features. To evaluate these two claims, first,
a significance level should be selected by the designer. Then, a critical value for the corresponding
level of significance can be found using the z-table. Finally, the true claim would be figured out by
calculating the Zscore and comparing it with the critical value of Z. If the Zscore is greater than the critical
value, then the H1 hypothesis would be accepted and vice versa. This process is shown step by step in
Fig. 2.

Then, three unsupervised learning algorithms performing more accurately in this problem are
selected among tested algorithms and trained to predict the anomalies in the system. Isolation forest,
local outlier factor, and elliptic envelope are the three employed algorithms in this study. There are
two factors in the selection of these algorithms: first, the accuracy and the performance of them in
the anomaly detection task; second, the time of computation, especially in the prediction process. The
performance of these three models are compared in Table 1.

Based on the results in Table 1, the LOF algorithm has the most accurate rate of anomaly detection
for the normal behavior of the system by the accuracy of 96%. While, in the anomaly detection task, EE
is performing remarkably better than other algorithms by the rate of 98% accuracy in detecting attack
situations. Although the IF requires the least time for the training process, its accuracy cannot compete
with other algorithms. Furthermore, while the LOF has a lower computation time for the training
process, it consumes a longer time in the prediction in comparison with the EE algorithm. In anomaly
detection problems, the essential process is the prediction step. In this step, the high accuracy of the
detection system is vital, but the required time for computing and classifying the incoming data has an
extremely high impact on selecting an ML algorithm. On the other hand, the required training time
for building an ML model does not significantly impact the selection of algorithms. This is due to the
importance of the real-time performance of the detection system during operation. In other words, the
training computation would be performed only once to build the ML model of the MIDS, and it could
take several days in some vast datasets. But, the prediction process is constantly performed during the
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system operation in real-time. In this paper, the EE algorithm shows an astonishing performance in the
pace of attack detection, while it requires a considerable amount of time for building the ML model.
Also, this algorithm shows a reliable accuracy in attack detection with a rate of 98%, which is higher
than the other mentioned algorithms. However, the LOF indicates better performance in normal cases
detection compared to the EE algorithm.

5. Conclusions

In this paper, the unsupervised learning mechanism for anomaly detection in ICSs based on
measurement data is studied, and machine learning models are trained based on unlabeled datasets to
detect abnormal behaviors in the system. The unsupervised MIDS learns from historical data acquired
from the SCADA system to find anomalies, especially stealthy attacks, in an ICS. Due to the difficulties
of generating a labeled dataset for training a supervised machine learning model, the unsupervised
learning approach has the privilege of performing with the regular system log without dependency on
any targeted data in the dataset. Many unsupervised learning algorithms were examined to reach the
most accurate ones in anomaly detection. In this paper, isolation forest, local outlier factor, and elliptic
envelope are the most accurate unsupervised learning algorithms for anomaly detection of ICSs.

Moreover, to select the most significant features in the process of ML models training, the z-test
mechanism is applied. This method uses the distribution of each feature and investigates its relationship
with abnormal behaviors. Therefore, if a feature does not show a significant relationship with the
abnormal behavior would be removed. In this way, the ML model would operate more accurately
and faster. The results show that the elliptic envelope algorithm has the most accuracy in detecting
anomalies, especially stealthy attacks, compared to other algorithms. Also, this algorithm consumes a
significantly lower time to classify the normal/abnormal cases. However, it requires a long time to get
trained, but the training process does not require to be fast because it would be performed once before
embedding the unsupervised MIDS in the system for real-time operation.

In future studies, we would like to investigate the possibility of identifying the attack type based on
measurement data. Since the fault/attack compensation in an ICS requires the best-fitted controller, it
is essential to identify which kind of attack has happened in the system. Therefore, if the type of attack
is known to the intrusion detection system, it can trigger the most fitted controller to compensate for
the occurred fault and prevent a potential failure in the ICS.
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