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Supplementary

Appendix A. Proof of Proposition 1
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The first derivative of optimal solutions concerning k is obtained when k >
0, as follows.
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Appendix B. Proof of Proposition 2
The first derivative of the optimal solutions concerning pc is obtained as follows.
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conclusion of Proposition 2 is readily established.

Appendix C. Proof of Proposition 3
The partial derivatives of the optimal solutions are taken concerning the degree of quality
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Appendix D. Proof of Proposition 4
The partial derivatives of the optimal solutions are calculated concerning pc.
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Therefore, the conclusion of Proposition 4 is readily established.
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