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A. Appendix

A.1. Proof of Equation (3.10)

Proof. Assume S N is the set of all signals that lead to customers not purchasing, i.e.,

1 − πi =

∫
s∈S N

F(ds|i), i ∈ Ω.

According to Lemma 1 of Matějka and McKay [38], each action corresponds uniquely to a specific
signal. This implies that for any s ∈ S P, F(i|s) remains identical. Therefore, for any i ∈ Ω and any
s ∈ S P, we have W(F(·|s)) = Ui. Similarly, for any s ∈ S N , F(i|s) is also identical, and we have
W(F(·|s)) = U0.
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Therefore, the first term in Equation (3.5) is∑
i∈Ω

∫
s
W(F(·|s))F(ds, i) =

∑
i∈Ω

∫
s
W(F(·|s))F(ds|i)gi

=
∑
i∈Ω

∫
s∈S PS N

W(F(·|s))F(ds|i)gi

=
∑
i∈Ω

( ∫
s∈S P

W(F(·|s))F(ds|i)gi +

∫
s∈S N

W(F(·|s))F(ds|i)gi

)
=

∑
i∈Ω

(
giUi

∫
s∈S P

F(ds|i) + giU0

∫
s∈S N

F(ds|i)
)

=
∑
i∈Ω

(giUiπi + giU0(1 − πi)) =
∑
i∈Ω

gi(πiUi + (1 − πi)U0).

(A.1)

This exactly equals the first term in Equation (3.10). ■

A.2. Proof of Equation (4.3)

Proof. From Equations (3.9) and (3.11), we obtain

π1
0 = τπ

1
H + (1 − τ)π1

L (A.2)

π1
H =

π1
0e(q1

H−p)/λ

π1
0e(q1

H−p)/λ + (1 − π1
0)

(A.3)

π1
L =

π1
0e(q1

L−p)/λ

π1
0e(q1

L−p)/λ + (1 − π1
0)
. (A.4)

Substituting equations (A.3) and (A.4) into equation (A.2), we obtain

π1
0 =

τπ1
0e(q1

H−p)/λ

π1
0e(q1

H−p)/λ + (1 − π1
0)
+

(1 − τ)π1
0e(q1

L−p)/λ

π1
0e(q1

L−p)/λ + (1 − π1
0)
. (A.5)

Multiplying both sides by

[π1
0e(q1

H−p)/λ + (1 − π1
0)][π1

0e(q1
L−p)/λ + (1 − π1

0)]

π1
0

,

and simplifying, we have

π1
0(e(q1

H−p)/λ − 1)(e(q1
L−p)/λ − 1) = 1 − τe(q1

H−p)/λ − (1 − τ)e(q1
L−p)/λ.

Therefore, we obtain the solution

π1
0 =

1 − τe(q1
H−p)/λ − (1 − τ)e(q1

L−p)/λ

(e(q1
H−p)/λ − 1)(e(q1

L−p)/λ − 1)
. (A.6)
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Multiplying both the numerator and denominator of the right-hand side of Equation (A.6) by e2p, we
obtain

π1
0(p) =

ep/λ(ep/λ − τeq1
H/λ − (1 − τ)eq1

L/λ)

(eq1
H/λ − ep/λ)(eq1

L/λ − ep/λ)
. (A.7)

Equation (A.7) represents the unconditional purchase probability when the customers choose to obtain
information, which is equivalent to Equation (4.3). By combining this with the unconditional purchase
probability when no information is obtained, we arrive at Equation (4.4). The derivation processes for
Equations (4.6) and (4.7) follow the same methodology as described above and are therefore omitted
here. ■

A.3. Proof of Remark 1

Proof. (i) The first derivative of p1 with respect to λ is

∂p1

∂λ
= ln[τeq1

H/λ + (1 − τ)eq1
L/λ] −

τq1
Heq1

H/λ + (1 − τ)q1
Leq1

L/λ

λ[τeq1
H/λ + (1 − τ)eq1

L/λ]
.

∂p1/∂λ ≤ 0 is equivalent to

[
τeq1

H/λ + (1 − τ)eq1
L/λ

]
ln[τeq1

H/λ + (1 − τ)eq1
L/λ] ≤ τ

q1
H

λ
eq1

H/λ + (1 − τ)
q1

L

λ
eq1

L/λ. (A.8)

We know that f (x) = x ln x is convex with respect to x. So we have f (τeq1
H/λ+(1−τ)eq1

L/λ) ≤ τ f (eq1
H/λ)+

(1 − τ) f (eq1
L/λ), which means that the inequality (A.8) holds. Therefore, ∂p1/∂λ ≤ 0.

The first derivative of p1 with respect to λ is

∂p1

∂λ
=

(1 − τ)q1
Heq1

H/λ + τq1
Leq1

L/λ

λ[(1 − τ)eq1
H/λ + τeq1

L/λ]
− ln[(1 − τ)eq1

H/λ + τeq1
L/λ].

∂p1/∂λ ≥ 0 is equivalent to

(1 − τ)
q1

H

λ
eq1

H/λ + τ
q1

L

λ
eq1

L/λ ≥ [(1 − τ)eq1
H/λ + τeq1

L/λ] ln[τeq1
L/λ + (1 − τ)eq1

H/λ].

It is obviously true according to the convexity of f (x) = x ln x. So we have ∂p1/∂λ ≥ 0.
(ii) The first derivatives of p1 and p1 with respect to β, α, and τ are as follows:

∂p1

∂β
=

(qL − qH)(τeq1
H/λ + α(1 − τ)eq1

L/λ)

τeq1
H/λ + (1 − τ)eq1

L/λ
< 0,

∂p1

∂β
= (qH − qL)

 (1 − τ)eq1
H/λ + ατeq1

L/λ

(1 − τ)eq1
H/λ + τeq1

L/λ
− 1 − α

 < qL − qH < 0,
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∂p1

∂α
=

(qL − qH)β(1 − τ)eq1
L/λ

τeq1
H/λ + (1 − τ)eq1

L/λ
< 0.

∂p1

∂α
=

(qL − qH)β(1 − τ)eq1
H/λ

(1 − τ)eq1
H/λ + τeq1

L/λ
< 0,

∂p1

∂τ
=

λ(eq1
H/λ − eq1

L/λ)

τeq1
H/λ + (1 − τ)eq1

L/λ
> 0,

∂p1

∂τ
=

λ(eq1
H/λ − eq1

L/λ)

(1 − τ)eq1
H/λ + τeq1

L/λ
> 0.

These prove that p1 and p1 both decrease with β and α, and increase with τ.
■

A.4. Proof of Proposition 2

Proof. Since the cases for k = 1 and k = 2 are similar, it suffices to prove the case for k = 1. First, it
should be noted that π1

0(p) decreases with respect to p, since

∂π1
0(p)
∂p

= −
τ[csch((p + U0 − q1

L)/2λ)]2 − (1 − τ)[csch((p + U0 − q1
H)/2λ)]2

4λ
≤ 0,

where

csch(x) =
2

ex − e−x .

According to π1
0(p), when p ≤ p1, we have π1

0(p) = 1, and so π1
H(p) = π1

L(p) = 1. At this point,
R1

i (p) = p ∗ π1
i (p) = p increases with respect to p, and therefore, p∗i1 ≥ p1. When p ≥ p1, we have

π1
0(p) = 0, and so π1

H(p) = π1
L(p) = 0. At this point, R1

i (p) = p ∗ π1
i (p) = 0, and therefore, p∗i1 ≤ p1. ■

A.5. Proof of Proposition 3

Proof.
Similarly, it is sufficient to prove only that k = 1 here. (i) Let

ϵ(π1
i ) =

π1
0

1 − π1
0

∗
1 − π1

i

π1
i

,

then rewrite the revenue function as

R1
i (π1

i ) = (qi − U0 + (qi − r)+ + α(qi − r)−)π1
i + λπ

1
i ln[ϵ(π1

i )].
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Using Equation (3.11), π1
H and π1

L are given by

π1
H =

e(q1
H−p)/λ

e(q1
H−p)/λ + (1 − π1

0)/π1
0

and

π1
L =

e(q1
L−p)/λ

e(q1
L−p)/λ + (1 − π1

0)/π1
0

.

We then represent π1
L as a function of π1

H as

π1
L =

π1
Heq1

L/λ

eq1
H/λ − π1

H(eq1
H/λ − eq1

L/λ)
,

and substitute it into equation (3.9) to obtain

π1
0 = τπ

1
H +

(1 − τ)π1
Heq1

L/λ

eq1
H/λ − π1

H(eq1
H/λ − eq1

L/λ)
.

Consequently, ϵ(π1
H) is represented as

ϵ(π1
H) =

τ(1 − π1
H)eq1

H/λ + (1 − τ(1 − π1
H))eq1

L/λ

(1 − τπ1
H)eq1

H/λ + τπ1
Heq1

L/λ
.

The first and second derivatives of ϵ(π1
H) with respect to π1

H are given by

∂ϵ(π1
H)

∂π1
H

= −
τ(1 − τ)(eq1

H/λ − eq1
L/λ)2

((1 − τπ1
H)eq1

H/λ + τπ1
Heq1

L/λ)2
≤ 0

and

∂2ϵ(π1
H)

∂(π1
H)2
= −

2τ2(1 − τ)(eq1
H/λ − eq1

L/λ)3

((1 − τπ1
H)eq1

H/λ + τπ1
Heq1

L/λ)3
≤ 0.

Similarly, we represent π1
H as a function of π1

L as

π1
H =

π1
Leq1

H/λ

eq1
L/λ + πL(eq1

H/λ − eq1
L/λ)
.

Then ϵ(π1
L) is given by

ϵ(π1
L) =

(π1
L + τ(1 − π

1
L))eq1

H/λ + (1 − τ)(1 − π1
L)eq1

L/λ

(1 − τ)π1
Leq1

H/λ + (1 − (1 − τ)π1
L)eq1

L/λ
.
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Therefore, the first and second derivatives of ϵ(π1
L) with respect to π1

L are given by

∂ϵ(π1
L)

∂π1
L

= −
τ(1 − τ)(eq1

H/λ − eq1
L/λ)2

((1 − (1 − τ)π1
L)eq1

L/λ + (1 − τ)π1
Leq1

H/λ)2
≤ 0

and

∂2ϵ(π1
L)

∂(π1
L)2
= −

2τ(1 − τ)2(eq1
H/λ − eq1

L/λ)3

((1 − (1 − τ)π1
L)eq1

L/λ + (1 − τ)π1
Leq1

H/λ)3
≤ 0.

Taking derivatives, the second derivative of R1
i (π1

i ) with respect to π1
i is given by

∂2R1
i (π1

i )
∂(π1

i )2
=

2λ∂ϵ(π1
i )/∂π1

i

ϵ(π1
i )

+ λπ1
i

− (
∂ϵ(π1

i )/∂π1
i

ϵ(π1
i )

)2

+
∂2ϵ(π1

i )/∂(π1
i )2

ϵ(π1
i )

 .
Since ∂ϵ(π1

i )/∂π1
i ≤ 0, ∂2ϵ(π1

i )/∂(π1
i )2 ≤ 0, and ϵ(π1

i ) ≥ 0, we have ∂2R1
i (π1

i )/∂(π1
i )2 ≤ 0, which means

that R1
i (π1

i ) is concave with respect to π1
i .

(ii) For high quality, π1
H(p) is given by

π1
H(p) =

π1
0(p)e(q1

H−p)/λ

π1
0(p)e(q1

H−p)/λ + (1 − π1
0(p))eU0/λ

.

Using Equation (9), we can represent π1
H(p) as

π1
H(p) =

eq1
H/λ

τ

[
1

eq1
H/λ − eq1

L/λ
−

1 − τ

eq1
H/λ − e(p+U0)/λ

]
.

Therefore, R1
H(p) = p ∗ π1

H(p), and the second derivative of R1
H(p) = p ∗ π1

H(p) with respect to p is

∂2R1
H(p)
∂p2 = −

(1 − τ)
[
csch((p + U0 − q1

H)/2λ)
]2

4τλ2 ∗

[
2λ − pcoth

(
p + U0 − q1

H

2λ

)]
,

where

coth(x) =
ex + e−x

ex − e−x .

Since p < p < q1
H − U0, we have p + U0 < q1

H, then coth((p + U0 − q1
H)/2λ) < 0. Together with

−(1 − τ)
[
csch((p + U0 − q1

H)/λ)
]2
/4τλ2 < 0, consequently, R1

H(p) is concave with respect to p for
p ∈ [p1, p1].

Similarly, for low quality, we can represent π1
L(p) as

π1
L(p) =

eq1
L/λ

1 − τ

[
τ

e(p+U0)/λ − eq1
L/λ
−

1

eq1
H/λ − e(q1

L)/λ

]
.
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So we obtain R1
L(p) = p ∗ π1

L(p) and

∂R1
L(p)
∂p

= −
eq1

L/λ

1 − λ

 1

eq1
H/λ − eq1

L/λ
+ τ
λeq1

L/λ + (p − λ)e(p+U0)/λ

λ(e(p+U0)/λ − eq1
L/λ)2

 .
If λ ≤ p, then λeq1

L/λ + (p − λ)e(p+U0)/λ > 0. If λ > p, to have λeq1
L/λ + (p − λ)e(p+U0)/λ ≥ 0, we must

demonstrate that (λ− p)e(p+U0)/λ ≤ λeq1
L/λ, which, in turn, suggests that e(p+U0−q1

L)/λ ≤ λ/(λ− p). As p→
q1

L−U0(p > q1
L−U0), e(p+U0−q1

L)/λ ≤ λ/(λ− p) is satisfied. We can also see that e(p+U0−q1
L)/λ and λ/(λ− p)

both increase with respect to p. However, there is no value of p that can make the aforementioned
inequality hold as an equality. Given the continuity of both sides, e(p+U0−q1

L)/λ ≤ λ/(λ − p) is invariably
satisfied; consequently, τ(p − λ)e(p+U0)/λ + τλeq1

L/λ > 0. Thus, we obtain ∂R1
L(p)/∂p < 0, and R1

L(p)
decreases with respect to p. The second derivative of R1

L(p) = p ∗ π1
L(p) with respect to p is

∂2R1
L(p)
∂p2 = −

(1 − τ)
[
csch((p + U0 − q1

L)/2λ)
]2

4τλ2 ∗

[
2λ − pcoth

(
p + U0 − q1

L

2λ

)]
.

It is intuitive that −(1 − τ)
[
csch((p + U0 − q1

L)/2λ)
]2
/4τλ2 ≤ 0. In addition, according to the property

of coth(x), we obtain 2λ/(p + U0 − q1
L) < coth((p + U0 − q1

L)/2λ), which implies 2λ − (p + U0 −

q1
L)coth((p + U0 − q1

L)/2λ) < 0. Since p > q1
L − U0, we also have 2λ − pcoth((p + U0 − q1

L)/2λ) < 0.
Therefore, ∂2R1

L(p)/∂p2 > 0 and R1
L(p) is convex with respect to p. ■

A.6. Proof of Corollary 1

Proof.
This result can be easily obtained via Proposition 2 and Proposition 3. ■

A.7. Proof of Proposition 4

Proof.
Similarly, it suffices to prove the case for k = 1.
(i) To simplify the proof, we rewrite the unconditional purchase probability as

π1
0(p) =

1 − τeU1
H/λ − (1 − τ)eU1

L/λ

(eU1
H/λ − 1)(eU1

L/λ − 1)
,

where U1
H = 2qH − p − r, U1

L = (1 + α)qL − p − αr, and r = βqH + (1 − β)qL. The first derivative of
π1

0(p) with respect to λ is

∂π1
0(p)
∂λ

=
M

λ2(eU1
H/λ − 1)2(eU1

L/λ − 1)2
,

where

M =[(τUHeU1
H/λ + (1 − τ)ULeU1

L/λ)(eU1
H/λ − 1)(eU1

L/λ − 1)

+ (1 − τeU1
H/λ − (1 − τ)eU1

L/λ)(UHeUH/λ(eUL/λ − 1) + ULeUL/λ(eUH/λ − 1))].
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Since λ2(eU1
H/λ − 1)2(eU1

L/λ − 1)2 ≥ 0, we only need to focus on the positive and negative signs of the
numerator M. After calculation, M is ultimately simplified to

M = τULeU1
L/λ(2eU1

H/λ − e2U1
H/λ − 1) + (1 − τ)UHeU1

H/λ(2eU1
L/λ − e2U1

L/λ − 1).

Note that 2ex− e2x−1 ≤ 0 and UH > 0,UL < 0, so τUL(2eU1
H/λ− e2U1

H/λ−1) ≥ 0 and (1−τ)UH(2eU1
L/λ−

e2U1
L/λ − 1) ≤ 0. Since ∂π1

0(p)/∂λ decreases with τ, when τ approaches 0, ∂π1
0(p)/∂λ ≤ 0, and when

τ approaches 1, ∂π1
0(p)/∂λ ≥ 0. Therefore there is a unique τ1

c such that when τ is lower than τ1
c ,

∂π1
0(p)/∂λ ≤ 0, and ∂π1

0(p)/∂λ ≥ 0 otherwise.
(ii) For low quality, we know that R1∗

L = p1∗
L = p1 = q1

H + q1
L − λ ln[τeq1

H/λ + (1− τ)eq1
H/λ]. According

to the proof of Remark 1(i), we have ∂p1∗
L /∂λ ≥ 0. Therefore, R1∗

L and p1∗
L both increase with respect

to λ.
(iii) For high quality, we have

lim
λ→0

R1∗
H = q1

H > τq
1
H + (1 − τ)q1

L = lim
λ→∞

R1∗
H .

The first derivative of R1
H(π1

H) with respect to π1
H is

∂R1
H(π1

H)
∂π1

H

= q1
H − U0 + λ ln[ϵ(π1

H)] + λπ1
H

ϵ(1)(π1
H)

ϵ(π1
H)
,

where ϵ(1)(π1
H) represents the first derivative of ϵ(π1

H) with respect to π1
H. ∂R1

H(π1
H)/∂π1

H in the limit as
π1

H → 1 becomes

q1
H − U0 +

λ ln
 eq1

L/λ

(1 − τ)eq1
H/λ + τeq1

L/λ

 − λτ(1 − τ) (eq1
H/λ − eq1

L/λ)2

eq1
L/λ((1 − τ)eq1

H/λ + τeq1
L/λ)

 .
We refer to the content enclosed within curly braces {} as A. Since (eq1

H/λ − eq1
L/λ)2/(eq1

L/λ((1 − τ)eq1
H/λ +

τeq1
L/λ)) ≥ 0 and eq1

L/λ/((1− τ)eq1
H/λ+ τeq1

L/λ) ≤ 1, we obtain A ≤ 0. The first derivative of A with respect
to λ is

∂A
∂λ
=

(1 − τ)(q1
H − q1

L)eq1
H/λ

λ((1 − τ)eq1
H/λ + τeq1

L/λ)
+ ln

 eq1
L/λ

(1 − τ)eq1
H/λ + τeq1

L/λ

︸                                                              ︷︷                                                              ︸
B

+
τ(1 − τ)e−q1

L/λ(eq1
H/λ − eq1

L/λ)

λ((1 − τ)eq1
H/λ + τeq1

L/λ)2︸                              ︷︷                              ︸
C

×
((1 − τ)(q1

H − q1
L − λ)e

2q1
H/λ + τλe2q1

L/λ

+((q1
H − q1

L)(1 + τ) + λ(1 − 2τ))e(q1
H+q1

L)/λ)︸                                                      ︷︷                                                      ︸
D

.

Firstly, B decreases with respect to λ since

∂B
∂λ
= −
τ(1 − τ)(q1

H − q1
L)2e(q1

H+q1
L)/λ

λ3((1 − τ)eq1
H/λ + τeq1

L/λ)2
≤ 0.
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Also note that with lim
λ→∞

B = 0, we have B ≥ 0. It is also obvious that C ≥ 0. Next, D is convex with

respect to q1
H since

∂2D
∂(q1

H)2
=

eq1
H/λ(4eq1

H/λ(q1
H − q1

L)(1 − τ) + eq1
L/λ((q1

H − q1
L)(1 + τ) + 3λ))

λ2 ≥ 0,

When q1
H = q1

L, D achieves its minimum value, which is 0. Hence, D ≥ 0. As a result, A increases
with respect to λ. We also have lim

λ→0
A = −∞ and lim

λ→∞
A = −(1 − τ)(q1

H − q1
L). Thus, we find that

when π1
H → 1, ∂R1

H(π1
H)/∂π1

H = q1
H − U0 + A increases with respect to λ. Moreover, when λ → 0,

∂R1
H(π1

H)/∂π1
H approaches −∞, and when λ → ∞, ∂R1

H(π1
H)/∂π1

H approaches τq1
H + (1 − τ)q1

L − U0.
Therefore, there is a unique threshold λ = λ1

c and π∗H1 = 1 for λ > λ1
c . This means that for λ > λ1

c ,
the revenue-optimal price and revenue of both sellers will be the same (R1∗

L and p1∗
L both increase with

respect to λ as proved above).
■

A.8. Proof of Proposition 5

Proof.
Similarly, it also suffices to prove the case for k = 1.
(i) The first derivative of π1

0(p) with respect to r is

∂π1
0(p)
∂r

=
K

λ(eU1
H/λ − 1)2(eU1

L/λ − 1)2
,

where

K =[(τeU1
H/λ + (1 − τ)αeU1

L/λ)(eU1
H/λ − 1)(eU1

L/λ − 1)

+ (1 − τeU1
H/λ − (1 − τ)eU1

L/λ)((1 + α)e(U1
H+U1

L)/λ − eU1
H/λ − αeU1

L/λ)].

Since λ(eU1
H/λ − 1)2(eU1

L/λ − 1)2 ≥ 0, we only need to focus on the positive and negative signs of the
numerator K. After calculation, K is ultimately simplified to

K = ταeU1
L/λ(2eU1

H/λ − e2U1
H/λ − 1) + (1 − τ)eU1

H/λ(2eU1
L/λ − e2U1

L/λ − 1) ≤ 0.

Therefore, ∂π1
0(p)/∂r ≤ 0. Moreover, because ∂r/∂β ≥ 0, we have ∂π1

0(p)/∂β ≤ 0.
(ii) We rewrite q1

H and q1
L as q1

H = 2qH − r and q1
L = (1 + α)qL − αr. Since

∂R1∗
L

∂r
= −1 − α +

ατeq1
L/λ + (1 + τ)eq1

H/λ

τeq1
L/λ + (1 + τ)eq1

H/λ
< −1 < 0

and ∂r/∂β > 0, R1∗
L and p1∗

L are both decreasing with respect to β.
The first derivative of R1

H(p) with respect to r is

∂R1
H(p)
∂r

=
p
τλ

 (1 − α)e(q1
L−q1

H)/λ

(1 − e(q1
L−q1

H)/λ)2
−

(1 − τ)e(p−q1
H)/λ

(1 − e(p−q1
H)/λ)2

 < 0.
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We can see that

∂2R1
H(p)
∂p∂r

=
1
τλ

 (1 − α)e(q1
L−q1

H)/λ

(1 − e(q1
L−q1

H)/λ)2
−

(1 − τ)e(p−q1
H)/λ

(1 − e(p−q1
H)/λ)2


+

p
τ

− 2(1 − τ)e(p−q1
H)/λ

λ2(1 − e(p−q1
H)/λ)3

−
e(p−q1

H)/λ

λ(1 − e(p−q1
H)/λ)2

 < 0

Therefore,

∂p1∗
H

∂r
= −
∂2R1

H(p)/∂p∂r
∂2R1

H(p)/∂p2
< 0.

Furthermore, because ∂r/∂β ≥ 0, we have ∂p1∗
H /∂β < 0 and ∂R1∗

H /∂β < 0. ■

A.9. Proof of Proposition 6

Proof.
(i) For k = 1, we have

π1
0(p) =

1 − τeU1
H/λ − (1 − τ)eU1

L/λ

(eU1
H/λ − 1)(eU1

L/λ − 1)
.

The first derivative of π1
0(p) with respect to α is

∂π1
0(p)
∂α

=
τβ(qL − qH)e(UL/λ)

λ(eU1
L/λ − 1)2

< 0,

So π1
0(p) is decreasing with respect to α.

For k = 2, because the customers will not feel the loss at this time, the unconditional purchase
probability π2

0(p) is independent of α.
(ii) For low quality, we have R1∗

L = p1∗
L = q1

H + q1
L − λ ln[τeq1

L/λ + (1− τ)eq1
H/λ]. The first derivative of

R1∗
L with respect to α is

∂R1∗
L

∂α
=
β(qL − qH)(1 − τ)eq1

H/λ

τeq1
L/λ + (1 − τ)eq1

H/λ
< 0.

Thus R1∗
L and p1∗

L are decreasing with respect to α.
For high quality, we note that

R1
H(p) = p ∗ π1(p) =

p
τ

 1

1 − e(q1
L−q1

H)/λ − 1−τ

1−e(p−q1
H )/λ

 .
The first derivative of R1

H(p) with respect to α is

∂R1
H(p)
∂α

=
p
τ

β(qL − qH)e(q1
L−q1

H)/λ

λ(1 − e(q1
L−q1

H)/λ)2

 < 0.
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Note that

∂2R1
H(p)
∂p∂α

=
1
τ

β(qL − qH)e(q1
L−q1

H)/λ

λ(1 − e(q1
L−q1

H)/λ)2

 < 0.

We also have ∂2R1
H(p)/∂2 p < 0, so −(∂2R1

H(p)/∂p∂α)/(∂2R1
H(p)/∂2 p) < 0. In summary, the optimal

revenue R1∗
H and price p1∗

H for the high-quality seller are also decreasing with respect to α.
For k = 2, because the customers will not feel the loss at this time, R2∗

H and the price p2∗
H are

independent of α. ■

A.10. Proof of Proposition 7

Proof.
Similarly, it also suffices to prove the case for k = 1.
(i) The first derivative of π1

0(p) with respect to τ is

∂π1
0(p)
∂τ

=
eU1

L/λ − eUH/λ

(eUH/λ − 1)(eUL/λ − 1)
.

Since eUH/λ − 1 > 0 and eUL/λ − 1 < 0, we have ∂π1
0(p)/∂τ > 0.

(ii) For low quality, we have R1∗
L = q1

H + q1
L − λ ln[τeq1

L/λ + (1 − τ)eq1
H/λ]. Since

∂R1∗
L

∂τ
=

λ(eq1
H/λ − eq1

L/λ)

τeq1
L/λ + (1 − τ)eq1

H/λ
≥ 0,

R1∗
L is increasing with respect to τ.

For high quality, we have

R1
H(p) = p ∗ π1

H(p) =
p
τ

[
1

1 − e(q1
L−q1

H)/λ
−

(1 − τ)

1 − e(p−q1
H)/λ

]
.

The first derivative of R1
H(p) with respect to τ is

∂R1
H(p)
∂τ

= −
p
τ2

[
1

1 − e(q1
L−q1

H)/λ
−

1

1 − e(p−q1
H)/λ

]
> 0.

Note that

∂2R1
H(p)
∂p∂τ

= −
1
τ2

[
1

1 − e(q1
L−q1

H)/λ
−

1

1 − e(p−q1
H)/λ

]
+

p
τ2

 e(p−q1
H)/λ

λ(1 − e(p−q1
H)/λ)2

 > 0.

We also have ∂2R1
H(p)/∂2 p < 0, so −(∂2R1

H(p)/∂p∂τ)/(∂2R1
H(p)/∂2 p) > 0. Therefore, R1∗

H (p) and p1∗
H

are both increasing with respect to τ. ■
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