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Abstract: CNN models already play an important role in classification of crop and weed with high 

accuracy, more than 95% as reported in literature. However, to manually choose and fine-tune the 

deep learning models becomes laborious and indispensable in most traditional practices and research. 

Moreover, the classic objective functions are not thoroughly compatible with agricultural farming 

tasks as the corresponding models suffer from misclassifying crop to weed, often more likely than in 

other deep learning application domains. In this paper, we applied autonomous machine learning 

with a new objective function for crop and weed classification, achieving higher accuracy and lower 

crop killing rate (rate of identifying a crop as a weed). The experimental results show that our 

method outperforms state-of-the-art applications, for example, ResNet and VGG19.  

Keywords: CNN; image classification; multi-models 

 

1. Introduction  

Weeding has been a big issue faced by farmers for a long time, especially for those who work in 

gigantic farms. Industrialized modern agriculture applies chemical methods to control weed; 

however, it leads to a great increase in herbicide resistance and rising harms to the ecological 

environment. Therefore, more focused research is required on smart and intelligent technologies for 

precision weed management. Meanwhile, effective farming practices also demand precision crop 

cultivation to increase the overall agricultural yields. Under both the conditions mentioned herein, 
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each kind of plant should be treated with different strategies. As it is time consuming and laborious 

to conduct this process manually, a great deal of effort has been put into facilitating autonomous 

farming in which various computational intelligence models are designed to classify field plants.  

Implementation of the autonomous farming has been a research focus in modern agriculture, 

especially for the emerging Agriculture-4.0 [1]; however, plant classification is still a challenging 

research issue in this realm [2,3]. Many studies on weed and crop classification have been carried out 

over the past few decades to meet the needs for precision weed management. Generally, these studies 

can be divided into three categories: 3D point cloud classification, spectrum classification and image 

classification. 3D point cloud classification relies on intensive computing to determine the label of 

each entity, which requires 3D Li-DAR data [4] with their bounding boxes. For the spectrum 

classification, monochrome cameras with different lasers were used to match the spectral reflectance 

for classification [5]. In image classification [6], cameras were used to capture images of the field. 

3D features and spectrum features could be appropriate factors for weed classification, but 

high-priced instrumentation and computing devices would be required, not suitable for every farmer. 

Utilizing images for crop and weed classification can be implemented by traditional algorithm 

and convolution neural network (CNN). In many image classification tasks, CNN has higher 

accuracy than traditional algorithm like KNN, SVM and MLP [7], which also produce remarkable 

results in crop and weed classification. However, there is no published study focusing on applying 

auto machine learning (AutoML) [8] on crop and weed classification, nor on training models with 

high accuracy and low crop killing rate (CKR, rate of identifying a crop as a weed). 

This paper presents a method of crop and weed classification based on AutoML and ensemble 

modeling, in order to achieve better performance on the outdoor greenhouse data set without manual 

model selection. Compared to existing methods, it consists of four improvements: 

 

 Using AutoML to select the optimal model automatically; 

 New metric in evaluation and new objective function in model training; 

 New algorithm for the compatible model among different data sets; 

 Ensemble strategy to reaching high accuracy and low CKR. 

 

Figure 1. Pipeline of crop and weed classification. 

The pipeline of this project is shown in Fig. 1. First, image data are collected and preprocessed 

by a robot in greenhouse. Then, the processed images are uploaded to a data server, and labeled 

manually. The labeled data is sent to GPU server for models training. Finally, the trained models are 

gathered and deployed on the robot to perform detection tasks. The whole system is automatic except 

for data labeling. 
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2. Materials and methods 

As presented in Fig. 2, our method includes four steps: data acquisition, image pre-processing, 

model searching and training, ensemble modeling. We build a new data set in two steps: data 

acquisition and image pre-processing. For model searching and training, we apply AutoML based 

algorithm and new objective function. At the end, we use ensemble model to make final prediction. 

 

Figure 2. The experiment framework and flow chart. 

2.1.  Data acquisition and Image pre-processing 

In this work, our first step is to construct the data set. Since there is no farmland near our university 

campus, we built a wooden cuboid box with board, screws, waterproof membrane and used it to plant 

potatoes and two kinds of weeds, which is shown in Fig. 2 S1. A four wheeled robot is built to collect 

data, and its hardware system includes raspberry Pi, USB camera, motor and control chip. The robot 

can traverse in the field step by step, while the slider moves the camera horizontally. Equipped with a 

kit of LED lights, the robot can also perform satisfactorily on an overcast day. It collects raw data from 

the field, and subsequently we pre-process the data at the next step. 

We use Algorithm 1 to extract crops and weeds images from field images, then we label them 

manually to construct the data set. In Algorithm 1, functions rgb2hsv, mask, morphologyOpen and 

findCounters are based on OpenCV [9], and the results of key procedures are shown in Fig. 2 S2. 
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Algorithm 1 Field image segmentation 

Input: img, Tsize ,Tratio 

Output: Seg={Seg1, Seg2, · · · , Segm}; 

1: hsv_img = rgb2hsv(img) 

2: masked_img = mask(hsv_img) 

3: opened_img = morphologyOpen(masked_img) 

4: counters = findCounters(opened_img) 

5: Seg = [] 

6: for counter ∈ counters do 

7:   obj_img = boundingBoxCut (img, counter) 

8:   if size(obj_img) / size(img) < Tsize then 

9:      continue 

10:  end if 

11:  if ratio(obj_img) < Tratio then  

12:     continue 

13:  end if 

14:  sharpen_img = sharpen(obj_img) 

15:  out_img = bitwiseAnd(sharpen_img, counter) 

16:  Seg.append(out_img) 

17: end for 

18: return Seg 

 

As presented in Algorithm 1, the algorithm takes original field image img, threshold of image 

size as Tsize , threshold of image shape’s ratio as Tratio (e.g., for an image of shape (200,100,1) or 

(100,200,1), its ratio is 0.5 ). From line 1 to 2, we convert RGB to HSV and mask pixels with 

Equation (1) listed below, which removes the background of image as S2.b of Fig. 2. In line 3, we 

use morphology open method to remove noise in mask as S2.c of Fig. 2. From line 8 to 13, we 

separate the crops and weeds in images and skip the small/banded objects as S2.d of Fig. 2. From 

line 14 to 15, we highlight the counter of sharpen images as S2.g of Fig. 2. Then we label these 

images manually to establish our data set. 

𝑚𝑎𝑠𝑘 𝑃𝑖𝑥𝑒𝑙 𝑖,𝑗   =  𝑃𝑖𝑥𝑒𝑙 𝑖,𝑗   

𝐻 𝑖,𝑗   ∈   45,95 

𝑆 𝑖,𝑗   ∈   55,255 

𝑉 𝑖,𝑗   ∈   55,255 

              (1) 

For Equation (1), we cluster images according to luminous intensity provided by the light sensor, 

then analyze the histogram of each cluster to determine the range of HSV. 

2.2.  Model searching and training 

The flow chart of model searching and training is shown in Fig. 2 S3, and the key parts are 

marked with different colors, which will be detailed in the next three subsections. 

The model search process employs AutoML-based algorithm to generate several models on two 

data sets, and we apply new objective functions on models training. In the first subsection, we will 

introduce two data sets used in this paper and the sampling rule. Then, we elaborate the 

AutoML-based algorithm in the second subsection. For the model training section, we detail serval 

objective functions and apply them on models training. 
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2.2.1. Data set detail 

  

Figure 3. Plants percentage and data set partition. 

The proposed methodology of crop and weed classification is carried out on two data sets: DS.1, 

a new data set collected in a small field by an agricultural robot, with 2068 images of potatoes and 

weeds, and in addition to DS.2, an open source big data set of crops called PlantVillage2 [10], 

with12,752 images of different crops, was also used. Although there are no weeds in DS.2, we can 

manually choose some crops as weeds, given that they do not affect the performance of models. 

With a motivation to simulate an environment of non-chemical weeding, we do not apply weed 

control during the data collection, i.e. there is no plastic mulch or herbicide, which might lead to 

more weed than crop in biomass. After image pre-processing and manual labeling, we capture data 

set DS.1 with weed to crop ratio of approximately 2:1, as indicated in Fig. 3. An imbalanced data set 

affects the prediction of models, as a model tends to be misled by classifying an object as a weed to 

get higher score. Therefore, we use sampling approaches to produce the weed sub sets from the 

original complete data set (CD). For each class of weed in the data set, we calculate sample rate k as 

Equation (2), and concreate sampled weed part and crop part to get a sampled data set (SD) with a 

ratio of weed to crop approximately 1:1. In this paper, both DS.1 and DS.2 are applied with CD and 

SD to test the feasibility and robustness of our methodology. 

k =  α ∙  
𝑁𝑢𝑚weed _i

𝑁𝑢𝑚 𝑤𝑒𝑒𝑑
 +  β ∙  

1

𝐶𝑙𝑠𝑤𝑒𝑒𝑑
         (2) 

where Numweed is the volume of weed data, Numweed_i is the volume of specific weed, Clsweed is the 

classes of weed, α and β are parameters set to 0.7 and 0.3. 

2.2.2. Searching an optimal model 

We use AutoKeras [11] as the AutoML framework for autonomous computing instead of testing 

models manually. AutoKeras is an open source package widely used for image and text classification. 

Deep models are feasible on powerful GPU in laboratory [12], but not on single board computer in 

farm robot. Hence, we restricted the model in AutoML to 300,000 parameters. 

Given a type of models, AutoML might yield totally different results for different data set, that 

would cause inconsistency in the next step. We hence proposed Algorithm 2 to make the searching 
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procedure feasible in multiple data sets, which allowed us to get similar model structure besides the 

output layer. For models of the same type, there is only a slight structure divergence in the last two 

layers, as different data sets have unequal classes.  

 

Algorithm 2 Optimal models in multiple data set 

Input: T={T1, T2, · · · ,Tm}, DS={DS.1, DS.2, · · ·, DS.n} 

Output: M={M1, M2, · · · ,Mm}; 

1: M = ∅ 

2: for t ∈ T do 

3:   for ds ∈ DS do 

4:      trailst
ds = search (t, ds) 

5:   end for 

6:   Common = trailst
𝐷𝑆.1∩trailst

𝐷𝑆.2∩· · ·∩trailst
𝐷𝑆.n  

7:   if Common ≠ ∅ then 

8:      bestt = max(common) 

9:   else 

10:     score_table = ∅ 

11:     for ds ∈ DS do 

12:       score_table += evaluate(trailst
ds ,DS) 

13:     end for 

14:     bestt = max(score_table) 

15:   end if 

16:   Mt = bestt 

17: end for 

18: return M 

 

As shown in Algorithm 2, the algorithm takes AutoML model type list T, data set list DS as the 

input. It outputs a list of optimal models M in the given data sets and model types. In line 4, search 

function is used for searching models, which requires type of model t, current data set ds. Return of 

search function is an optimal CNN model derived from AutoKeras. In line 6, the operator of set 

intersection ∩ is used to get common part of two model list. 

2.2.3. Models training 

The training process of a CNN is an optimization problem in which various functions are applied 

to measure the distance between the true value vector y and the predicted value vector ŷ. For 

classification tasks, Categorical Cross Entropy (CCE) is the simplest and most commonly used 

objective function, shown in Equation (6). For each element in true value y and output ŷ, CCE yield 

1 if they are the same, otherwise, it is 0. 

𝑦 =  𝑦1 , 𝑦2  ⋯ 𝑦𝑛  
𝑇 , 𝘺̂ =  ŷ1 , ŷ2  ⋯ ŷ𝑛  

𝑇       (3) 

𝑒𝑞𝑢𝑎𝑙∗(𝑎, 𝑏)  =   
 1  𝑎 − 𝑏 = 0
 0  𝑎 − 𝑏 ≠ 0

         (4) 

𝑒𝑞𝑢𝑎𝑙([𝑎1,𝑎2, ⋯𝑎𝑛 ]
𝑇 , [𝑏1,𝑏2, ⋯𝑏𝑛 ]

𝑇) = [𝑒𝑞𝑢𝑎𝑙∗(𝑎1 , 𝑏2), 𝑒𝑞𝑢𝑎𝑙∗(𝑎2 , 𝑏2)⋯ 𝑒𝑞𝑢𝑎𝑙∗(𝑎𝑛 , 𝑏𝑛)]𝑇 (5) 

𝐶𝐶𝐸  =  𝑒𝑞𝑢𝑎𝑙(𝑦, 𝘺̂)         (6) 
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Although CCE is widely used, it still has some shortcomings in handling misclassification of 

farming tasks, because CCE leads the model to predict accurately based on a unified rule. In the real 

framing tasks, the cost of misclassification will depend on the pragmatic situation; i.e., the cost of 

classifying weed to crop is low while it's bearable to leave a few weeds; however, the cost of 

classifying crop to weed tends to be high, while it's disadvantageous to remove any part of authentic 

crops. 

In order to lower the risk of killing the crops, new objective functions are used in our training 

procedure: no miss weed (NMW) in Equation (11) and dual metrics (DM) in Equation (12). In 

Equation (7): w stands for weed in the data set, p for kinds of weed, q for kinds of crop in the data set, 

u for the unlabeled object, which does not exist in the original set and has been added for new 

objective function, and p, q, r stand for the volume of their sets. In Equation (8), the result of 

contain() function is a vector if the target vector tar contains any elements in template vector temp, 

e.g., the value of tar is assumed to be [1,0,2,1] for model’s answer, the value of temp is assumed to 

be [0,2] for valid answer, so the result of contain() is [False, True, True, False]. 

𝑤 =  𝑤1 , 𝑤2  ⋯ 𝑤𝑝 
𝑇

, 𝑐 =  𝑐1 , 𝑐2  ⋯ 𝑐𝑞 
𝑇

, 𝑢 =  𝑢1 , 𝑢2  ⋯ 𝑢𝑟 
𝑇 ,    (7) 

𝑐𝑜𝑛𝑡𝑎𝑖𝑛(𝑡𝑒𝑚𝑝, 𝑡𝑎𝑟) =  [𝑡𝑎𝑟 ∧  𝑡𝑒𝑚𝑝𝑖 ∙  1]
𝑡𝑒𝑚𝑝
𝑡𝑒𝑚𝑝 𝑖

      (8) 

The objective function NMW is comprised of CCE, tolerance of homogeneity Tolhomo in Equation 

(9) and tolerance of unknown Tolunknow in Equation (10). Tolhomo yield 1 when predicted value and its 

true value are in the same group, and Tolunknown yield 1 when predict as unknown. These two 

objective functions disclose some latent information to models, or some tolerance when models 

predict with slight errors. Then we apply a logical OR operator between CCE and tolerance. In short, 

NMW returns 0 if and only if the object belonging to crop is predicated as a weed. 

𝑇𝑜𝑙ℎ𝑜𝑚𝑜  =  [𝑐𝑜𝑛𝑡𝑎𝑖𝑛(𝑎, 𝑦) ∧ 𝑐𝑜𝑛𝑡𝑎𝑖𝑛(𝑎, 𝘺̂)]
[𝑤,𝑐]
𝑎       (9) 

𝑇𝑜𝑙𝑢𝑛𝑘𝑛𝑜𝑤  = 𝑐𝑜𝑛𝑡𝑎𝑖𝑛(𝑢, 𝑦)        (10) 

𝑁𝑀𝑊 =  𝐴𝑐𝑐 ∨ (𝑇𝑜𝑙ℎ𝑜𝑚𝑜  ∧ 𝑇𝑜𝑙𝑢𝑛𝑘𝑛𝑜𝑤  )       (11) 

𝐷𝑀 =  [𝐴𝑐𝑐, 𝑁𝑀𝑊]         (12) 

DM is a vector of objective functions instead of a single objective function like CCE and NMW. 

In model training, if the model's optimizer accepts multiple objective functions, the model will 

optimize them separately instead of optimizing the corresponding sum. After randomizing weights, 

we trained these models with these two new objective functions: NMW and DM. 

2.3.  Ensemble modeling and prediction 

The strategy of ensemble modeling is shown in Fig. 2 S4, where models A, B and C have been 

trained in the same configuration; P1, P2 and P3 as predictions of the models, and the corresponding 

order is arbitrary; in Pred(m) block, cate is category of prediction, like potato, tomato or apple; type is 

the group of this prediction, crop, weed or unknown; and Act(m) shows how the model suggest to deal 

with these objects. Some key points of the ensemble modeling are explained as follows. 

1) If all models reach a consensus, in the sense that they give the same prediction in a specific 

category, then give the final prediction. 2) If more than half of the models reach a consensus on 

identifying as a crop, e.g. [crop1,crop1,weed1] of three models, we mark this object as crop1 if there 

still have a gap between classified crop1 and the total crop1, and 3) Otherwise we merely mark it as 

unknown. 
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When dealing with consensus and disagreement, our method is the same as other methods of 

ensemble models, but we have different treatments in processing crop-like (Case 2 above) and the 

other predictions, because treating a crop as a weed, which causes crop killing, will reduce the yield 

of field production. For Case 2, total amount of crops was employed in ensemble strategy since it 

was easy to obtain in field.  

3. Result and discussion 

3.1.  Performance metrics 

Performance metrics used in this paper include Accuracy and Recallcrop, which are defined in 

Equations (13) and (15).  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1

|𝑤+𝑐|
∙ | 𝑒𝑞𝑢𝑎𝑙(𝑦, 𝘺̂) |       (13) 

𝐶𝐾𝑅 =
1

|𝑐|
∙ | ~ 𝑒𝑞𝑢𝑎𝑙(𝑦 ∙ 𝑐𝑜𝑛𝑡𝑎𝑖𝑛(𝑐, 𝑦), 𝘺̂ ∙ 𝑐𝑜𝑛𝑡𝑎𝑖𝑛(𝑤, 𝘺̂) )|    (14) 

𝑅𝑒𝑐𝑎𝑙𝑙𝑐𝑟𝑜𝑝 = 1 –  𝐶𝐾𝑅         (15) 

where y denotes the true value, and ŷ means the prediction value. Besides, function equal, function 

contain, weed data w, and crop data c are defined in Equations (5), (7) and (8) earlier. 

In crop and weed classification, Accuracy is the number of correctly predicted plants out of all 

the plants. For CKR, its numerator is the number of crops identified as weed, and its denominator is 

the number of all crops. Recallcrop is the detected crops out of all crops, which equals to 1 – CKR. 

Note that identifying a crop to other kind of crop is a valid detection in the context of Recallcrop. 

3.2.  Models from searching 

 

Figure 4. Configuration of most appropriate models by Algorithm 2. 
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For brevity of description, we name the generated models by their certain characteristics and 

structures. Vanilla neural network, dubbed Vanilla, has similar structure as an earlier neural network 

named AlexNet [13]. Convolution neural network, dubbed Conv, has a similar structure as a famous 

convolution neural networks named VGG [14]. Dilated convolution neural network, dubbed Dilated, 

has a similar structure as Conv but a new type of dilated convolution block [15,16]. 

To evaluate these three generated models by AutoML, five state of the art CNN models are used 

as baseline models for comparison: DenseNet201 [17], InceptionV3 [18], VGG19 [14], Xception [19] 

and Res-Net152v2 [20]. These five models have achieved the top ranking in the ImageNet 

competition [21]. Their number of parameters range from twenty million to one hundred million, at 

least 100 times of our generated model parameters. All the baseline models are denoted with * in the 

last five rows of Table 1. 

Because crops are the goal of agricultural production, the mis-identification of crops as weeds 

can be costlier than other cases. Accuracy measures only overall performance on crop and weed, so 

we use Recallcrop to measure the effect on crop classification. For example, suppose a dataset has two 

classes dubbed as CROP and WEED containing 7 weeds and 3 crops. If a crop and a weed were 

identified incorrectly, then we would get 80% Accuracy and 60% Recallcrop according to (13) and 

(15). The training time of the baseline model and the search time of the generated model are also 

considered. Details of the evaluation are shown in Table 1. 

Table 1. Models comparison. 

The above models achieve high Accuracy and Recallcrop at most cases. For the training time on 

GTX 2080Ti GPU, it took more than 10 hours to generate the model, while the baseline model only 

took less than 1 hour. Such time consumption is acceptable if no human intervention is required. 

However, the Recallcrop score is always lower than the Accuracy score, which may be caused by 

prediction bias in imbalanced data sets. Low Recallcrop is an unpromising result for crop and weed 

classification. In addition, CCE is used to determine the specific type of target, which assumes that 

all misclassification errors made by a model are equal. Thus, we tried to use sampling approaches to 

treat the imbalanced data set, and new objective functions to fix the training problem regarding CCE. 

According to Accuracy and Recallcrop values in Table 1, two scatter diagrams are plotted to 

further analyze the performances of these models in Fig. 5. We can see that ResNet achieves the best 

performance, hence we choose ResNet as our baseline models in the subsequent experiments. 

Limited to parameter size, the performances of the generated models are similar to most baseline 

models. 

Model DS.1 DS.2 

Accuracy Recallcrop Time Accuracy Recallcrop Time 

Vanilla 98.06% 93.36% 12.4h 99.24% 97.76% 15.5h 

Dilated 98.34% 94.24% 9.5h 99.53% 98.64% 11.3h 

Conv 97.51% 93.72% 12.4h 99.06% 96.88% 14.2h 

*DenseNet201 [17] 98.26% 93.88% 0.6h 98.95% 96.93% 0.5h 

*InceptionV3 [18] 98.96% 94.93% 0.6h 99.51% 97.49% 0.6h 

*VGG19 [14] 98.58% 94.15% 0.8h 99.20% 96.59% 0.8h 

*Xception [19] 97.16% 92.65% 0.7h 99.49% 97.77% 0.6h 

*ResNet152v2 [20] 99.52% 98.44% 1.0h 99.58% 98.72% 1.0h 
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Figure 5. Accuracy and Recallcrop of the models. 

3.3.  Model training 

The training curves of the models and the corresponding final scores are shown in Fig. 6. For 

each data set, DS.1 and DS.2, model training is carried out based on sampled data set and complete 

data set. For each data usage method, the models are trained considering three objective functions i.e., 

CCE, NMW and DM. As CCE and NMW are combined in DM, it has two separate plots which are 

DM-CCE and DM-NMW. 

In general, the curves become stable after about 60 epochs, reaching high scores of more than 96% 

after 64 epochs. The curves of ResNet have more fluctuations than others, which might be due to the 

corresponding deep and special structures. The final scores of NMW are slightly higher than scores of 

CCE, while DM-CCE scores slightly higher than CCE scores. Based on the training curves and 

scores, the models are sophisticated enough to be applied for the next task. So, we use the combined 

model to determine the appropriate configuration, in other words, the one with high Accuracy and 

low CKR. 
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Figure 6. Models training. 

3.4.  Ensemble modeling and predicting 

The ensemble strategy shown in Section 2.3 is used to build the ensemble model from three 

generated models. Since there are two data usages (CD and SD) and three objective functions (CCE, 

NMW and DM), we have six configurations on each data set, as shown in the first column of Table 2. 

Evaluations of ensemble models and the corresponding sub-models on the test data sets are shown in 

Table2 and Fig. 6. 
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Table 2. Accuracy of models. 

Experiments 
DS.1 DS.1 

The best
 

Ensemble The best Ensemble 

CD-CCE 99.58% 99.27% 99.53% 99.02% 

CD-NMW 99.03% 99.76% 99.41% 99.64% 

CD-DM 99.58% 99.76% 99.48% 99.84% 

SD-CCE 99.24% 99.52% 99.11% 99.92% 

SD-NMW 99.27% 99.76% 99.56% 99.88% 

SD-DM 99.24% 99.76% 99.87% 99.96% 

In the evaluation, the scores of the sub-models are no longer displayed separately except for the 

highest and lowest ones in the sub-models. In Table 2, ‘The Best’ indicated the highest Accuracy 

among the sub-models, which are slightly better than the ensemble model in most cases.  

Besides achieving high Accuracy, analyzing the misclassification to reduce CKR is the main goal 

of this project, hence 0% CKR means that no crop is misclassified as weed, so no crop will be 

wrongly killed. To measure the misclassification more accurately, we divide them into four 

categories as follows: 

1. Moderate errors: they occur when the model classifies an object as unknown, which occur in 

new objective functions. 

2. Minor errors: they occur when the model's prediction is inconsistent with the corresponding 

label, but both are in the same type, for instance the prediction is weed1, but the label is 

weed2; 

3. Considerable errors: they occur when the models predict a weed as a crop; 

4. Dangerous errors: they occur when the models predict a crop as a weed. 

These errors are ranked based on their outcomes in practice. For moderate errors, we have a 

chance to rectify them manually. While minor errors do little (or nil) harm to the field, considerable 

errors leave a weed in field and dangerous ones kill a crop mistakenly. 

By dividing the misclassification, we find that CKR only depends on the amount of dangerous 

errors. For a specific crop named A, the misclassification types would include classifying A as a 

weed (dangerous error), classifying A as another crop (minor error), and classifying A as an unknown 

object (moderate error). Thence, the total CKR will decrease if the dangerous errors can be reduced. 
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Figure 7. Errors percentages of models. 

The percentages of four errors are shown in Fig. 7. In the analysis of errors’ percentage, the worst 

means the highest scores of four errors, in other words, the four scores may come from different 

sub-models. Accordingly, the best means the lowest scores herein. 

For sub-models, the models with CCE reach the highest dangerous error rates, and the models 

with DM reach the lowest dangerous error rates. For data usage, sampling approaches did not really 

achieve an obvious reduction in error rates. In most cases, the ensemble model reaches the lowest or 

even 0.00% dangerous error rate, and the highest moderate error rate. In summary, our proposed 

ensemble strategy and the corresponding objective function can reduce the CKR by lowering the rate 

of dangerous errors. 

4. Conclusions 

This work proposes a methodology of crop and weed classification based on AutoML and 

ensemble modeling. AutoML-based algorithm helps us to automatically choose the CNN models 

among two data sets. Models with different data usages and different objective function are used to 

build ensemble models. Overall, the ensemble model with objective function DM achieves highest 

Accuracy and lowest CKR. Thus, we hypothesize that by applying this method, we can effectively 

move towards desired outcomes in precision farming. 
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While we made contributions as mentioned above, due to the environmental constraints, our 

method was only evaluated in green house, and performance in other environments still needs to be 

tested. We hope to tackle the limitation in near future experiments with input of more generic data 

sets. 
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