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I. Adaptive weights estimation

The choice of β significantly influences feature selection and clustering accuracy. Following the
adaptive strategies proposed by [5], we present the adaptive updating procedure for β̃ in Algorithm
2. Specifically, given a range of α and a fixed η, we first fit GSFRC with γ = 1 and uniform feature
weights β j = 1. We then identify the value of α that yields the desired number of clusters, obtaining
the initial estimate X̃.

We update the weights in two aspects. On one hand, adaptive feature weights are constructed based
on the initial estimate β̃ j = 1/(∥X̃· j∥2 + 0.01). These weights impose a strong penalty on noise features
such that corresponding ∥X̃· j∥2 tends to 0. On the other hand, to reduce the influence of noise features
in A on similarity measurement, we apply min-max normalization to β̃ to obtain dβ and use dβ as
sample weights for each feature, i.e., ∥(Ai· − Ai′·) ⊙ dβ∥22, which refines the computation of the original
distance ∥Ai· − Ai′·∥

2
2. Here, “⊙” denotes Hadamard product.
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Algorithm 2 Adaptively adjusting β and ωι

Input: Data matrix A, hyperparameter η
Parameters: Tuning parameter sequences for α and γ

Step 1. Fit GSFRC with γ = 1, β j = 1 for j = 1, 2, . . . , d, and a sequence of α.
Step 2. Select optimal α that yield the desired number of clusters; Obtain the preliminary estimate

X̃.
Step 3. Update the adaptive weights:

• Feature weights: β̃ j =
1

∥X̃· j∥2 + 0.01
for j = 1, 2, . . . , d.

• Fusion weights: ω̃ι =

exp
(
− ϕ
∥∥∥(Ai· − Ai′·) ⊙ dβ

∥∥∥2
2

)
, if (i, i′) ∈ ϵ

0, otherwise
.

Step 4. Fit adaptive GSFRC with updated weights β̃, ω̃ι and sequences of α and γ; Find optimal α
and γ that achieve the desired number of clusters and features.
Output: Final cluster assignments, selected features, and refined estimate X̃.

II. The proof of Lemma 4.2

Proof. 1) According to (4.2) and (4.8), we get

L̂τ(Υ
(t+1)
1 , X(t+1);Υ(t+1)

2 , ε(t+1)) − L̂τ(Υ
(t+1)
1 , X(t+1);Υ(t)

2 , ε
(t))

= ⟨P(t+1) − P(t), DX(t+1) − E(t+1)⟩ + ⟨G(t+1) − G(t), X(t+1) − F(t+1)⟩

+ ⟨Ḡ(t+1) − Ḡ(t), X(t+1) − F̄(t+1)⟩ + ε(t+1) − ε(t)

=
1
τ
∥Υ

(t+1)
2 − Υ

(t)
2 ∥

2
F + ε

(t+1) − ε(t)

≤
θ

τ
∥X(t+1) − X(t)∥2F ,

(6.1)

where the second “=” and the first “≤” hold via (4.7) and Assumption 4.1, respectively.
Let

Qt(X) =
1
2
∥X − A∥2F +

τ

2
∥DX − E(t+1) +

1
τ

P(t)∥2F

+
τ

2
∥X − F(t+1) +

1
τ

G(t)∥2F +
τ

2
∥X − F̄(t+1) +

1
τ

Ḡ(t)∥2F .

Since X(t+1) is the optimal solution of X-subproblem, ∇Qt(X(t+1)) = 0. Combined with the strong
convexity of Qt(X), we derive that

L̂τ(Υ
(t+1)
1 , X(t+1);Υ(t)

2 , ε
(t)) − L̂τ(Υ

(t+1)
1 , X(t);Υ(t)

2 , ε
(t))

= Qt(X(t+1)) − Qt(X(t))

≤ −
2τ + 1

2
∥X(t+1) − X(t)∥2F .

(6.2)
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Similarly, by the optimality of E(t+1) for the E-subproblem, F(t+1) for the F-subproblem, and F̄(t+1)

for the F̄-subproblem, we get

g(E(t+1)) +
τ

2
∥DX(t) − E(t+1) +

1
τ

P(t)∥2F ≤ g(E(t)) +
τ

2
∥DX(t) − E(t) +

1
τ

P(t)∥2F ,

r1(F(t+1)) +
τ

2
∥X(t) − F(t+1) +

1
τ

G(t)∥2F ≤ r1(F(t)) +
τ

2
∥X(t) − F(t) +

1
τ

G(t)∥2F ,

r2(F̄(t+1)) +
τ

2
∥X(t) − F̄(t+1) +

1
τ

Ḡ(t)∥2F ≤ r2(F̄(t)) +
τ

2
∥X(t) − F̄(t) +

1
τ

Ḡ(t)∥2F .

(6.3)

Using (6.3), we have

L̂τ(Υ
(t+1)
1 , X(t);Υ(t)

2 , ε
(t)) − L̂τ(Υ

(t)
1 , X

(t);Υ(t)
2 , ε

(t)) ≤ 0. (6.4)

Summing both sides of (6.1), (6.2), and (6.4), we can obtain

L̂τ(Υ
(t+1)
1 , X(t+1);Υ(t+1)

2 , ε(t+1)) − L̂τ(Υ
(t)
1 , X

(t);Υ(t)
2 , ε

(t))
≤ −w̄∥X(t+1) − X(t)∥2F

< 0,

where w̄ = 2τ+1
2 −

θ
τ
.

2) Based on the below optimality conditions of the E-subproblem, F-subproblem, F̄-subproblem,
and X-subproblem 

0 ∈ ∂g(E(t)) − τ(DX(t−1) − E(t) + 1
τ
P(t−1)),

0 ∈ ∂r1(F(t)) − τ(X(t−1) − F(t) + 1
τ
G(t−1)),

0 ∈ ∂r2(F̄(t)) − τ(X(t−1) − F̄(t) + 1
τ
Ḡ(t−1)),

0 = X(t) − A + D⊤P(t) + G(t) + Ḡ(t),

(6.5)

and the subdifferentials of L̂τ(Υ
(t)
1 , X

(t);Υ(t)
2 , ε

(t)) with respect to E(t), F(t), Ē(t), X(t), P(t), G(t), and Ḡ(t)

∂EL̂τ = ∂g(E(t)) − 2P(t) + P(t−1),

∂FL̂τ = ∂r1(F(t)) − 2G(t) + G(t−1),

∂F̄L̂τ = ∂r2(F̄(t)) − 2Ḡ(t) + Ḡ(t−1),

∂XL̂τ = X(t) − A + D⊤(2P(t) − P(t−1))
+2G(t) − G(t−1) + 2Ḡ(t) − Ḡ(t−1),

∂Υ2L̂τ =
1
τ
(Υ(t)

2 − Υ
(t−1)
2 ),

(6.6)

we have 
∂EL̂τ ∋ τD(X(t−1) − X(t)) + P(t−1) − P(t),

∂FL̂τ ∋ τ(X(t−1) − X(t)) + G(t−1) − G(t),

∂F̄L̂τ ∋ τ(X(t−1) − X(t)) + Ḡ(t−1) − Ḡ(t),

∂XL̂τ = D⊤(P(t) − P(t−1)) + G(t) − G(t−1) + Ḡ(t) − Ḡ(t−1),

(6.7)
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and
A − X(t) = D⊤P(t) + G(t) + Ḡ(t). (6.8)

Thus,

dist
(
0, ∂L̂τ(Υ

(t)
1 , X

(t);Υ(t)
2 , ε

(t))
)

≤ ∥(
−−−−→
∂EL̂τ,

−−−−→
∂FL̂τ,

−−−−→
∂F̄L̂τ,

−−−−→
∂XL̂τ,

−−−−→
∂Υ2L̂τ)∥F

≤
(
2τ + τ

√
λmax(D⊤D) + 1

)
∥X(t) − X(t−1)∥F + (

1
τ
+ 1)∥Υ(t)

2 − Υ
(t−1)
2 ∥F

≤
(
2τ + τ

√
λmax(D⊤D) + 1 +

√
θ

τ
+
√
θ
)
∥X(t) − X(t−1)∥F

+ (
√
τ

τ
+
√
τ)
√

(ε(t−1) − ε(t))

≤ w̃
(
∥X(t) − X(t−1)∥F +

√
ε(t−1) − ε(t)),

where the second “≤” holds via (6.6)-(6.8) and
∑n

i=1(ai)2 ≤ (
∑n

i=1 ai)2 when ai ≥ 0, and the third “≤”
holds via Assumption 4.1 and

∑n
i=1(ai)2 ≤ (

∑n
i=1 ai)2 when ai ≥ 0. □

III. The proof of Lemma 4.3

Proof. 1) From Lemma 4.2, we get

L̂τ(Υ
(1)
1 , X

(1);Υ(1)
2 , ε

(1)) ≥ · · · ≥ L̂τ(Υ
(t)
1 , X

(t);Υ(t)
2 , ε

(t))

=
1
2
∥X(t) − A∥2F + g(E(t)) + r1(F(t)) + r2(F̄(t))

+
τ

2
∥DX(t) − E(t) +

1
τ

P(t)∥2F +
τ

2
∥X(t) − F(t) +

1
τ

G(t)∥2F

+
τ

2
∥X(t) − F̄(t) +

1
τ

Ḡ(t)∥2F −
1
2τ
∥Υ

(t)
2 ∥

2
F + ε

(t).

Then, L̂τ(Υ
(t)
1 , X

(t);Υ(t)
2 , ε

(t)) is coercive, bounded from below, and lower semi-continuous since the
objective function in (1.4) is coercive, bounded from below, and lower semi-continuous,
L̂τ(Υ

(1)
1 , X

(1);Υ(1)
2 , ε

(1)) < +∞, and Assumption 4.1 holds. Further, it is obvious that the generated
sequences {Υ(t)

1 }
+∞
t=1 and {X(t)}+∞t=1 are bounded.

2) In accordance with the boundedness of
{
(Υ(t)

1 , X
(t),Υ(t)

2 )
}+∞
t=1 and the Bolzano-Weierstrass

theorem, there exists at least one cluster point Υ̃ = (Υ̃1, X̃; Υ̃2) and a subsequence{
(Υ(t j)

1 , X
(t j),Υ

(t j)
2 )
}+∞
t=1 ⊆

{
(Υ(t)

1 , X
(t),Υ(t)

2 )
}+∞
t=1 such that

lim
j→+∞

(Υ(t j)
1 , X

(t j);Υ(t j)
2 ) = Υ̃, (6.9)

where Υ̃1 = (Ẽ, F̃, ˜̄F) and Υ̃2 = (P̃, G̃, ˜̄G).
From the properness and the lower semi-continuity of L̂τ(·), we can get

lim inf
j→+∞

L̂τ(Υ
(t j)
1 , X

(t j);Υ(t j)
2 , ε

(t j)) ≥ Lτ(Υ̃) > −∞.
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Using Lemma 4.2, we have

t j−1∑
t=1

∥X(t+1) − X(t)∥2F

≤
1
w̄

t j−1∑
t=1

(
L̂τ(Υ

(t)
1 , X

(t);Υ(t)
2 , ε

(t)) − L̂τ(Υ
(t+1)
1 , X(t+1);Υ(t+1)

2 , ε(t+1))
)

≤
1
w̄
(
L̂τ(Υ

(1)
1 , X

(1);Υ(1)
2 , ε

(1)) − L̂τ(Υ
(t j)
1 , X

(t j);Υ(t j)
2 , ε

(t j))
)
,

which indicates that
+∞∑
t=1

∥X(t+1) − X(t)∥2F < +∞ as j→ +∞. (6.10)

Subsequently, it holds from Assumption 4.1 that

+∞∑
t=1

∥Υ
(t+1)
2 − Υ

(t)
2 ∥

2
F =

+∞∑
t=1

θ∥X(t+1) − X(t)∥2F +

+∞∑
t=1

τ(ε(t+1) − ε(t))

=

+∞∑
t=1

θ∥X(t+1) − X(t)∥2F − τε
(1)

< +∞.

(6.11)

Moreover, we obtain with (4.7) that

+∞∑
t=1

∥Υ
(t+1)
1 − Υ

(t)
1 ∥

2
F ≤

1
τ

+∞∑
t=1

∥Υ
(t+1)
2 − Υ

(t)
2 ∥

2
F < +∞. (6.12)

Therefore, it follows from (6.9)-(6.12), that

lim
t→+∞

∥∥∥(Υ(t+1)
1 , X(t+1);Υ(t+1)

2 ) − (Υ(t)
1 , X

(t);Υ(t)
2 )
∥∥∥

F
= 0.

□

IV. Optimal parameter settings

We compare the accuracy of different methods on raw, unprocessed real-world datasets in Section
5. The optimal parameter values for each method are listed in Table 6, with “-” indicating the absence
of a corresponding parameter. It is important to note that while the optimal parameters may lie within
a range, we have reported only a single representative value for conciseness.
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Table 6. Hyperparameter settings of different clustering methods on real-world datasets.

Datasets Methods α γ η ϕ k τ

Authors

K-means - - - - - -
CC 8 - - 10−5 3 -

SCC 3756 1 - 5 3 1
SGLCC 5756 0.7 2−8 5 3 0.4

ERC 150 - - 10−5 3 -
GSFRC 5255 0.01 2−8 5 3 0.4

Lung-discrete

K-means - - - - - -
CC 110 - - 10−3 3 -

SCC 7809 1 - 5 3 1
SGLCC 5961 1 2−8 5 3 0.5

ERC 11.028 - - 10−5 4 -
GSFRC 5250 6 2−6 5 3 0.5

GLIOMA

K-means - - - - - -
CC 19 - - 10−5 3 -

SCC 937 0.7 - 5 6 1
SGLCC 909 0.03 2−7 5 6 0.3

ERC 6 - - 10−5 4 -
GSFRC 942 0.05 2−7 5 6 0.3

Brain

K-means - - - - - -
CC 48 - - 10−5 3 -

SCC 6300 0.04 - 5 3 1
SGLCC 5488 0.01 2−4 5 3 0.8

ERC 25 - - 10−5 3 -
GSFRC 5224 0.004 2−4 5 3 0.8
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