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Appendix

.1. Proof of Proposition 3.2

Proof. To show that D11TV(x, i) ≥ 0, we begin by expressing D1TV(x, i) as a sum of terms:

D1TV(x, i) = TV(x + 1, i) − TV(x, i)
= h(x + 1) + w(s) + µiT iV(x + 1, i) + ξiV(x + 1, i − 1)

+

n∑
k=1

λkTkV(x + 1, i) +

 m∑
l,1

µl +

m∑
l,1

ξl

V(x + 1, i)

−h(x) − w(s) − µiT iV(x, i) + ξiV(x, i − 1)

−

n∑
k=1

λkTkV(x, i) −

 m∑
l,1

µl +

m∑
l,1

ξl

V(x, i)

= [h(x + 1) − h(x)] + ξi [V(x + 1, i − 1) − V(x, i − 1)]

+

 m∑
l,1

µl +

m∑
l,1

ξl

 · [V(x + 1, i) − V(x, i)]

+

n∑
k=1

λk [TkV(x + 1, i) − TkV(x, i)] + µi

[
T iV(x + 1, i) − T iV(x, i)

]

(.1)

Here, h(x) is a monotonically increasing function of x, and V(x, i) satisfies property P2, which
states that it is also monotonically increasing with respect to x. Therefore, the first three terms
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in the above expression are also increasing functions of x. We now focus on the last two terms,
whose non-negativity depends on whether below two statements hold true:

D11TkV(x, i) = D1TkV(x + 1, i) − D1TkV(x, i) ≥ 0 (.2)
D11T iV(x, i) = D1T iV(x + 1, i) − D1T iV(x, i) ≥ 0 (.3)

We begin by establishing the proof of the statement (.2), which can be rewrote as

D1TV(x + 1, i) = TV(x + 1, i) − TV(x, i)
= min {V(x + 1, i),V(x + 2, i) + ck} −min {V(x, i),V(x + 1, i) + ck}

≥ min {V(x, i),V(x + 1, i) + ck} −min {V(x − 1, i),V(x, i) + ck}

= D1TV(x, i)

Consider that D1V(x − 1, i) ≤ D1V(x, i) ≤ D1V(x + 1, i), there are three different cases for x , 0.
When D1V(x + 1, i) ≥ DkV(x − 1, i) ≥ −ck, there is

D1TV(x + 1, i) = V(x + 1, i) − V(x, i) ≥ V(x, i) − V(x − 1, i)
= D1TV(x, i)

When D1V(x + 1, i) ≥ −ck ≥ DkV(x − 1, i), there is

D1TV(x + 1, i) ≥ V(x + 1, i) − V(x, i) = [V(x + 1, i) +Ck] − [V(x − 1, i) +Ck]
= D1TV(x, i)

When −ck ≥ D1V(x + 1, i) ≥ DkV(x − 1, i), there is

[D1TV(x + 1, i) = [V(x + 2, i) +Ck] − [V(x + 1, i) +Ck]
≥ [V(x + 1, i) +Ck] − [V(x, i) +Ck]
= D1TV(x, i)

If x = 0, then check for two cases for DkTV(1, i). When DkV(1, i) ≥ −ck, there is

[D1TV(1, i) ≥ V(1, i) − [V(1, i) +Ck]
≥ V(0, i) − [V(0, i) +Ck]
= D1TV(0, i)

When DkV(1, i) ≤ −ck, there is

[D1TV(x + 1, i) = [V(2, i) +Ck] − [V(1, i) +Ck]
≥ [V(1, i) +Ck] − [V(0, i) +Ck]
= D1TV(0, i)

To sum up, statement (.2) is true. The second statement (.3) can be proved similarly as a special
case when ck = q, which will not be restated here for brevity.

The proof is complete. □
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.2. Proof of Proposition 3.3

Proof. If D12T iV(x, i) ≥ 0 holds true, then D2V(x, i) to be an increasing function of x. Therefore,
We first express that D2V(x, i) = T i+1V(x, i + 1) − T iV(x, i) = I1 + I2, where I1 and I2 are defined
as

I1 = µi+1 min(V(x + 1, i + 1) + q,V(x, i + 1)) − µi min(V(x + 1, i) + q,V(x, i))
+[µiV(x, i + 1) − µi+1V(x, i)] − µi+1 min(V(x, i + 1) + q,V(x − 1, i + 1))
+µi min(V(x, i) + q,V(x − 1, i)) − [µiV(x − 1, i + 1) − µi+1V(x − 1, i)]

I2 = r(i + 1)(1 − s)V(x, i) +
n∑

k=1

λk min(V(x, i + 1) + ck,V(x − 1, i + 1))

+V(x, i + 1)
m∑

l,i+1,i,0

r(l)(1 − s) + V(x, i + 1)r(i)(1 − s)

−r(i)(1 − s)V(x, i − 1) −
n∑

k=1

λk min(V(x, i) − ck,V(x − 1, i))

−V(x, i)
m∑

l,i+1,i,0

r(l)(1 − s) + V(x, i)r(i + 1)(1 − s)

We will first show that I1 is an increasing function of x. There are three cases to consider.
If D1V(x, i + 1) < −q, then

I1 = µi+1V(x + 1, i + 1) + µiV(x, i + 1) − µiV(x + 1, i) − µi+1V(x, i) + (µi+1 − µi) · q
= (µi+1 − µi)V(x + 1, i + 1) − (µi+1 − µi)V(x, i) + (µi+1 − µi) · q
+µi[V(x + 1, i + 1) − V(x + 1, i)] + µi[V(x, i + 1) − V(x, i)]

= µi[D2V(x + 1, i) + D2V(x, i)] + (µi+1 − µi)[D2V(x + 1, i) + D1V(x, i)]

Since D1V(x, i) and D2V(x, i) both increase with x and µi > 0, it follows that I1 is an increasing
function of x.

Similarly, if −q < D1V(x − 1, i), then

I1 = µi+1V(x, i + 1) − µiV(x, i) + µiV(x, i + 1) − µi+1V(x, i)
= µi+1D2V(x, i) + µiD2(x, i).

If D1V(x, i + 1) > −q > D1V(x − 1, i), there is

I1 = µi+1V(x, i + 1) − µi min(V(x + 1, i) + q,V(x, i))
+[µiV(x, i + 1) − µi+1V(x, i)] − [µiV(x − 1, i + 1) − µi+1V(x − 1, i)]

≥ µi+1V(x, i + 1) − µiV(x, i) + µiV(x, i + 1) − µi+1V(x, i)
−µiV(x − 1, i + 1) + µi+1V(x − 1, i)

= µi+1V(x, i + 1) − µiV(x, i) + µiD1V(x − 1, i + 1) − µi+1D1V(x − 1, i),

while

µi+1V(x, i + 1) − µiV(x, i) + (µi+1 − µi) · q
≥ µi+1 min(V(x, i + 1) + q,V(x − 1, i + 1)) − µiV(x, i) − µiq
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Since D1V(x, i + 1) > D1V(x − 1, i) and −q > D1V(x − 1, i), we can write that

µi(D1V(x − 1, i + 1) + q) ≥ µi+1(D1V(x − 1, i) + q),

that is
I1 ≥ µi+1V(x, i + 1) − µiV(x, i) + (µi+1 − µi)q

Hence, it can be proved that I1 in an increasing function about x.
Next, we prove that the I2 is also increasing on x, which can be expressed as

I2 = D2

n∑
k=1

λk min(V(x, i) + ck,V(x − 1, i)) + D2V(x, i)
m∑

l,i+1,i,0

r(l)(1 − s)

+[r(i)(1 − s)V(x, i + 1) − r(i)(1 − s)V(x, i − 1)]

Therein, the second term is clearly an increasing function of x; the third term can be simplified
to r(i)(1 − s)[D2V(x, i) + D2V(x, i − 1)], which is obviously an increasing function of x. Thus
prove the monotonicity of D2 min(V(x, i) + ck,V(x − 1, i)), which can be written as

D2 min(V(x, i) + ck,V(x − 1, i)) = min(V(x + 1, i + 1) + ck,V(x, i + 1))
−min(V(x + 1, i) + ck,V(x, i))
−min(V(x, i + 1) + ck,V(x − 1, i + 1))
+min(V(x, i) + ck,V(x − 1, i))

Three cases are discussed.
If −ck > D1V(x, i + 1), then

D2 min(V(x, i) + ck,V(x − 1, i)) = V(x + 1, i + 1) − V(x + 1, i)
−V(x, i + 1) + V(x, i)

= D12V(x, i)

If D1V(x − 1, i) > −Ck, then

D2 min(V(x, i) + ck,V(x − 1, i)) = V(x, i + 1) − V(x, i)
−V(x − 1, i + 1) + V(x − 1, i)

= D12V(x − 1, i)

If D1V(x, i + 1) > −ck > D1V(x − 1, i), then

D2 min(V(x, i) + ck,V(x − 1, i)) = V(x, i + 1) −min(V(x + 1, i) + ck,V(x, i))
−min(V(x, i + 1) + ck,V(x − 1, i + 1))
+V(x, i) + ck

and

V(x, i + 1) −min(V(x + 1, i) + ck,V(x, i)) ≥ V(x, i + 1) − V(x, i)
= V(x, i + 1) + ck − V(x, i) − ck

≥ min(V(x, i + 1) + ck,V(x − 1, i + 1))
−V(x, i) − ck

Hence, it can be proved that I2 in an increasing function about x.
The proof is complete. □
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.3. Proof of Proposition 3.4

Proof. Similar to the proof of Theorem 3.2, the truthfulness of D1TV(x, i) ≥ −c1 hinges on the
validity of the following two statements:

D1TkV(x, i) ≥ −c1 (.4)
D1T iV(x, i) ≥ −c1 (.5)

To prove that the statement (.4) holds true, three cases should be considered. When x , 0,if
D1V x, i ≥ −ci, then

D1T iV(x, i) ≥ V(x, i) − V(x, i) − ci ≥ −ci

If D1V x, i ≤ −ci, then

D1T iV(x, i) ≥ [V(x + 1, i) + ci] − [V(x, i) + ci] ≥ V(x + 1, k) − v(x, k) ≥ −ci

When x = 0, the inequality is obviously true.
Statement (.5) can be considered as a special case where ci = q, which is also true.
The proof is complete. □

.4. Proof of Theorem 3.2

Proof. According to Theorem 3.1, it can be know that V(x, i) ∈ V . Meanwhile, the convexity
(P1) of V(x, i) implies that the optimal production rate strategy and inventory allocation strategy
are threshold strategies that depend on the state. These two can derive to Properties 1 and
2 directly. Based on the definition of S ∗(i) and the upper bounding property (P2) of V(x, i),
we have V(S ∗(i) + 1, i + 1) − V(S ∗(i), i + 1) ≥ V(S ∗(i) + 1, i) − V(S ∗(i), i) ≥ −q, so we have
S ∗(i + 1) ≤ S ∗(i), which yields Property 3. There is V(R∗k(i), i) − V(R(i) − 1, i) ≥ −ci ≥ −ci−1,
which implies R∗k−1(x, i) ≤ R∗k(x, i), yielding Property 4. Similarly, by the definition of R∗(k) and
Property 1, we have V(R(i), i + 1) − V(R∗(i), i + 1) ≥ V(R∗(i), k) − V(R∗(i) − 1, i) ≥ −c, so we
have R∗(i + 1) ≤ R(i), yielding Property 5. Property 6 can be obtained directly from Property 3
and Theorem 3.1. □

.5. Proof of Theorem 3.3

Proof. We begin by observing that if D1(0, i, s1) ≤ −c1, then ∀x : 0 ≤ x ≤ x0,D1(x, i, s2) ≤
−q,D1(x + 1, i, s2) > −q holds true. Therefore, to prove the theorem, it suffices to demonstrate
that if D1V(x, i, s2)−D1V(x, i, s1) ≥ 0, then D1TV(x, i, s2)−D1V(x, i, s1) ≥ 0. This is equivalent
to proving the following inequalities:

D1 min
x
{V(x + 1, i, s2) + q,V(x, i, s2)} − D1 min

x
{V(x + 1, i, s1) + q,V(x, i, s1)} ≥ 0 (.6)

D1 min
x
{V(x, i, s2) + ck,V(x − 1, i, s2)} − D1 min

x
{V(x, i, s1) + ck,V(x − 1, i, s1)} ≥ 0 (.7)
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We now turn our attention to proving Equation 3.7. We have

D1 min
x
{V(x + 1, i, s2) + q,V(x, i, s2)} − D1 min

x
{V(x + 1, i, s1) + q,V(x, i, s1)}

= min
x
{V(x + 2, i, s2) + q,V(x + 1, i, s2)} −min

x
{V(x + 1, i, s2) + q,V(x, i, s2)}

−min
x
{V(x + 2, i, s1) + q,V(x + 1, i, s1)} +min

x
{V(x + 1, i, s1) + q,V(x, i, s1)}

= V(x + 1, i, s2) − V(x, i, s2) −min
x
{V(x + 2, i, s1) + q,V(x + 1, i, s1)}

+min
x
{V(x + 1, i, s1) + q,V(x, i, s1)}

Using the fact that min
x
{V(x + 2, i, s1) + q,V(x + 1, i, s1)} ≤ V(x + 1, i, s1), we can derive

V(x + 1, i, s2) − V(x, i, s2) −min
x
{V(x + 2, i, s1) + q,V(x + 1, i, s1)}

+min
x
{V(x + 1, i, s1) + q,V(x, i, s1)}

≥ V(x + 1, i, s2) − V(x, i, s2) − V(x + 1, i, s1) + V(x, i, s1)
= D1V(x, i, s2) − D2V(x, i, s1) ≥ 0

Hence, Equation 3.7 holds true.
Next, we proceed to prove Equation 3.8. By expanding the expression, we obtain

D1 min
x
{V(x, i, s2) + ck,V(x − 1, i, s2)} − D1 min

x
{V(x, i, s1) + ck,V(x − 1, i, s1)}

= min
x
{V(x + 1, i, s2) + ck,V(x, i, s2)} −min

x
{V(x, i, s2) + ck,V(x − 1, i, s2)}

−min
x
{V(x + 1, i, s1) + ck,V(x, i, s1)} +min

x
{V(x, i, s1) + ck,V(x, i, s1)}

= V(x + 1, i, s2) − V(x, i, s2) − minx{V(x + 2, i, s1) + ck,V(x + 1, i, s1)}
+min

x
{V(x + 1, i, s1) + ck,V(x, i, s1)}

If D1V(x − 1, i, s2) ≥ D1V(x − 1, i, s1) ≥ −ck, then

D1 min
x
{V(x, i, s2) + ck,V(x − 1, i, s2)} − D1 min

x
{V(x, i, s1) + ck,V(x − 1, i, s1)}

= D1V(x − 1, i, s1) − D2V(x − 1, i, s1) ≥ 0

If D1V(x − 1, i, s2) ≥ −ck ≥ D1V(x − 1, i, s1), then

D1 min
x
{V(x, i, s2) + ck,V(x − 1, i, s2)} − D1 min

x
{V(x, i, s1) + ck,V(x − 1, i, s1)}

≥ D1V(x − 1, i, s2) − V(x, i, s1) + V(x, i, s1) + ck

= D1V(x − 1, i, s1) + ck ≥ 0

If −ck ≥ D1V(x − 1, i, s2) ≥ D1V(x − 1, i, s1), then

D1 min
x
{V(x, i, s2) + ck,V(x − 1, i, s2)} − D1 min

x
{V(x, i, s1) + ck,V(x − 1, i, s1)}

≥ V(x + 1, i, s2) + ck − V(x, i, s2) + ck − V(x + 1, i, s1) + V(x, i, s1) + ck

= D1V(x, i, s2) − D1V(x, i, s1) ≥ 0

Hence, Equation 3.8 holds true. And the proof is complete. □
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