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Appendix

.1. Proof of Proposition 3.2
Proof. To show that Dy TV(x,i) > 0, we begin by expressing DT V(x, i) as a sum of terms:

DiTV(x,i) = TV(x+1,i)—TV(x,i)
= h(x + D +wls) + TV + 1L, +&EV(x+1,i—1)

+Z/lkaV(x+1 z)+[z,u1+Z§1)V(x+l i)

1#1 1#1

—h(x) w(s) — TV (x, i) +§,V(x i—1)

- Z AT V(x, i) — (Z i+ Z fl] V(x, i) .1
k=1

I#1 1#1

= [h(x+1)=hx)]+&[Vx+1,i-1)=V(x,i—1)]

+(Z'u[ + Z.fl) . [V(X + 1, l) - V(x, l)]

1#1 1#1
+ Z ATV + 1,0) = TV D]+ [TV + 1Li) = TV (x, )|
k=1

Here, h(x) is a monotonically increasing function of x, and V(x, i) satisfies property P2, which
states that it is also monotonically increasing with respect to x. Therefore, the first three terms


https://www.aimspress.com/journal/jimo
https://dx.doi.org/10.3934/jimo.2026032

2

in the above expression are also increasing functions of x. We now focus on the last two terms,
whose non-negativity depends on whether below two statements hold true:

D\ T, V(x,i) = D\/T\V(x+ 1,i) = D\ T} V(x,i) > 0 (.2)
Dy T'V(x,i) =D\ T'V(x+1,i) = D;T'V(x,i) > 0 (.3)
We begin by establishing the proof of the statement (.2), which can be rewrote as
D\TV(x+ 1,i) TV(x+1,i))—TV(x,i)
min{V(x + 1,i), V(x +2,i) + ¢} —min{V(x, 1), V(x + 1,1) + ¢}
min{V(x,i), V(x + 1,i) + ¢t} — min{V(x — 1,0), V(x,1) + ¢}
D\TV(x,i)

v

Consider that D\ V(x — 1,1) < D;V(x,i) < D;V(x + 1,1), there are three different cases for x # 0.
When D,V(x + 1,i) > D;V(x — 1,i) > —cy, there is

D TV(x+ 1,i) Vix+1,0)) = V(x,i) 2 V(x,i) — V(x - 1,1)
DlTV(X, l)

When D\ V(x + 1,i) > —c;, > D V(x — 1,i), there is

DiTV(x+1,i) > Vx+1,)-V(x,i)=[Vx+1,i)+C-[V(x-1,1) +Ci]
= DlTV(X, l)

When —c;, > D|V(x + 1,i) = D,V(x — 1,1i), there is

[D\TV(x+1,0) [Vx+2,) + Cr] = [V(x+ 1,0) + C¢]
[V(x+1,0) + Ci] = [V(x,0) + Ci]

DlTV(X, l)

v

If x = 0, then check for two cases for D, TV(1,i). When D;V(1,i) > —c, there is
[D:TV(1,i) V() - [V(L,1)+ G

V(0,1 — [V(0,) + Ci]

D\TV(0,i)

v v

When D, V(1,i) < —¢;, there is

[DiTV(x+ 1,i) [V(2,i) + Ci] = [V(,1) + Ci]
[V(1,1) + Ci] — [V(0,i) + Ci]
D, TV(0,i)

v 1

To sum up, statement (.2) is true. The second statement (.3) can be proved similarly as a special
case when ¢, = ¢, which will not be restated here for brevity.
The proof is complete. O

Journal of Industrial and Management Optimization Volume 22, Issue 2, 880-910.



.2. Proof of Proposition 3.3

Proof. 1f DlzTiV(x, i) > 0 holds true, then D, V(x, i) to be an increasing function of x. Therefore,

We first express that D, V(x, i) = 7! V(x,i+1)=T'V(x,i) = I, + I, where I, and I, are defined
as

L = gpyyminVix+1,i+1)+¢q,V(x,i+ 1)) —u;min(V(x + 1,7) + g, V(x,i))
Hu VO, i+ 1) = i V(x, D] = gy min(V(x, i + 1) + ¢, V(x = 1,i + 1))
+min(V(x, i) +q, V(x — 1) - [wV(x = Li+ 1) = g V(x = 1,0)]

on
I

r(i+ D1 = s)V(x,i) + Z Aemin(V(x,i+ 1)+ ¢, V(x—1,i+ 1))
k=1

+V(x,i+ 1) Z r()(1 = )+ V(x,i + Dr()(1 — s)

1#i+1,i,0
—r(@)(1 = )V(x,i= 1) = Y Aemin(V(x,i) - ¢, V(x = 1,1)
k=1
—Vxi) Y (1 = s) + V(i + 1) - 5)
[#i+1,i,0

We will first show that /; is an increasing function of x. There are three cases to consider.
It D;V(x,i+ 1) < —q, then

L = pnVx+Li+D+uVxi+ ) —wVx+ 1,0 — pin V(x, 0 + (i — ) - q
Wiv1 =)V + 1Li+ 1) = (Ui — ) V(x, 1) + (Uis1 — i) - q

+u;[Vix+ 1L,i+ 1) = Vx+ 1,D)] +w[V(x,i+ 1) = V(x,0)]

= wlDV(x+ 1,0 + DoV(x, )] + (i1 — p)[D2V(x + 1,0) + D V(x, )]

Since D1 V(x, i) and D,V (x, i) both increase with x and u; > 0, it follows that /; is an increasing
function of x.

Similarly, if —g < D;V(x — 1,i), then
L = iV, i+ 1) — iV, ) + i V(x, i+ 1) — i V(x, 1)
= HinD2V(x, D) + w;Dy(x, D).
ItD\V(x,i+1)>—-g> D V(x— 1,i), there is
L = pinVxi+ 1) —pgmin(V(x + 1,0) + g, V(x, 1))
iV, i+ 1) =i Vo, D] = [V = 1,i+ 1) — i V(x = 1,0)]
> winV,i+ D) =V, d) + i Vx, i+ 1) — pin V(x, i)

—Vx—1i+ 1)+ Vix = 1,0)
= inVx,i+1)—wVx, i)+ uDi)Vix-1,i+1) =y 1D V(x - 1,10),

while

Mint Vi + 1) =, V(x, 1) + (i — ) - g
> iy min(Vx,i+ 1) +q, Vx—1,i + 1)) = ;V(x, i) — uiq

Journal of Industrial and Management Optimization Volume 22, Issue 2, 880-910.



Since D\ V(x,i+ 1) > D;V(x —1,i) and —g > D,V(x — 1,i), we can write that
(D \V(x—1,i+ 1)+ q) 2 pi1 (D1 V(x — 1,0) + g),

that is
L 2 g Vi + 1) — V(X0 + (i — i)g
Hence, it can be proved that /; in an increasing function about x.
Next, we prove that the I, is also increasing on x, which can be expressed as

L = D, Z L min(V(x, i) + ¢, V(x = 1, 1)) + D,V(x, i) Z ()1 - )
k=1 1#i+1,i,0

+[r()(1 = s)V(x,i+ 1) —r()(1 - s)V(x,i — 1)]

Therein, the second term is clearly an increasing function of x; the third term can be simplified
to r(i)(1 — $)[D,V(x,i) + D,V(x,i — 1)], which is obviously an increasing function of x. Thus
prove the monotonicity of D, min(V(x, i) + ¢, V(x — 1, 1)), which can be written as

Dymin(V(x,i)) + ¢, Vix—1,i)) = min(V(x+ 1,i+ 1) + ¢, V(x,i+ 1))
—min(V(x + 1,7) + ¢, V(x,1))
—min(V(x,i+ 1) +c,, V(x-1,i+ 1))
+min(V(x, i) + ¢, V(x — 1,1))

Three cases are discussed.
If —¢c, > D1V(x,i+ 1), then

Dymin(V(x,i) + ¢, Vix=1,i)) = Vix+1,i+1)=V(x+1,i)
=-V(x,i+ 1)+ V(x,i)
= DpV(x,i)

If D,\V(x-1,i) > —=C, then
D, min(V(x,i) + ¢, V(x = 1,10))

Vix,i+1)=V(x,i)
-Vix-1i+ 1)+ V(x-1,i
D V(x - 1,0)

IfDV(x,i+1)>—c,>D;V(x—1,i), then

Dymin(V(x,i)) + ¢, Vix—=1,71)) = V(x,i+1)—min(V(x + 1,i) + ¢, V(x,1))
—min(V(x,i+ 1)+ ¢, Vx=1,i+ 1))
+V(x,i) + ¢,

and

Vix,i+1)—min(V(x + 1,i) + ¢, V(x,1)) Vix,i+1)—V(x,i)
Vix,i+ 1)+ c,— V(x,i) —ci
min(V(x,i+ 1)+ ¢, V(x—1,i+ 1))

—V(x,i) — ¢

v v

Hence, it can be proved that 7, in an increasing function about x.
The proof is complete. O
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.3. Proof of Proposition 3.4

Proof. Similar to the proof of Theorem 3.2, the truthfulness of D, TV(x,i) > —c; hinges on the
validity of the following two statements:

D\ T,V(x,i) > —c; (.4)
D\T'V(x,i) > —c; (.5)

To prove that the statement (.4) holds true, three cases should be considered. When x # 0,if
D,Vx,i > —c;, then

D\T'V(x,i) > V(x,i) — V(x,i) — ¢; > —¢;

If DVx,i < —c;, then
D\T'V(x,i) > [V(x+ L) +c]—[V(x, i) +c] = V(x+ 1, k) —v(x, k) > —c¢;

When x = 0, the inequality is obviously true.
Statement (.5) can be considered as a special case where ¢; = ¢, which is also true.
The proof is complete. m|

4. Proof of Theorem 3.2

Proof. According to Theorem 3.1, it can be know that V(x,i) € V. Meanwhile, the convexity
(P1) of V(x,17) implies that the optimal production rate strategy and inventory allocation strategy
are threshold strategies that depend on the state. These two can derive to Properties 1 and
2 directly. Based on the definition of S*(i) and the upper bounding property (P2) of V(x,i),
we have V(S*() + 1,i + 1) = V(S*(0),i + 1) = V(S*@) + 1,i) — V(S7(i),i) = —q, so we have
S*(@i + 1) < §7(i), which yields Property 3. There is V(R (i),i) — V(R(@) — 1,i) > —¢; = —ci1,
which implies R;_,(x,7) < R;(x, i), yielding Property 4. Similarly, by the definition of R*(k) and
Property 1, we have V(R(®i),i + 1) — V(R*(@),i + 1) = V(R*(i),k) — V(R*(i) — 1,i) > —c, so we
have R*(i + 1) < R(i), yielding Property 5. Property 6 can be obtained directly from Property 3
and Theorem 3.1. O

.5. Proof of Theorem 3.3

Proof. We begin by observing that if D;(0,i, s;) < —, then Vx : 0 < x < xo, D1(x, 1, 53) <
—q,Di(x + 1,1, s,) > —q holds true. Therefore, to prove the theorem, it suffices to demonstrate
thatif D V(x,1i, s2) — D,V(x,i,s;) >0, then D\TV(x,i,s,) — D V(x,i,s;) > 0. This is equivalent
to proving the following inequalities:

Dymin{V(x + 1,i,5) +q, V(x,i,5)} — Dymin{V(x + 1,1, 1) + q, V(x,i,51)} = 0 (.6)
Dymin{V(x,i,s:) +ci, V(x—1,i,8)} — Dymin{V(x,i,s1) + ¢, Vx—=1,i,51)} >0 .7
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We now turn our attention to proving Equation 3.7. We have
Dimin{V(x+ 1,i,5) +q,V(x,i,55)} = Dymin{V(x + 1,1, 57) + q, V(x, i, 51)}
= min {xV(x +2,0,8)+q, V(x+1,i,5)} - min?V(x +1,i,5) +q,V(x,i, )}
—xmin {(Vix+2,i,s1)+q,Vx+ 1,1, s1)} +xmin {(Vix+ 1,i,s1) +q,V(x,1i, s1)}
= V(xx+ 1,i,8) — V(x,i,8) —min{V(x + 2,1, ;1) +q,V(x+1,i,51)}
+ mxin {(Vix+ 1,4, 81) +q, V(x,xi, s1)}

Using the fact that min{V(x + 2,1, s1) + ¢, V(x + 1,1, 51)} < V(x + 1,1, s1), we can derive

Vix+1,i,8) - V(x,i,s) —min{V(x + 2,i,51) + q, V(x + 1,1, 51)}
+min{V(x+ 1,i,s1) +q, V(x,xi, s1)}
V(xx+ 1,i,8) = V(x,i,50) = V(x+ 1,1, 51) + V(x,1, 51)
D\V(x,i,$)—D,V(x,i,51) >0
Hence, Equation 3.7 holds true.

Next, we proceed to prove Equation 3.8. By expanding the expression, we obtain

I v

Dimin{V(x,i,s) +cr, V(x — 1,1, 80)} = Dymin{V(x, 1, s;) + ¢, V(x — 1,1, 51)}
= min {xV(x +1,1,8,) + ¢, V(x,i, s,)} — min {V(;, ILs)+c, Vix—1,1,5)}
—xmin {(Vx+ 1,1, 81) + ¢, V(x, 1, 51)} +xmin {(V(x,1,81) + ¢, V(x,1, 51)}
= V(xx+ 1,i,8) — V(x,i, 50) — min, {V(x + 2x, i,81)+ ¢, Vix+ 1,14, 51)}
+ mxin {(Vx+ 1,1, 81) + ¢, V(x, i, 1)}
IfDVix-1,i,5,) > D;V(x—1,1,51) > —cy, then
Dymin{V(x,i,s,) + ¢, V(x — 1,1, 50)} — Dymin{V(x, i, s;) + ¢, V(x — 1,1, 51)}
= Dlvgx— 1,i,81) —D,V(x—1,i,5;) >0 '
IfDVx-1,i,8)>—c>D,V(x—-1,1i,s,), then
Dimin{V(x,i,s2) + ¢, V(x — 1,0, 80)} = Dymin{V(x, i, s1) + ¢, V(x — 1,1, 51)}
Dlvgx —1,i,8) = V(x,i,s1)+ V(x,i,s1) + ckx
D\V(x—-1,i,81)+¢, >0
If —¢, > D\V(x-1,i,5) >D,V(x—1,1i,s,), then

v

Dymin{V(x,i,s2) + ¢, V(x = 1,4, 52)} = Dymin{V(x, i, s1) + ¢, V(x — 1,1, 51)}

Vix+1,i,8)+ci = V(x,i,80) +cr—V(x+ 1,i,51) + V(x,1, 51) + ¢k
D\V(x,i,s0) —DV(x,i,51) >0

v

Hence, Equation 3.8 holds true. And the proof is complete. O
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