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Appendix
A. Proof of Equation (2.9)

According to Guo et al. [27], we derive the exploratory wealth process under stochastic policy I1.
Assume the investor selects portfolios according to strategy II, which is independent of the driving
Brownian motion. By the Central Limit Theorem, the limiting distribution depends only on the first
and second moments. Consider N independent Brownian sample paths {W/,n =1,2,--- ,N}. For a
uniform partition of [0, 7] with mesh size At, the corresponding wealth increment on [z,¢ + Af] takes
the form

AX" (1) = (u(t, o) — Nu(®) AL+ o (t,0,) (S ()P u(t) AW, (A.1)

and the corresponding risky asset is

AS"(1) ~ u(t,a)S" () At + o (t,a ) (S () PEOT T AW, (A.2)
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The law of large numbers yields
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(A.3)
on the other hand
1 i AX" (1) =25 E[AX,] 1 i (AX"())> 225 E[(AX,)?] 1 i AX"()AS" (1) == E[AX(H)AS (1)]
Nn=1 ” Nn=1 o Nn=1 ‘

We replace (2.4) with the following process linked to the randomized strategy, which serves as the
basis for the EMV formulation

X" (1) = (u(t,00) — )M(t,a)dt + (1, 0)ST " (M(t,0)d Wy + N(t,a)d W) (A4)
W, is the Brownian motion independent of W, and
M(t,a;) = fR u(t,a)dl,(u) , N*(t,a;) = fR u? (1, a)dIT (1) — M2 (t, ).
B. Proof of Theorem 3.2

Recall the classical MV problem with regime switching (2.8). By applying the dynamic
programming principle, we derive the HIB equation

) 1 ‘ A
min {(m —rult,e)Vi(t, s, x,e;) + Eafszﬁ WA (t,e)Virlt, 5,x,€0) + 2 sP  u(t, e) V(2. 5, x, €7)
u

n (B.1)
1
+ qijV(t, X, S, ej) + Vi(t, s, x,e;) + uisV(t, s, x,e;) + Eo'l.zszﬁiJerss(t, s,x,e;)=0.
=1
The optimal solution u*(t, s, x,e;) of the HIB equation is given by
=)Vt s,x,e;) + 02BNV (1,5, x, €))
i (t, s, x,e7) = — Wi = ¥ ! = ’ (B.2)
O-i S ﬁl Vxx(t, S7 x7 el)
Assuming the value function is

V(t, s, x,e;)=a(t,s,e)(x— w)2 —(w— z)2 +b(t,s,e;). (B.3)
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Substituting the optimal strategy u*(t, s, x,e;) and V(t, s, x, e;) into the HIB equation yields

(u;i —r)2al(t,s,e;)+ 0-i2s2/35+1 2a,(t,s,e;)

0'% - 5281 2a

A [( (ui—r)2a(t, s, e)(x—w)+ o'l.zszﬁi“Zas (t,5,€)(x—w) ﬂ
2a(t, s, e;)

as(t,s,e;) ()c—w)2 +(ui—r) [— ]261 (t,s,€;) (x—w)2

1
+ b (1, 5,¢) + ~0 2 5P

2! O'Z.zszﬁiZa (t,s,€;)
1 4 & (B.4)
+ E(J'izszﬁ“r2 [ass (t,s,¢)(x— w)2 + by (1, s, e,-)] + Z qij (a (t, s, ej) (x— w)2 + b(t, s, ej))
j=1
—1)2a(t,s,e;)+ 2025t a (1,5, ;)
2 2ﬁi+1 (/'tl r) PR} i ) et g ) ) 2
g _ 2a,(t, s, -
;s ( 20'1.2s2/3fa ( ag(t,s,e;)(x—w))
+uis (a5 (,5,€) (x=w)* +b; (1, 5,€) = 0.
Setting the coeflicient of (x — w)?to zero, we obtain
2 2
L as(t,s,e;
a(1,s,e) ~ ("’2 DNt 5,00+ (=21 1)+ i) say (1, 5,) — 2 212 2 5.0
O-i Szﬁi a(t$saei)
i n (B.5)
+ EO’?SZB#zass (t,5,e;) + Z qija (t’ s, e]) =0.
j=1
Setting the constant term to zero, the differential equation becomes
1, 2Bi+2 C _
bi(t,s.€0)+ ishs (t,5.e) + 507 by (tsen+ ) gij (b(r.s.¢5)) = 0. (B.6)

J=1

The solution to differential equation (B.5) can be obtained using the same method as for Equation (3.7),
Equation (B.6) has a particular solution of b (t, s,e;) = 0. We finally obtain the value of a(, s) as

a(,s) = H() exp(K()Y), (B.7)
where h;(t) and k;(t) satisfy the equations (3.16) and (3.17).

C. Proof of Theorem 4.1

Fix (t,x,s,¢;) € [0,T] xRXR X N. Suppose the policyII ={I1,,v € [t,T]} is admissible, and let
{X", 5 € [t,T]} denote the corresponding wealth process. II is obtained from (4.1). Applying Itd’s
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lemma, we obtain

— h - h - —
VI, XIS, e) = VIt x, 5,e) + f VI, XS, a,)dv + f Vi3, xS, a,)dx!
t t

h — h — —

1

+ f Vi XL S, )dSy+ 5 f Vo, X)L S, a)d(x™ XM,
t t

1 h — h - —
+5 f VI, XIS, a,)d(S,S ), + f VL, xS, a)d(x",S),
t t

h N _
+f anij(V9X\l;_[,Sv, ej)dV
t 5
J=1

h — — -
=Vt x,5,e0) + f (ST MVI 0, XS a) + oSBT VI, XIS ,)adw,
t
h — _
+ f o SENTVI G, XIS 0,)dW,
t

h _ — — -
+ f (VF(v,XV“,SV,e,-)+(m—r)M{'V}?(v,XP,SV,av)+uiSVV?(v,XP,SV,aV>
t
1 . = = = 1 . =
3ot ST + (VI IVEG XS ) + 5078 PPV XIS )

n
2Bi+1 I 10 10
+o2S P MWL, XIS L an) + Z oV, XIS e j)]dv.

j=1
(C.1)
Define the stopping time as

h — — — —
T, i= inf{h >t f 28 PRI, XIS, a,)) + o2S P ((Nl.H)Z + (M,H)Z)(V}}(V,XP,SV,av))zdv > n},

t

where n > 1, we obtain the following results

Vn(t’ X, S, ei) = E[Vn(h A TnaX}ll_[/\Tnash/\Tnaa,h/\Tn)
AT, — - —
- f (VXIS )+ (= DMV XIS )
t
S V0. XS ) + 207 S PO + NIV XIS ) (C.2)
1 2B:+2 i 2Bi+1 + T i
+ Eafsvﬂ 2yl xS ) + o2 P ML, XIS L ay)

n —_—
+ Z q(,‘,jV(v,Xll:[, Sv,ej))dv].
=1
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Under standard verification arguments and assuming V! is sufficiently smooth, we have
1 A
ViEx.5.e0) + (i~ MV, s.e0) + S5 (M) + (N Vi (e, x5, ) + pisVi (2, x5, e0)

1 n

+ Eol-zszﬁi+zvg(t, x,s,e;)+ O'izszﬁ”lMFVg(t, x,s,e;) — A + Z qijV(t, X, S, ej) =0,
=i

(C.3)

for any (¢, x, s,¢;) € [0,T]XxRXxR XN, we have

. ’ l R ’ ’
Vi'(t,x.5,€) +min ((m =MVt s.e) + 2ot (M + (V) Vixs.e) + sV (1, s.e0)

1 4 1y IT -

30 PRV s.0) + 0 F P MV (125,00 = AODAT) + > aiV(tx.5.¢5) | <O0.
j=1

N (C4)

The infimum in the Hamiltonian operator of the HIB equation IT is explicitly attained by the feedback

strategy derived from the regularizer’s optimality condition in (C.4) . Specifically
~ ~ hAT), . ~
Vit x,5,e) > E [V“(h AT Xpr, S i, » @i, )= f AWOIL)dv| X, = x]. (C.5)
t

Fo_r any fixed (¢,x,s,¢;) € [0,T]XxRXR XN, let h = T. Given the terminal condition VINT, x,s,¢;) =
VT, x,5,¢;)) = (x —w)> = (w—2)* and the admissibility of IT, we apply the Dominated Convergence
Theorem as n — oo to obtain

=Vt x,s.e0). (C.6)

_ - - T . _
VIt x,5,e) > E|VI(T, X}, ST, ar)— f AW)OT,)dv|X]" = x
t
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