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Appendix A:

A.1. Proof of Section 4.1.1
First, the second-order derivation of online price is carried out respectively:

92ml,
a2p},

= —2k,(1—¢) <0.

The second derivative is less than 0. The profit function of the agent and the manufacturer are
concave functions, and there is an optimal solution. Therefore, the profit of the agent and the
manufacturer have the maximum value.

This paper adopts the reverse solution method. Firstly, the agent conducts the first-order
derivation of the profit function to determine the optimal online price p,:

. 0
e = (A1)

Second, we consider the manufacturer’s profit maximization problem, and the manufacturer’s
profit function is as follows:

Tdna = (1 - ka)ptIzNé + ptliaNéa' (A2)



In the agency dual model, the manufacturer’s profit consists of two parts: One part comes from
sales in the direct channel; the other part is to earn 1 — k, percentage of sales in the agency channel.
After introducing Eq. (A.1) into Eq. (A.2), we get:

Tha = (1= k) 2 (1= $) 2+ plat (v = pla + B = 9)Z).  (AI)

We can get p! by solving the objective function (A3):
" 2v+B(1—-¢)O
Pl = R (A4)
A.1 Proof of Lemma 1
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A.2 Proof of Lemma 2

I+ _ vBYO(=1+¢)?

() ph -l = iy irg). When 0<B <1, phi > phy; otherwise, pl; < ply;

(i) plia = P& = 30(2+6(=2+ B = p)): When max {joi—5, =1} < B < 1, pliy > pL;
I _ oI+ _ 1 _ _ BO(=1+9) . (26-2)(1-y+¢y) Ix I
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A.3. Proof of Proposition 1

— 2,,2 - _ 2.,2
First, let mp — e = A=$Ov" 1K _ 9 4 k,) = 0. Itis easy to find that =22 > o,
4 1-y+¢y
Therefore, we only need to determine the size of g4 k, Let F = 7k g4 k,. By
1-y+¢y 1-y+¢y

. o oF . . .
taking the first-order derivative of y, we get e > 0, which means that F increases with y. Further,

we can find the zero point y* = #ﬁ“w for F = 0. Next, it is only necessary to determine the
k) (1—

magnitude of y* in relation to 0 and 1.

If k; > kg, then y* > 0. Further, we need to discuss the relationship between y and 1. There are

two situations to discuss:
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() If 0<¢p<¢*, then 0<y*<1. When y*<y<1, nli,>nl,; when 0 <y <
y*aﬂxl<n#lka;

(ii)) When ¢* < ¢ < 1, then y* > 1, which indicates that y < 1 < y* is constant, so w5 <

% . * _ l—kl
Tma- In this case, ¢ = Th,

A.4. Proof of Proposition 2
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Consistent with the analytical approach of Proposition 1, let mhi, — mly, = L2 (M -
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0, we can get
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A.5. Proof of Lemma 3
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A.6. Proof of Lemma 4
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A.7. Proof of Corollary 1
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Appendix B: Proof of extension

B.1. Proof of Proposition 6

The solution process is consistent with Proposition 4. By comparing the profit, we get:
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B.2. Proof of Proposition 7

The solution process is consistent with Proposition 6. By comparing the profit, we get:
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Here, Hy = £2(1 — ¢)?602% — 0} In? z,.
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