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Appendix

A. Proof of Equation (2.9)

According to Guo et al. [27], we derive the exploratory wealth process under stochastic policy Π.
Assume the investor selects portfolios according to strategy Π, which is independent of the driving
Brownian motion. By the Central Limit Theorem, the limiting distribution depends only on the first
and second moments. Consider N independent Brownian sample paths {Wn

t ,n = 1,2, · · · ,N}. For a
uniform partition of [0,T ] with mesh size ∆t, the corresponding wealth increment on [t, t+∆t] takes
the form

∆Xn(t) ≈ (µ(t,αt)− r)u(t)∆t+σ(t,αt)
(
S n(t)

)β(t,αt) u(t)∆Wn
t , (A.1)

and the corresponding risky asset is

∆S n(t) ≈ µ(t,αt)S n(t)∆t+σ(t,αt)(S n(t))β(t,αt)+1∆Wn
t . (A.2)
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The law of large numbers yields

1
N

N∑
n=1

∆Xn(t) ≈
1
N

N∑
n=1

[
(µ(t,αt)− r)u(t,αt)∆t+σ(t,αt)(S n(t))β(t,αt)u(t,αt)∆Wn

t

]
a.s.
−−→

(
(µ(t,αt)− r)

∫
R

u(t,αt)dΠt(u)
)
∆t,

1
N

N∑
n=1

(
∆Xn(t)

)2
≈

1
N

N∑
n=1

σ2(t,αt)(S n(t))2β(t,αt)u2(t,αt)∆t
a.s.
−−→

(
σ2(t,αt)S (t)2β(t,αt)

∫
R

u2(t,αt)dΠt(u)
)
∆t,

1
N

N∑
n=1

∆Xn(t)∆S n(t) ≈
1
N

N∑
n=1

σ2(t,αt)(S n(t))2β(t,αt)+1u(t,αt)∆t
a.s.
−−→

(
σ2(t,αt)S (t)2β(t,αt)+1

∫
R

u(t,αt)dΠt(u)
)
∆t,

(A.3)
on the other hand

1
N

N∑
n=1

∆Xn(t)
a.s.
−−→ E[∆Xt],

1
N

N∑
n=1

(
∆Xn(t)

)2 a.s.
−−→ E[(∆Xt)2],

1
N

N∑
n=1

∆Xn(t)∆S n(t)
a.s.
−−→ E[∆X(t)∆S (t)].

We replace (2.4) with the following process linked to the randomized strategy, which serves as the
basis for the EMV formulation

dXΠ(t) = (µ(t,αt)− r)M(t,αt)dt+σ(t,αt)S
β(t,αt)
t

(
M(t,αt)dWt +N(t,αt)dW̃t

)
. (A.4)

W̃t is the Brownian motion independent of Wt and

M(t,αt) :=
∫
R

u(t,αt)dΠt(u) , N2(t,αt) :=
∫
R

u2(t,αt)dΠt(u)−M2(t,αt).

B. Proof of Theorem 3.2

Recall the classical MV problem with regime switching (2.8). By applying the dynamic
programming principle, we derive the HJB equation

min
u

{
(µi− r)u(t,ei)Vx(t, s, x,ei)+

1
2
σ2

i s2βiu2(t,ei)Vxx(t, s, x,ei)+σ2
i s2βi+1u(t,ei)Vsx(t, s, x,ei)

+

n∑
j=1

qi jV
(
t, x, s,e j

)+Vt(t, s, x,ei)+µisVs(t, s, x,ei)+
1
2
σ2

i s2βi+2Vss(t, s, x,ei) = 0.
(B.1)

The optimal solution u∗(t, s, x,ei) of the HJB equation is given by

u∗(t, s, x,ei) = −
(µi− r)Vx(t, s, x,ei)+σ2

i s2βi+1Vsx(t, s, x,ei)

σ2
i s2βiVxx(t, s, x,ei)

. (B.2)

Assuming the value function is

V(t, s, x,ei) = a (t, s,ei) (x−w)2− (w− z)2+b (t, s,ei) . (B.3)
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Substituting the optimal strategy u∗(t, s, x,ei) and V(t, s, x,ei) into the HJB equation yields

at (t, s,ei) (x−w)2+ (µi− r)

− (µi− r)2a (t, s,ei)+σ2
i s2βi+1 ·2as (t, s,ei)

σ2
i · s

2βi ·2a

2a (t, s,ei) (x−w)2

+bt (t, s,ei)+
1
2
σ2

i s2βi


 (µi− r)2a (t, s,ei) (x−w)+σ2

i s2βi+12as (t, s,ei) (x−w)

σ2
i s2βi2a (t, s,ei)

22a (t, s,ei)

+
1
2
σ2

i s2βi+2
[
ass (t, s,ei) (x−w)2+bss (t, s,ei)

]
+

n∑
j=1

qi j
(
a
(
t, s,e j

)
(x−w)2+b

(
t, s,e j

))
+σ2

i s2βi+1

− (µi− r)2a (t, s,ei)+2σ2
i s2βi+1as (t, s,ei)

2σ2
i s2βia

(2as (t, s,ei) (x−w)2)

+µis
(
as (t, s,ei) (x−w)2+bs (t, s,ei)

)
= 0.

(B.4)

Setting the coefficient of (x−w)2to zero, we obtain

at (t, s,ei)−

 (µi− r)2

σ2
i s2βi

a (t, s,ei)+ (−2(µi− r)+µi)sas (t, s,ei)−σ2
i s2βi+2 a2

s (t, s,ei)
a (t, s,ei)

+
1
2
σ2

i s2βi+2ass (t, s,ei)+
n∑

j=1

qi ja
(
t, s,e j

)
= 0.

(B.5)

Setting the constant term to zero, the differential equation becomes

bt (t, s,ei)+µisbs (t, s,ei)+
1
2
σ2

i s2βi+2bss (t, s,ei)+
n∑

j=1

qi j
(
b
(
t, s,e j

))
= 0. (B.6)

The solution to differential equation (B.5) can be obtained using the same method as for Equation (3.7),
Equation (B.6) has a particular solution of b (t, s,ei) = 0.We finally obtain the value of a(t, s) as

a(t, s) =H(t)exp(K(t)Y), (B.7)

where hi(t) and ki(t) satisfy the equations (3.16) and (3.17).

C. Proof of Theorem 4.1

Fix (t, x, s,ei) ∈ [0,T ]×R×R×N . Suppose the policy Π = {Πv,v ∈ [t,T ]} is admissible, and let
{XΠs , s ∈ [t,T ]} denote the corresponding wealth process. Π̃ is obtained from (4.1). Applying Itô’s

Journal of Industrial and Management Optimization Volume 22, Issue 2, 1087–1111.



4

lemma, we obtain

VΠ(h,XΠ̃h ,S h,ei) = VΠ(t, x, s,ei)+
∫ h

t
VΠt (v,XΠ̃v ,S v,αv)dv+

∫ h

t
VΠx (v,XΠ̃v ,S v,αv)dXΠ̃v

+

∫ h

t
VΠs (v,XΠ̃v ,S v,αv)dS v+

1
2

∫ h

t
VΠxx(v,XΠ̃v ,S v,αv)d⟨XΠ̃,XΠ̃⟩v

+
1
2

∫ h

t
VΠss(v,X

Π̃
v ,S v,αv)d⟨S ,S ⟩v+

∫ h

t
VΠsx(v,XΠ̃v ,S v,αv)d⟨XΠ̃,S ⟩v

+

∫ h

t

n∑
j=1

qαv jV(v,XΠ̃v ,S v,e j)dv

= VΠ(t, x, s,ei)+
∫ h

t
(σiS

βi
v MΠ̃i VΠx (v,XΠ̃v ,S v,αv)+σiS

βi+1
v VΠs (v,XΠ̃v ,S v,αv)dWv

+

∫ h

t
σiS

βi
v NΠ̃i VΠx (v,XΠ̃v ,S v,αv)dW̃v

+

∫ h

t

(
VΠt (v,XΠ̃v ,S v,ei)+ (µi− r)MΠ̃i VΠx (v,XΠ̃v ,S v,αv)+µiS vVΠs (v,XΠ̃v ,S v,αv)

+
1
2
σ2

i S 2βi
v [(MΠ̃i )2+ (NΠ̃i )2]VΠxx(v,XΠ̃v ,S v,αv)+

1
2
σ2

i S 2βi+2
v VΠss(v,X

Π̃
v ,S v,αv)

+σ2
i S 2βi+1

v MΠ̃i VΠsx(v,XΠ̃v ,S v,αv)+
n∑

j=1

qαv jV(v,XΠ̃v ,S v,e j)

dv.

(C.1)
Define the stopping time as

τn := inf
{

h ≥ t :
∫ h

t
σ2

i S 2βi+2
v (VΠS (v,XΠ̃v ,S v,αv))2+σ2

i S 2βi
v

(
(NΠ̃i )2+ (MΠ̃i )2

)
(VΠx (v,XΠ̃v ,S v,αv))2dv ≥ n

}
,

where n ≥ 1, we obtain the following results

VΠ(t, x, s,ei) = E
[
VΠ(h∧τn,XΠ̃h∧τn ,S h∧τn ,αh∧τn)

−

∫ h∧τn

t

(
VΠt (v,XΠ̃v ,S v,αv)+ (µi− r)MΠ̃i VΠx (v,XΠ̃v ,S v,αv)

+µiS vVΠs (v,XΠ̃v ,S v,αv)+
1
2
σ2

i S 2βi
v

[
(MΠ̃i )2+ (NΠ̃i )2]VΠxx(v,XΠ̃v ,S v,αv)

+
1
2
σ2

i S 2βi+2
v VΠss(v,X

Π̃
v ,S v,αv)+σ2

i S 2βi+1
v MΠ̃i VΠsx(v,XΠ̃v ,S v,αv)

+

n∑
j=1

qαv jV(v,XΠ̃v ,S v,e j)
)
dv

]
.

(C.2)
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Under standard verification arguments and assuming VΠ is sufficiently smooth, we have

VΠt (t, x, s,ei)+ (µi− r)MΠi VΠx (t, x, s,ei)+
1
2
σ2

i s2βi
(
(MΠi )2+ (NΠi )2

)
VΠxx(t, x, s,ei)+µisVΠs (t, x, s,ei)

+
1
2
σ2

i s2βi+2VΠss(t, x, s,ei)+σ2
i s2βi+1MΠi VΠsx(t, x, s,ei)−λ(t)Φ(Π)+

n∑
j=i

qi jV
(
t, x, s,e j

)
= 0,

(C.3)
for any (t, x, s,ei) ∈ [0,T ]×R×R×N , we have

VΠt (t, x, s,ei)+min
Π′

(
(µi− r)MΠ

′

i VΠx (t, x, s,ei)+
1
2
σ2

i s2βi
(
(MΠ

′

i )2+ (NΠ
′

i )2
)
VΠxx(t, x, s,ei)+µisVΠs (t, x, s,ei)

+
1
2
σ2

i s2βi+2VΠss(t, x, s,ei)+σ2
i s2βi+1MΠ

′

i VΠsx(t, x, s,ei)−λ(t)Φ(Π′)+
n∑

j=1

qi jV
(
t, x, s,e j

) ≤ 0.

(C.4)
The infimum in the Hamiltonian operator of the HJB equation Π̃ is explicitly attained by the feedback
strategy derived from the regularizer’s optimality condition in (C.4) . Specifically

VΠ(t, x, s,ei) ≥ E
[
VΠ(h∧τn,XΠ̃h∧τn ,S

Π̃
h∧τn ,αh∧τn)−

∫ h∧τn

t
λ(v)Φ(Π̃v)dv

∣∣∣XΠ̃t = x
]
. (C.5)

For any fixed (t, x, s,ei) ∈ [0,T ]×R×R×N , let h = T . Given the terminal condition VΠ(T, x, s,ei) =
VΠ̃(T, x, s,ei) = (x−w)2 − (w− z)2 and the admissibility of Π̃, we apply the Dominated Convergence
Theorem as n→∞ to obtain

VΠ(t, x, s,ei) ≥ E
[
VΠ̃(T,XΠ̃T ,S

Π̃
T ,αT )−

∫ T

t
λ(v)Φ(Π̃v)dv

∣∣∣XΠ̃t = x
]
= VΠ̃(t, x, s,ei). (C.6)
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