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A. Appendix

A.1. Proof of Equation (3.10)

Proof. Assume S y is the set of all signals that lead to customers not purchasing, i.e.,
1—m = f Fdsli), i€Q.
seS N

According to Lemma 1 of Matéjka and McKay [38], each action corresponds uniquely to a specific
signal. This implies that for any s € S p, F(i|s) remains identical. Therefore, for any i € Q and any
s € Sp, we have W(F(:|s)) = U;. Similarly, for any s € Sy, F(ils) is also identical, and we have
W(F(|s)) = U.
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Therefore, the first term in Equation (3.5) is

> f W(FCIs)F(ds,i) =Y. f W(F(1)F(dsli)g

ieQ ieQ v

-y f W(F(s)F(dsli)g:
icQ SESpSN

=2 ([ werdsF@siig + | wECs)F@sig)
seSp

icQ SESN

= (et [ Fasoeave [ i)
icQ seSp seS N

= Z(giUiﬂi + gUo(1 —m)) = Z gi(miU; + (1 — m;)Uy).
i€Q i€Q

This exactly equals the first term in Equation (3.10).

A.2. Proof of Equation (4.3)
Proof. From Equations (3.9) and (3.11), we obtain

7r(1, = TT('}_I + (1 - T)JTi

7-(1 e(qII.[_P)//l
1 0
7TH -

1 _
me 4P+ (1 — 1))

-
ﬂ(l)e(qL P)/A

rhe¥iP 4 (1 - xly
Substituting equations (A.3) and (A.4) into equation (A.2), we obtain

+ .
1 _ 1_
me P+ (1 —mp)  mpe P + (1 — 7))

L _
ﬂo—

Multiplying both sides by

1 _ I_
[y a= Pt + (1 — )| [mge s + (1 = 7))

1
0

/4
and simplifying, we have
ﬂ(l)(e(q,',—p)//l _ 1)(e(q2—p)//l -H=1- TP _ (1 - T)e(qlL—p)//i.
Therefore, we obtain the solution

1 — e @PIA — (1 = 7)e@L-P)/A

L _
7[0 - 1_ 1_
(e =PI — 1) (el =PIt — 1)

(A.1)

(A.2)

(A.3)

(A4)

(A.S)

(A.6)
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Multiplying both the numerator and denominator of the right-hand side of Equation (A.6) by e?”, we
obtain

el (ePIt — 1ol — (1 — 1)edL/d)

mo(p) = (A7)
Equation (A.7) represents the unconditional purchase probability when the customers choose to obtain
information, which is equivalent to Equation (4.3). By combining this with the unconditional purchase
probability when no information is obtained, we arrive at Equation (4.4). The derivation processes for
Equations (4.6) and (4.7) follow the same methodology as described above and are therefore omitted
here. ]

A.3. Proof of Remark 1
Proof. (i) The first derivative of 7' with respect to A is
—I

p _ 1 //1 1//1
— = In[re?®’" + (1 — 1)e®/7] — .
94 [ (=0 Alredn/t + (1 = 1)edr/A]

Tq}{eqllvm + (1 - T)qieqlLM

dp' /84 < 0 is equivalent to

I i
[Te”’}f” +(1- T)eqlLM] In[re?/* + (1 — )] < quHeq}’M +(1 - T)%eql/ﬂ_ (A.8)

We know that f(x) = xIn x is convex with respect to x. So we have f(re%/1+(1-1)e?t/1) < 7f(et/Y)+
(1 — 1) f(e%/Y), which means that the inequality (A.8) holds. Therefore, dp' /04 < 0.
The first derivative of £1 with respect to A is

ap' (1 - 1)glett + g} 91/
O AL = T)etn!t + redi/1)

—1In[(1 — T)e/ + Tt/
dp'/dA = 0 is equivalent to

1 1
(1- ‘z')qTHeqllf//l + T%quLM > [(1 - 1)t + 7e9/ ] In[re®* + (1 — 7)e!].

It is obviously true according to the convexity of f(x) = xIn x. So we have 821 /04 > 0.

(ii) The first derivatives of 1_71 and p' with respect to 3, @, and 7 are as follows:

9P _ (- qu)(Tetn’ + a(1 — T)et/?)

<0,
P Tet/ 4 (1 — T)el/t

ap' — ) (1 — 1)etn!! + arein/?
T T eI 4 et

B

-l-a|<q.—qu <0,
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9P _ (q—gwB(l — et
da Tetn/t + (1 — T)eft/

6_‘1—)1 _ (qr — qu)B(1 — T)etnl

<0,
da (1 -1)etn! + et/

op' A/t — g1/

Ot retlt + (1 — T)ed/A

op AT/t — a1 0
—_ = > 0.

or (1 — 7)etn’! + redr/?

These prove that ]_71 and p! both decrease with 8 and a, and increase with 7.

A.4. Proof of Proposition 2

Proof. Since the cases for k = 1 and k = 2 are similar, it suffices to prove the case for k = 1. First, it
should be noted that 71(1)( p) decreases with respect to p, since

omy(p) _ tlesch((p + U — )/2D1 = (1 = Dlesch((p + Up — g;) /2] -
ap 44 -

0,

where

csch(x) =

ex — efx'

According to 7y(p), when p < p', we have ny(p) = 1, and so 7,,(p) = 7;(p) = 1. At this point,
R}(p) = p=* n}(p) = p increases with respect to p, and therefore, p}, > p'. When p > ﬁl, we have
ny(p) = 0, and so 7},(p) = 7} (p) = 0. At this point, R} (p) = p = xr}(p) = 0, and therefore, p}, < 7. =

A.5. Proof of Proposition 3

Proof.
Similarly, it is sufficient to prove only that k = 1 here. (i) Let

1
E(ﬂ’.)zl—ﬂl>X< a7
0 i

then rewrite the revenue function as

Rl(n)) = (q; — Uy + (q; — )" + alg; — r))n} + An; In[e(n})].
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Using Equation (3.11), 7}, and 7} are given by

1 RO
= o 1Y/
e\u + —my)/m,
and
. elaL-p)ia
ﬂ.L -_

eI 4 (] — ﬂ(l))/ﬂ(l)'
We then represent 7r; as a function of 7, as

1

=
L= 4 1,9 /2 N
ednlt — ﬂH(eqH/ — edt/h)

and substitute it into equation (3.9) to obtain

(1- T)ﬂ;leqlL/”

1 1 1 .
edult — ﬂllq(eq,,//l — edilt)

Ty = Thy +

Consequently, e(r},) is represented as

(1 = zlyetn + (1 = 7(1 = x},))e?/?

P A} 1 ,qt/4
(I = 7my)edn’” + T et

e(ny) =

The first and second derivatives of e(rr},) with respect to 7, are given by

Oe(my,) 7(1 = 7)(e/ — eaI1Y2
oy ((1- ik et 4 1l e/t T
and
ﬁze(nb) B 27%(1 - T)(eq,',/ﬂ _ eqlL//l)S
Ay (1 = Trfet + Theti/ )

Similarly, we represent 7}, as a function of 7} as

ﬂlLeq},/ﬁ

1 1 1 °
eqL//l + ﬂ'L(eqH//l j— eqL//l)

I _
ﬂH—

Then e(r}) is given by

(7! + (1 = xh))et/t + (1 = 7)(1 -z} )e/

e(n!) =
t (1 =)l eti/* 4+ (1 = (1 — 7)})edi/
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Therefore, the first and second derivatives of e(rr}) with respect to xr; are given by

de(n)) 7(1 = 7)(en/t — eL/1)?2
omy - (r-a- T)ﬂlL)qu +(1- T)ﬂlLeq},/A)z =
and
Pe(my) 27(1 = 1) (e — ei1l1)3
A (1= (1 - Drhen/t + (1 — )b et/ 1y~

Taking derivatives, the second derivative of R; (rr}) with respect to 7] is given by

ORi(x)) _ 249emp/om} 1[_ (ae(n})/anl)z , /o)’

AR | ) & e(n) e(n)

Since de(n})/on! < 0, 0%e(n})/d(n})* < 0, and €(nr}) > 0, we have 9*R} (n})/d(x})* < 0, which means
that R!(x}) is concave with respect to .

(ii) For high quality, r},(p) is given by
ﬂ(l)(p)e(q},—p)//l

7(p)e P! 4 (1 = mi(p))eort

my(p) =

Using Equation (9), we can represent 7y, (p) as

el 1 -7
u(p) = [ ] :

el — gL/ gl — p(p+U0)/2

Therefore, R;,(p) = p * rr;,(p), and the second derivative of R},(p) = p * nrj,(p) with respect to p is

2
0’R! (1 = 1) |esch((p + Ug = q;)/22) +Uy—g!
H(p):_ [ 0 9u ] *zﬂ_pcothu ’
ap> ATQ2 24

where

ef+e*

ex — e

coth(x) =

Since p < p < q}, — Uy, we have p + Uy < qJ,, then coth((p + Uy — q},)/22) < 0. Together with
2
—-(1-1 [csch((p + Uy — q}q)//l)] /41A% < 0, consequently, R}{(p) is concave with respect to p for

pelp.p'l.
Similarly, for low quality, we can represent 7; (p) as

e/ [ T 1

m(p) =

1 — 7 | e(+U0/A — pap/d  payld — glapia |’
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So we obtain R; (p) = p = mr;(p) and

OR|(p) et/ 1 QeI 4 (p — 2)ew+Un/d
== +
op 1 — A | et/ — a1/ A(ePU0/A _ pa1/ )2

If A < p, then Ae%/* + (p — 1)eP*U0/1 > 0. If A > p, to have Aelt/* + (p — )PV > 0, we must
demonstrate that (1— p)eP*U»/1 < 1e%/1, which, in turn, suggests that e?*Uo-4/1 < 1/(1— p). As p —
q; — Uo(p > q; — Uy), ePUo—apIt < 1 /(A - p) is satisfied. We can also see that e?*U0~9/4 and 1/(1— p)
both increase with respect to p. However, there is no value of p that can make the aforementioned
inequality hold as an equality. Given the continuity of both sides, eP*Uo~9)/1 < 1/(1 — p) is invariably
satisfied; consequently, 7(p — 1)e?*U)/* 4 7e4/4 > 0. Thus, we obtain dR.(p)/dp < 0, and R (p)
decreases with respect to p. The second derivative of R} (p) = p * mr; (p) with respect to p is

FRUp) (1= Desch((p + Us ~ g))/20)]

p+Uy—q;
op? 4712 '

21 — pcoth
* [ pco ( 1

It is intuitive that —(1 — 1) [csch(( p+Uy— qi) / 2/1)]2 /414 < 0. In addition, according to the property
of coth(x), we obtain 21/(p + Uy — q}) < coth((p + Uy — g})/21), which implies 21 — (p + Up —
g;)coth((p + Uy — q})/22) < 0. Since p > q; — Uy, we also have 21 — pcoth((p + Uy — g;)/24) < 0.
Therefore, 8°R; (p)/dp* > 0 and R} (p) is convex with respect to p. |

A.6. Proof of Corollary 1

Proof.
This result can be easily obtained via Proposition 2 and Proposition 3. |

A.7. Proof of Proposition 4

Proof.
Similarly, it suffices to prove the case for k = 1.
(i) To simplify the proof, we rewrite the unconditional purchase probability as

1 — reln/t — (1- ‘r)eUU’1

(eUII_I//l _ ])(eUiM _ 1)

o(p) =
where Uy, =2qy —p—r, U] = (1 + @)q. — p — ar, and r = Bqy + (1 — B)g,. The first derivative of
my(p) with respect to A is

omy(p) M
A (el — 17— 1)

where

M =[(tUpeVn + (1 = 1)U e ) (eVnl" — 1)Vt - 1)

+ (1 — Vit — (1 = )Y U eVt (Ve — 1) + UpeVH eVt — 1))].
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Since A2(eVi/t — 1)%(eV1/4 — 1)2 > 0, we only need to focus on the positive and negative signs of the
numerator M. After calculation, M is ultimately simplified to

M = tULeU(2eVi/t — Ui/t — 1) + (1 = T)UpeVn/ (2eViM — Vit — 1),

Note that 2¢*— > —1 < 0 and Uy > 0, U, < 0, so tU(2eUn/* — XU/t — 1) > 0 and (1 — 1) Upy(2eV1/* —
¢?UL/A — 1) < 0. Since On(p)/dA decreases with 7, when 7 approaches 0, dr)(p)/dA < 0, and when
7 approaches 1, drj(p)/04 > 0. Therefore there is a unique 7, such that when 7 is lower than 7,
dny(p)/9A < 0, and drj(p)/dA > 0 otherwise.

(if) For low quality, we know that RY* = pi* = p' = ¢! + ¢! — Aln[re®/! + (1 — )e%/]. According
to the proof of Remark 1(i), we have dp}*/01 > 0. Therefore, R;* and p}* both increase with respect
to A.

(iii) For high quality, we have

%i_r)r(l)R}; =qy>1qy+ (1 —1)q; = All_)n;R,lL;‘
The first derivative of R},(r},) with respect to 7y, is

IR}, (r},)

1
on,,

eD(r!
=g}, — Uy + A1n[e(n},)] + An},(—l”),
e(my,)

where €'V(rr},) represents the first derivative of €(r;,) with respect to 7, OR},(n},)/dm}, in the limit as
n;, — 1 becomes

el

(1 — )elnlt + Tedr/A

(el — o1/ )2 }

AL ((1 = T)etn!t + TedLlh)

q},—UO+{/lln[ ]—/lr(l—r)

We refer to the content enclosed within curly braces {} as A. Since (e%#/4 — e7/4)2 [(e91/4((1 — T)edn/ +
re/1)) > 0 and €7/ /((1 — T)etn!* + Tef1/?) < 1, we obtain A < 0. The first derivative of A with respect
to A1is

oA (- (g — qi)eq}f/ﬂ ol l edild ]
O (1 - 7)eth + Ter/h) " (1 = 1)/t + 7ed1/t
B
N 7(1 = T)e~ U/ (ehlt — ga1/2)
A((1 = )/t 4+ retlt)?
c
(A =7)gy —q; - D)e2ailt 4 721l
+((gl, — g1 + 1) + A1 = 27))el+a/y

D

Firstly, B decreases with respect to A since

OB (1 -71)(q} — q})*e )
O B((1 = ne! + redtity?
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Also note that with lim B = 0, we have B > 0. It is also obvious that C > 0. Next, D is convex with

A—00

respect to g}, since

*D eq},/z(4eq}1/ﬂ(q}, —g)(1-1)+ eqm((q;{ — g1 +7)+32) .0
agy? FE >0,

When q}q = qi, D achieves its minimum value, which is 0. Hence, D > 0. As a result, A increases
with respect to 4. We also have ﬁingA = —co and limA = —(1 = 7)(q};, — q;)- Thus, we find that

Ao
when n}, — 1, 0R}(n},)/dr}, = qj, — Uy + A increases with respect to 4. Moreover, when 4 — 0,
OR},(n},)/dr}, approaches —oo, and when 1 — oo, dR;,(},)/dn}, approaches tq;, + (1 — 7)q; — U.
Therefore, there is a unique threshold 2 = A} and 7}, = 1 for A > A!. This means that for 1 > A,
the revenue-optimal price and revenue of both sellers will be the same (R}* and p;* both increase with
respect to A as proved above).

A.8. Proof of Proposition 5

Proof.
Similarly, it also suffices to prove the case for k = 1.
(i) The first derivative of n(l)(p) with respect to r is

omy(p) K
or /1(6U},//l _ 1)2(6U1/A _ 1)2’

where
K =[(zeVn" + (1 - DVt M) (eVnlt — (el - 1)
+ (1 = 7eUn — (1 = D)V YH((1 + @)eUntUDIA — Vit — qeVildy],

Since A(eUn/t — 1)%(eV2/* — 1) > 0, we only need to focus on the positive and negative signs of the
numerator K. After calculation, K is ultimately simplified to

K = Ta/eUW(ZeUflfM — 2Unlt D+ (- T)eU}LIM(ZeUU’1 — U 1)<O0.

Therefore, Oy (p)/dr < 0. Moreover, because dr/9p > 0, we have o (p)/dB < 0.
(ii) We rewrite g}, and g} as g}, = 2qy — r and g} = (1 + a)q., — ar. Since
) atelt! + (1 + 1)etn/t
=-l-a+

<-1<0
or rel/A + (1 + T)etnl

and dr/dB > 0, R}" and p;* are both decreasing with respect to 3.
The first derivative of R},(p) with respect to r is

ORL(p)  p [(1 —a)ed-alt (1 = p)er-ai?
or ﬁ (1- e(qlL—q},)//l)z - a- e(p—q}i)//l)z
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We can see that

ORL(p) 1 [(1—a)eli-a/t (1 — p)elr-ai/d
dpor Tl l B l
I e P-aipIA

+ = {_ 2(1 = =i/ y3 B A1 - e(p—q}i)//l)z]

_ plal-gi)iay2 _ o(p—qi)/Ay2
(1-e ) (1-e )

-
Therefore,
oplr B O’R.(p)/0pdr
o — ”R.(p)/dp>
Furthermore, because dr/dB > 0, we have dp;; /0B < 0 and dR}*/IB < 0. n

A.9. Proof of Proposition 6
Proof.
(i) For k = 1, we have
1 — reln/t — (1- T)eUi“

(eU}i//l _ ])(eUz//l _ l)

mo(p) =

The first derivative of 7r(p) with respect to « is

Ony(p) _ 1B(gr— qm)e'Un/d) _
da AVt — 1)

2

So 7y(p) is decreasing with respect to .

For k = 2, because the customers will not feel the loss at this time, the unconditional purchase
probability 73(p) is independent of «.

(if) For low quality, we have RY* = pi* = gl + g} — AIn[re?/! + (1 — 7)e%/4]. The first derivative of
R}* with respect to « is

R, _ Blgr — gu)(1 = T)esn!”
da 7ot/ 4 (1 — 7)edn/?

Thus R} and p;* are decreasing with respect to a.
For high quality, we note that

1

1 — ea—ap)id — 1=t
1—ePaipI

Ry(p) = prr'(p)= £

The first derivative of R}{( p) with respect to « is

ORy(p)  p[BlqL - qr)e
da T A1 — elar=a)/ty2
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Note that

FRy(p) _ 1[BlgL = gu)e i/
dpda T A1 — e -a)/y2

We also have 0’Ry,(p)/d*p < 0, so —(0*°R},(p)/dpda)/(0*R;,(p)/8*p) < 0. In summary, the optimal
revenue R} and price p;; for the high-quality seller are also decreasing with respect to a.

For k = 2, because the customers will not feel the loss at this time, Rfj and the price pfj are
independent of a. |

A.10. Proof of Proposition 7

Proof.
Similarly, it also suffices to prove the case for k = 1.
(i) The first derivative of 7}(p) with respect to 7 is

aﬂ(l)(p) ~ eUL/l — pUnla

ot (eUn/i —1)(eV/At — 1)

Since eV#/* — 1 > 0 and eV+/* — 1 < 0, we have dr)(p)/d7 > 0.
(i) For low quality, we have R}* = ¢!, + g — AIn[re?/* + (1 — T)en/!]. Since
OR}* ATl — o112

O zedt/d 4 (1 — et/

R}* is increasing with respect to .
For high quality, we have

Lony — 1oy_ P 1 (-7
Ry(p) = p*my(p) = - [1 o T |
The first derivative of R},(p) with respect to 7 is
RYP) _ p 1 1 N
or 21 = @)/ | — P-aiid
Note that
OR}(p) 1 1 1 » o Paip/
= —— f— + -
Opot T2 [ 1 = eaam/d 1 — epapld| T2 | J(1 — elP-ai)/1)2

We also have 9*R},(p)/8*p < 0, so —(8*R},(p)/dpd7)/(6*R},(p)/&*p) > 0. Therefore, R} (p) and pp;
are both increasing with respect to 7. ]
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