NHM, 20(4): 1292-1332.

AR) DOI: 10.3934/nhm.2025056
%ﬁﬁ][\‘;ZZVQV:;;ZTZCZZ)CZIS Media Received: 28 March 2025
~ - Revised: 07 November 2025

Accepted: 21 November 2025
https://www.aimspress.com/journal/nhm Published: 05 December 2025

Research article

Kinetic modeling approach for a heterogeneous neuronal network activity
using adjacency matrices

M. Menale'*, C. Tribuzi’, R. Shah', C. A. Lupascu® and A. Marasco'*

! Department of Mathematics and Applications, University of Naples Federico II, Naples, Italy
2 Nova Analysis, Brescia, Italy
2 Institute of Biophysics, National Research Council, Palermo, Italy

* Correspondence: Email: marco.menale @unina.it.

Abstract: The heterogeneity of neuronal networks plays a crucial role in shaping emergent dynamics.
In this work, we introduced a kinetic modeling approach to describe the activity of heterogeneous
neuronal networks through transition probabilities and adjacency matrices. The model explicitly
accounts for both structural and functional heterogeneity by considering two interacting neuronal
populations—excitatory pyramidal neurons and inhibitory interneurons—distributed across network
slices. The transition probabilities encode the binary stochastic interactions between neurons, capturing
both the neuronal types involved (excitatory or inhibitory) and the connectivity structure within and
between slices. Complementarily, adjacency matrices define the weighted connections among neurons,
specifying the structural organization of each slice and the interactions across slices. Together, these
two components characterize the functional and the structural heterogeneity of the system. From this
framework, we derived a system of nonlinear ordinary differential equations describing the mesoscopic
dynamics of the network. First, for the one-slice model, we provided analytical results on the existence
and stability of equilibrium states. Then, we presented numerical simulations for two- and four-slice
networks to investigate the role of functional and structural heterogeneity. In particular, after defining
the excitatory-, inhibitory-, and balanced count regimes and introducing an a priori criterion for their
identification, we demonstrated how heterogeneity influences both the short- and long-term dynamics
of the network. Our findings revealed that increasing heterogeneity not only alters the proportion of
active neurons but also induces more complex dynamical behaviors, potentially driving shifts between
excitatory-count- and inhibitory-count-dominated regimes.

Keywords: mathematical modeling; stochastic interactions; network connectivity; inhibitory- and
excitatory-count-dominated network regimes; external inputs

https://https://www.aimspress.com/journal/nhm
https://dx.doi.org/10.3934/nhm.2025056

Supplementary 1.

In Figure S1, we show the dynamics of active interneurons and pyramidal neurons across the whole
network for each stimulation scenario described in Table 4 of the main text and corresponding to panels
A-D of Figure 13. For each case, the fraction 7, ¢ of inactive interneurons and pyramidal neurons that
become active at each time #, within the interval [0, 10] is shown as green stem plots. The percentages of
newly activated interneurons and pyramidal neurons (red and blue stems, respectively), together with the
percentage of active neurons at each time step (black stems), are reported for each stimulation scenario.

These figures also include a comparison between the intrinsic network dynamics (in the absence of
external input, dashed lines) and the externally driven dynamics (solid lines), in terms of the fraction
of active interneurons (red dashed and continuous lines) and pyramidal neurons (black dashed and
continuous lines).

- pyr — int

T % active neurons

relative frequency

T T % activated neurons

o 2 a4 6 8 10 o 2 4 6 8 10

Figure S1. Oscillatory network dynamics induced by external inputs. Different oscillatory
regimes emerge under external stimulation, ranging from constant and time-varying periodic
inputs (panels A and B, respectively) to periodic constant and randomly time-varying bursting
activity (panels C and D, respectively). Owing to the connectivity structure and interaction
probabilities, the external inputs propagate throughout the network, giving rise to distinct
oscillatory patterns.

Networks and Heterogeneous Media Volume 20, Issue 4, 1292-1332.

Oscillatory network dynamics induced by external inputs in the four-slice model

In Figures S2-S5, we report the dynamics of active interneurons and pyramidal neurons for the whole
network (left panels) and for each slice (middle and right panels) under the external inputs summarized
in Table 4 of the main text. These simulations correspond to the scenarios highlighted in the insets of
panels A-D in Figure 16 (as detailed, for each case, in the upper-left subpanel of Figures S2-S5).

For each case, the fraction 7, g of inactive interneurons and pyramidal neurons that become active at
each time ¢, within the interval [0, 10] is shown as green stem plots in each left panel. Each figure also
displays the stem plots of the percentage of active interneurons and pyramidal neurons (black stems),
together with the percentage of newly activated interneurons and pyramidal neurons (red and blue stems,
respectively), both at the whole-network level and within each slice.

Across all panels of Figures S2—-S5, only slice 1 is directly affected by the external stimulation. In
contrast, slices 2—4 show no externally induced activation of either interneurons or pyramidal neurons
(as evidenced by the absence of external-activation markers in the corresponding stem plots). The
activity observed in these slices is therefore entirely driven by their connectivity with slice 1.

In all scenarios, the figures showing the dynamics of the whole network and of each individual slice
also include a comparison between the intrinsic dynamics (in the absence of external input, dashed
lines) and the externally driven dynamics (solid lines), in terms of the fraction of active interneurons
and pyramidal neurons.

slice 1 slice 2

RN IR

NI ERARERAR NRRRARRNARERY

Pl

RN R IR R RS R RIRI R

2 4 6 8 10 o 2 a 6 8 10
time time

T%active neurons TT%activated neurons — pyr — int = pyr — int — pyr — int pyr int

Figure S2. Oscillatory dynamics induced by constant and periodic external inputs targeting
slice 1 (panel A of Figure 14). Oscillations corresponding to panel A of Figure 14 arise
when a constant fraction of inactive interneurons and pyramidal neurons in slice 1 are
externally activated at times 0.8%, & € N. Due to the connectivity structure and interaction
probabilities, this periodic stimulation propagates throughout the network, giving rise to
oscillatory dynamics across all slices.

Networks and Heterogeneous Media Volume 20, Issue 4, 1292-1332.

slice 1 slice 2

’{%vzﬁ% e bt LTI
éwo _A u1.o

=== e i L

1.0 overall network 1.0 slice 3 slice 4

ittty

1 1 |1
el L sl LT

04 il N

N . ®
A\

— pyr —int

2 a 6 8 10
time

T%active neurons TT%activated neurons — pyr — int —— PYyr — int —— pyr — int pyr — int

Figure S3. Oscillatory dynamics induced by time-varying periodic external inputs targeting
slice 1 (panel B of Fig. 14). Oscillations corresponding to panel B of Fig. 14 arise when
a time-dependent fraction of inactive interneurons and pyramidal neurons in slice 1 are
externally activated at times 0.8/, h € N. Owing to the connectivity structure and interaction
probabilities, this periodic stimulation propagates throughout the network, leading to distinct
oscillatory patterns across all slices.

10 slice 1 slice 2

ool | Sos
oo | ®
£ o0 0.0
10
8 400 .
£
200 £os
®
o
° 2 3 6 B 10

KETERTSTINTITINIEY ‘ [110 trre ttee 1tey

s L L
2 LI

o ¢
5 o &

I
4
N

relative frequency
° s o

1.0
[J a 6 8 10 [}
time time time.

RARERERS mrrrrr RESERARAERA R Hsrm 11 HH 1111 Hslml
| L0 s I C I
'Tn% activ:neurons‘ h;h 6% activat:d neun::s — pyr — int — pyr — int — pyr — :nt = pv: — ":

Figure S4. Oscillatory dynamics induced by regular bursting external inputs targeting slice 1
(panel C of Figure 14). Oscillations corresponding to panel C of Figure 14 emerge when
a constant fraction of inactive interneurons and pyramidal neurons in slice 1 are externally
activated following a regular bursting regime. Owing to the connectivity structure and
interaction probabilities, this rhythmic input propagates throughout the network, resulting in
regular bursting activity both at the whole-network level and within each slice.

Networks and Heterogeneous Media Volume 20, Issue 4, 1292-1332.

slice 1 slice 2

1.0 overall network 1.0 slice 3 slice 4

o ot 5 oot b oo
2 HMTTRATI

[) 2 a 6 8 10

T%active neurons TT%activated neurons — pyr — int —— PYyr — int —— pyr — int pyr — int

Figure S5. Oscillatory dynamics induced by intermittent bursting external inputs targeting
slice 1 (panel D of Figure 14). Oscillations corresponding to panel D of Figure 14 emerge
when a time-varying fraction of inactive interneurons and pyramidal neurons in slice 1 are
randomly activated by external inputs. Owing to the connectivity structure and interaction
probabilities, this intermittent stimulation propagates throughout the network, giving rise to
irregular bursting activity both at the whole-network level and within each slice.

Networks and Heterogeneous Media Volume 20, Issue 4, 1292-1332.

Supplementary 2.
The Python code, available in the ModelDB section of the Senselab database (https://modeldb.
science/2020339), consists of four files that together implement the full workflow for running

simulations of the kinetic model and visualizing the results.

High-level overview

Simulation_setup_GUI.xlIsx

kinetic_model_package.py

A 4

kinetic_model . .
simulation_plots.py

reads_input_from_xls.py
e defines model equations

readsSimulationSetup e integrates with solve_ivp

T

kinetic_model_usage.py

create2Plots

createlPlot

Main script

e Reads setup
e (Calls kinetic_model
e Calls createlPlot

Figure S6. Workflow of the Python kinetic model simulation.

Step-by-step workflow

1. Input reading
File: reads_input_from x1s.py
Function: readsSimulationSetup(filepath, sourceFileName)

e Reads the Excel file Simulation_setup_GUI.x1sx.
e Extracts:

— listS: number of neurons per slice.

— conteggioPYR: pyramidal neuron counts.

— Weight matrices: W.INT_INT, W_.INT_PYR, W_ PYR_INT, W_PYR_PYR.

— Probability dictionaries: dictProbab = {’pl’,’p2’,’ql’,’q2’}.
— Initial conditions: initialConditions.

e Returns all parameters as Pandas DataFrames, dictionaries, and lists.

Networks and Heterogeneous Media Volume 20, Issue 4, 1292-1332.

https://modeldb.science/2020339
https://modeldb.science/2020339

2. Model definition and integration
File: kinetic_model package.py
Function: kinetic_model(...)

e Defines the kinetic model.
o Steps:

— Reads the initial conditions.

— Reads the transition probabilities and computes their average values (C_prob, D_function).
— Constructs matrices for each type of binary interaction (int-int, int—pyr, pyr-int, pyr-pyr).

— Builds the system of ODEs in M_rhs(t, NL).

— Solves ODEs using SciPy’s scipy.integrate.solve_ivp with the BDF method.

— Returns the complete solution object sol.

The Python code employs the solve_ivp function from the SciPy library to solve the initial
value problem associated with the system of ODEs derived from the kinetic model. The integration
method used is the Backward Differentiation Formula (BDF), an implicit multi-step variable-order
(1 to 5) scheme based on a backward differentiation formula for the derivative approximation. The
implementation follows the algorithm described by Shampine and Reichelt in [1]. A quasi-constant
step size is adopted, with accuracy enhanced through the Numerical Differentiation Formulas (NDF)
modification. The simulation uses the default time-step configuration, meaning that the step size is not
bounded and is determined adaptively by the solver.

3. Plotting and results
File: simulation_plots.py
Functions:

e createlPlot(listS, scalatura, sol, simName, outputFolder)
e create2Plots(listS, cap, sol, simName, outputFolder)

Purpose: Visualizes the simulated network activity.

e Separates interneuron and pyramidal neuron outputs (create2Plots) or plots them together
(createlPlot).

e Uses Matplotlib for data visualization.

e Saves the resulting figures as PNG files into the output folder.

4. Model execution
File: kinetic_model usage.py
Purpose: Main script that orchestrates the workflow.

e Imports the other three modules.

import kinetic_model_package

from kinetic_model_package import kinetic_model

from simulation_plots import createlPlot, create2Plots
import reads_input_from_xls

from reads_input_from_xls import readsSimulationSetup

Networks and Heterogeneous Media Volume 20, Issue 4, 1292-1332.

e Define external input characteristics:
— frequency: list of frequencies at which external input acts on the network.
— noiseTypeString : specifies the type of external input:
(a) ‘none’ —no external input is applied;
(b) ‘constant’ — external input is defined by a constant value;
(c) “sin712’ —external input is generated using a sine function as defined in Eq (39) of the
main text.

e Reads the simulation setup:
(netName, listS, conteggioPYR, W_INT_INT, W_INT_PYR,
W_PYR_INT, W_PYR_PYR, dictProbab, ic) = readsSimulationSetup(...)

e Transposes the weight matrices.
e Computes the time scaling factor, derived from the network population size as

tS — 1/(1O|_10g10(npyr+nim)J)2’

where |- | denotes the floor function.
This time scaling factor is then used to rescale the time axis in the plots.
e Calls kinetic_model to execute the simulation using the defined setup.

sol = kinetic_model(listS, conteggioPYR, dictProbab, np.array(ic),
W_INT_INT, W_INT_PYR, W_PYR_INT, W_PYR_PYR, maxTime,
frequency, noiseTypeString)

e Generates the simulation plots:

createlPlot(listS, scalatura, sol, simName, outputFolder)

Execution flow summary

e Start -kinetic_model_usage.py

¢ Read input — reads_input_from x1s.py

e Run model — kinetic model_package.py

e Generate plots —» simulation plots.py

e End — Saves simulation figures as .png files in the results folder

How to run the code

This section describes the procedures to run the Python scripts. The user interface is designed to
simulate the four-slice network model (see Figure S7).
1. Define the network properties in the Simulation_setup_GUI.x1sx file.

e Enter the simulation name, which will be used when generating plot images;

e specify the neuron count per slice, the initial conditions per slice, the network connectivity,
and the transition probabilities;

e save the file

2. Configure external inputs in the kinetic model usage. py script:

Networks and Heterogeneous Media Volume 20, Issue 4, 1292-1332.

(a) define the type of external input using the noiseTypeString variable:

e ‘none’:— no external input is applied.
e ‘constant’— constant external input is applied (see Eq (3.20) in the main text).
e ‘sin712’: sinusoidal external input is applied (see Eq (3.20) in the main text).
(b) select the frequency for external inputs:
e ‘none’: no external input is applied;
e ‘constant’: assign a constant frequency (see Eq (3.20) and Table 4 panels A and B);
e ‘burst’: assign a burst frequency (see Eq (3.20) and Table 4 panel C);
e ‘random’: assign a pseudo-random frequency (see Eq (3.20) and Table 4 panel D)

(c¢) Run the code.

3. Saved figures can be accessed in the results folder.

I insert_simulation_name

neuron counts in'rlizl con_diﬁnns
o active
Mint Npyr S int % pyr
slice 1 240 1200 slice 1 5% 1%
slice 2 240 1200 slice 2 0% 0%
slice 3 240 1200 slice 3 0% 0%
slice 4 240 1200 slice 4 0% 0%
connectivity structure

a {int-to-int) B (pyr-to-pyr)

% slice1 slice2 sliced sliced L slice1 slice2 slice3 sliced
slice 1 30% T0% 2% 0% slice 1 5% 30% 30% 30%
slice 2 0% 30% 5% 2% slice 2 0% 12% 10% 10%
slice 3 0% 0% 20% 5% slice 3 0% 5% 5% 0%
slice 4 0% 0% 0% 20% slice 4 0% 0% 0% 5%

W (pyr-to-int) & (int-to-pyr)

% slice1 slice2 slice3 sliced L slice1 slice2 sliced sliced
slice 1 10% 5% 5% 0% slice 1 15% 15% 5% 0%
slice 2 0% 10% 10% 5% slice 2 0% 50% 10% 5%
slice 3 0% 5% 5% 5% slice 3 0% 5% 20% 5%
slice 4 0% 0% 5% 5% slice 4 0% 5% 5% 20%

transition probabilities

Pi (pyr-to-int) @, (int-to-int)
slice1 slice2 sliced sliced slice1 slice2 slice3 sliced
slice 1 0.01 0.1 01 03 slice 1 0.05 0.1 01 01
slice 2 01 0.02 0.1 03 slice 2 0.1 0.1 [N 01
slice 3 0.3 0.3 0.03 03 slice 3 0.1 01 o1 01
slice 4 0.1 01 0.1 03 slice 4 0.1 0.1 01 0.1
Pz (pyr-to-pyr) qz (int-to-pyr)
shce1 slice2 slice3d sliced slice1 shce2 shceld sliced
slice 1 0.07 0.045 0.045 0.045 | slice1 0.99 0.99 03 0.3
slice 2 01 01 0.045 0.045 | slice 2 0.9 09 09 0.3
slice3 0045 0.045 01 01 slice 3 0.3 0.4 07 0.9
slice4 0.045 0.045 0.1 01 slice 4 0.3 0.3 0.7 0.7

Figure S7. Simulation_setup_GUI.xlsx file. User interface for running the four-
slice model.

Networks and Heterogeneous Media Volume 20, Issue 4, 1292-1332.

10

Reference

1. L. F. Shampine, M. W. Reichelt, The matlab ode suite, SIAM J. Sci. Comput., 18 (1997), 1-22.
https://doi.org/10.1137/S1064827594276424

@ AIMS Press

Networks and Heterogeneous Media

©2025 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

Volume 20, Issue 4, 1292-1332.

https://dx.doi.org/https://doi.org/10.1137/S1064827594276424
https://creativecommons.org/licenses/by/4.0

