
Research article

Supplementary Material for “Group Sparsity-based Fusion Regularized Clustering: New Model and Convergent Algorithm”

Xiangru Xing¹, Lingchen Kong¹, Xin Wang^{1,*} and Xianchao Xiu²

¹ School of Mathematics and Statistics, Beijing Jiaotong University, Beijing, 100044, China

² School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China

* Correspondence: Email: xinwang2@bjtu.edu.cn.

I. Adaptive weights estimation

The choice of β significantly influences feature selection and clustering accuracy. Following the adaptive strategies proposed by [5], we present the adaptive updating procedure for $\tilde{\beta}$ in Algorithm 2. Specifically, given a range of α and a fixed η , we first fit GSFRC with $\gamma = 1$ and uniform feature weights $\beta_j = 1$. We then identify the value of α that yields the desired number of clusters, obtaining the initial estimate $\tilde{\mathbf{X}}$.

We update the weights in two aspects. On one hand, adaptive feature weights are constructed based on the initial estimate $\tilde{\beta}_j = 1/(\|\tilde{\mathbf{X}}_{:,j}\|_2 + 0.01)$. These weights impose a strong penalty on noise features such that corresponding $\|\tilde{\mathbf{X}}_{:,j}\|_2$ tends to 0. On the other hand, to reduce the influence of noise features in \mathbf{A} on similarity measurement, we apply min-max normalization to $\tilde{\beta}$ to obtain \mathbf{d}_β and use \mathbf{d}_β as sample weights for each feature, i.e., $\|(\mathbf{A}_{i,:} - \mathbf{A}_{i,:}) \odot \mathbf{d}_\beta\|_2^2$, which refines the computation of the original distance $\|\mathbf{A}_{i,:} - \mathbf{A}_{i,:}\|_2^2$. Here, “ \odot ” denotes Hadamard product.

Algorithm 2 Adaptively adjusting β and ω_t

Input: Data matrix \mathbf{A} , hyperparameter η

Parameters: Tuning parameter sequences for α and γ

Step 1. Fit GSFRC with $\gamma = 1, \beta_j = 1$ for $j = 1, 2, \dots, d$, and a sequence of α .

Step 2. Select optimal α that yield the desired number of clusters; Obtain the preliminary estimate $\tilde{\mathbf{X}}$.

Step 3. Update the adaptive weights:

- Feature weights: $\tilde{\beta}_j = \frac{1}{\|\tilde{\mathbf{X}}_{\cdot j}\|_2 + 0.01}$ for $j = 1, 2, \dots, d$.
- Fusion weights: $\tilde{\omega}_i = \begin{cases} \exp\left(-\phi\|(\mathbf{A}_{i \cdot} - \mathbf{A}_{i' \cdot}) \odot \mathbf{d}_\beta\|_2^2\right), & \text{if } (i, i') \in \epsilon \\ 0, & \text{otherwise} \end{cases}$.

Step 4. Fit adaptive GSFRC with updated weights $\tilde{\beta}, \tilde{\omega}_i$ and sequences of α and γ ; Find optimal α and γ that achieve the desired number of clusters and features.

Output: Final cluster assignments, selected features, and refined estimate $\tilde{\mathbf{X}}$.

II. The proof of Lemma 4.2

Proof. 1) According to (4.2) and (4.8), we get

$$\begin{aligned}
& \hat{\mathcal{L}}_\tau(\mathbf{Y}_1^{(t+1)}, \mathbf{X}^{(t+1)}; \mathbf{Y}_2^{(t+1)}, \mathbf{\varepsilon}^{(t+1)}) - \hat{\mathcal{L}}_\tau(\mathbf{Y}_1^{(t+1)}, \mathbf{X}^{(t+1)}; \mathbf{Y}_2^{(t)}, \mathbf{\varepsilon}^{(t)}) \\
&= \langle \mathbf{P}^{(t+1)} - \mathbf{P}^{(t)}, \mathbf{D}\mathbf{X}^{(t+1)} - \mathbf{E}^{(t+1)} \rangle + \langle \mathbf{G}^{(t+1)} - \mathbf{G}^{(t)}, \mathbf{X}^{(t+1)} - \mathbf{F}^{(t+1)} \rangle \\
&\quad + \langle \bar{\mathbf{G}}^{(t+1)} - \bar{\mathbf{G}}^{(t)}, \mathbf{X}^{(t+1)} - \bar{\mathbf{F}}^{(t+1)} \rangle + \mathbf{\varepsilon}^{(t+1)} - \mathbf{\varepsilon}^{(t)} \\
&= \frac{1}{\tau} \|\mathbf{Y}_2^{(t+1)} - \mathbf{Y}_2^{(t)}\|_F^2 + \mathbf{\varepsilon}^{(t+1)} - \mathbf{\varepsilon}^{(t)} \\
&\leq \frac{\theta}{\tau} \|\mathbf{X}^{(t+1)} - \mathbf{X}^{(t)}\|_F^2,
\end{aligned} \tag{6.1}$$

where the second “=” and the first “ \leq ” hold via (4.7) and Assumption 4.1, respectively.

Let

$$\begin{aligned}
Q_t(\mathbf{X}) &= \frac{1}{2} \|\mathbf{X} - \mathbf{A}\|_F^2 + \frac{\tau}{2} \|\mathbf{D}\mathbf{X} - \mathbf{E}^{(t+1)} + \frac{1}{\tau} \mathbf{P}^{(t)}\|_F^2 \\
&\quad + \frac{\tau}{2} \|\mathbf{X} - \mathbf{F}^{(t+1)} + \frac{1}{\tau} \mathbf{G}^{(t)}\|_F^2 + \frac{\tau}{2} \|\mathbf{X} - \bar{\mathbf{F}}^{(t+1)} + \frac{1}{\tau} \bar{\mathbf{G}}^{(t)}\|_F^2.
\end{aligned}$$

Since $\mathbf{X}^{(t+1)}$ is the optimal solution of \mathbf{X} -subproblem, $\nabla Q_t(\mathbf{X}^{(t+1)}) = 0$. Combined with the strong convexity of $Q_t(\mathbf{X})$, we derive that

$$\begin{aligned}
& \hat{\mathcal{L}}_\tau(\mathbf{Y}_1^{(t+1)}, \mathbf{X}^{(t+1)}; \mathbf{Y}_2^{(t)}, \mathbf{\varepsilon}^{(t)}) - \hat{\mathcal{L}}_\tau(\mathbf{Y}_1^{(t+1)}, \mathbf{X}^{(t)}; \mathbf{Y}_2^{(t)}, \mathbf{\varepsilon}^{(t)}) \\
&= Q_t(\mathbf{X}^{(t+1)}) - Q_t(\mathbf{X}^{(t)}) \\
&\leq -\frac{2\tau + 1}{2} \|\mathbf{X}^{(t+1)} - \mathbf{X}^{(t)}\|_F^2.
\end{aligned} \tag{6.2}$$

Similarly, by the optimality of $\mathbf{E}^{(t+1)}$ for the \mathbf{E} -subproblem, $\mathbf{F}^{(t+1)}$ for the \mathbf{F} -subproblem, and $\bar{\mathbf{F}}^{(t+1)}$ for the $\bar{\mathbf{F}}$ -subproblem, we get

$$\begin{aligned} g(\mathbf{E}^{(t+1)}) + \frac{\tau}{2} \|\mathbf{D}\mathbf{X}^{(t)} - \mathbf{E}^{(t+1)} + \frac{1}{\tau} \mathbf{P}^{(t)}\|_F^2 &\leq g(\mathbf{E}^{(t)}) + \frac{\tau}{2} \|\mathbf{D}\mathbf{X}^{(t)} - \mathbf{E}^{(t)} + \frac{1}{\tau} \mathbf{P}^{(t)}\|_F^2, \\ r_1(\mathbf{F}^{(t+1)}) + \frac{\tau}{2} \|\mathbf{X}^{(t)} - \mathbf{F}^{(t+1)} + \frac{1}{\tau} \mathbf{G}^{(t)}\|_F^2 &\leq r_1(\mathbf{F}^{(t)}) + \frac{\tau}{2} \|\mathbf{X}^{(t)} - \mathbf{F}^{(t)} + \frac{1}{\tau} \mathbf{G}^{(t)}\|_F^2, \\ r_2(\bar{\mathbf{F}}^{(t+1)}) + \frac{\tau}{2} \|\mathbf{X}^{(t)} - \bar{\mathbf{F}}^{(t+1)} + \frac{1}{\tau} \bar{\mathbf{G}}^{(t)}\|_F^2 &\leq r_2(\bar{\mathbf{F}}^{(t)}) + \frac{\tau}{2} \|\mathbf{X}^{(t)} - \bar{\mathbf{F}}^{(t)} + \frac{1}{\tau} \bar{\mathbf{G}}^{(t)}\|_F^2. \end{aligned} \quad (6.3)$$

Using (6.3), we have

$$\hat{\mathcal{L}}_\tau(\mathbf{Y}_1^{(t+1)}, \mathbf{X}^{(t)}; \mathbf{Y}_2^{(t)}, \mathbf{\varepsilon}^{(t)}) - \hat{\mathcal{L}}_\tau(\mathbf{Y}_1^{(t)}, \mathbf{X}^{(t)}; \mathbf{Y}_2^{(t)}, \mathbf{\varepsilon}^{(t)}) \leq 0. \quad (6.4)$$

Summing both sides of (6.1), (6.2), and (6.4), we can obtain

$$\begin{aligned} &\hat{\mathcal{L}}_\tau(\mathbf{Y}_1^{(t+1)}, \mathbf{X}^{(t+1)}; \mathbf{Y}_2^{(t+1)}, \mathbf{\varepsilon}^{(t+1)}) - \hat{\mathcal{L}}_\tau(\mathbf{Y}_1^{(t)}, \mathbf{X}^{(t)}; \mathbf{Y}_2^{(t)}, \mathbf{\varepsilon}^{(t)}) \\ &\leq -\bar{w} \|\mathbf{X}^{(t+1)} - \mathbf{X}^{(t)}\|_F^2 \\ &< 0, \end{aligned}$$

where $\bar{w} = \frac{2\tau+1}{2} - \frac{\theta}{\tau}$.

2) Based on the below optimality conditions of the \mathbf{E} -subproblem, \mathbf{F} -subproblem, $\bar{\mathbf{F}}$ -subproblem, and \mathbf{X} -subproblem

$$\begin{cases} 0 \in \partial g(\mathbf{E}^{(t)}) - \tau(\mathbf{D}\mathbf{X}^{(t-1)} - \mathbf{E}^{(t)} + \frac{1}{\tau} \mathbf{P}^{(t-1)}), \\ 0 \in \partial r_1(\mathbf{F}^{(t)}) - \tau(\mathbf{X}^{(t-1)} - \mathbf{F}^{(t)} + \frac{1}{\tau} \mathbf{G}^{(t-1)}), \\ 0 \in \partial r_2(\bar{\mathbf{F}}^{(t)}) - \tau(\mathbf{X}^{(t-1)} - \bar{\mathbf{F}}^{(t)} + \frac{1}{\tau} \bar{\mathbf{G}}^{(t-1)}), \\ 0 = \mathbf{X}^{(t)} - \mathbf{A} + \mathbf{D}^\top \mathbf{P}^{(t)} + \mathbf{G}^{(t)} + \bar{\mathbf{G}}^{(t)}, \end{cases} \quad (6.5)$$

and the subdifferentials of $\hat{\mathcal{L}}_\tau(\mathbf{Y}_1^{(t)}, \mathbf{X}^{(t)}; \mathbf{Y}_2^{(t)}, \mathbf{\varepsilon}^{(t)})$ with respect to $\mathbf{E}^{(t)}$, $\mathbf{F}^{(t)}$, $\bar{\mathbf{F}}^{(t)}$, $\mathbf{X}^{(t)}$, $\mathbf{P}^{(t)}$, $\mathbf{G}^{(t)}$, and $\bar{\mathbf{G}}^{(t)}$

$$\begin{cases} \partial_{\mathbf{E}} \hat{\mathcal{L}}_\tau = \partial g(\mathbf{E}^{(t)}) - 2\mathbf{P}^{(t)} + \mathbf{P}^{(t-1)}, \\ \partial_{\mathbf{F}} \hat{\mathcal{L}}_\tau = \partial r_1(\mathbf{F}^{(t)}) - 2\mathbf{G}^{(t)} + \mathbf{G}^{(t-1)}, \\ \partial_{\bar{\mathbf{F}}} \hat{\mathcal{L}}_\tau = \partial r_2(\bar{\mathbf{F}}^{(t)}) - 2\bar{\mathbf{G}}^{(t)} + \bar{\mathbf{G}}^{(t-1)}, \\ \partial_{\mathbf{X}} \hat{\mathcal{L}}_\tau = \mathbf{X}^{(t)} - \mathbf{A} + \mathbf{D}^\top(2\mathbf{P}^{(t)} - \mathbf{P}^{(t-1)}) \\ \quad + 2\mathbf{G}^{(t)} - \mathbf{G}^{(t-1)} + 2\bar{\mathbf{G}}^{(t)} - \bar{\mathbf{G}}^{(t-1)}, \\ \partial_{\mathbf{Y}_2} \hat{\mathcal{L}}_\tau = \frac{1}{\tau}(\mathbf{Y}_2^{(t)} - \mathbf{Y}_2^{(t-1)}), \end{cases} \quad (6.6)$$

we have

$$\begin{cases} \partial_{\mathbf{E}} \hat{\mathcal{L}}_\tau \ni \tau \mathbf{D}(\mathbf{X}^{(t-1)} - \mathbf{X}^{(t)}) + \mathbf{P}^{(t-1)} - \mathbf{P}^{(t)}, \\ \partial_{\mathbf{F}} \hat{\mathcal{L}}_\tau \ni \tau(\mathbf{X}^{(t-1)} - \mathbf{X}^{(t)}) + \mathbf{G}^{(t-1)} - \mathbf{G}^{(t)}, \\ \partial_{\bar{\mathbf{F}}} \hat{\mathcal{L}}_\tau \ni \tau(\mathbf{X}^{(t-1)} - \mathbf{X}^{(t)}) + \bar{\mathbf{G}}^{(t-1)} - \bar{\mathbf{G}}^{(t)}, \\ \partial_{\mathbf{X}} \hat{\mathcal{L}}_\tau = \mathbf{D}^\top(\mathbf{P}^{(t)} - \mathbf{P}^{(t-1)}) + \mathbf{G}^{(t)} - \mathbf{G}^{(t-1)} + \bar{\mathbf{G}}^{(t)} - \bar{\mathbf{G}}^{(t-1)}, \end{cases} \quad (6.7)$$

and

$$\mathbf{A} - \mathbf{X}^{(t)} = \mathbf{D}^\top \mathbf{P}^{(t)} + \mathbf{G}^{(t)} + \bar{\mathbf{G}}^{(t)}. \quad (6.8)$$

Thus,

$$\begin{aligned} & \text{dist}(0, \partial \hat{\mathcal{L}}_\tau(\mathbf{Y}_1^{(t)}, \mathbf{X}^{(t)}; \mathbf{Y}_2^{(t)}, \mathbf{\varepsilon}^{(t)})) \\ & \leq \|(\overrightarrow{\partial_E \hat{\mathcal{L}}_\tau}, \overrightarrow{\partial_F \hat{\mathcal{L}}_\tau}, \overrightarrow{\partial_{\bar{F}} \hat{\mathcal{L}}_\tau}, \overrightarrow{\partial_X \hat{\mathcal{L}}_\tau}, \overrightarrow{\partial_{Y_2} \hat{\mathcal{L}}_\tau})\|_F \\ & \leq (2\tau + \tau \sqrt{\lambda_{\max}(\mathbf{D}^\top \mathbf{D})} + 1) \|\mathbf{X}^{(t)} - \mathbf{X}^{(t-1)}\|_F + \left(\frac{1}{\tau} + 1\right) \|\mathbf{Y}_2^{(t)} - \mathbf{Y}_2^{(t-1)}\|_F \\ & \leq (2\tau + \tau \sqrt{\lambda_{\max}(\mathbf{D}^\top \mathbf{D})} + 1 + \frac{\sqrt{\theta}}{\tau} + \sqrt{\theta}) \|\mathbf{X}^{(t)} - \mathbf{X}^{(t-1)}\|_F \\ & \quad + \left(\frac{\sqrt{\tau}}{\tau} + \sqrt{\tau}\right) \sqrt{(\mathbf{\varepsilon}^{(t-1)} - \mathbf{\varepsilon}^{(t)})} \\ & \leq \tilde{w}(\|\mathbf{X}^{(t)} - \mathbf{X}^{(t-1)}\|_F + \sqrt{\mathbf{\varepsilon}^{(t-1)} - \mathbf{\varepsilon}^{(t)}}), \end{aligned}$$

where the second “ \leq ” holds via (6.6)-(6.8) and $\sum_{i=1}^n (a_i)^2 \leq (\sum_{i=1}^n a_i)^2$ when $a_i \geq 0$, and the third “ \leq ” holds via Assumption 4.1 and $\sum_{i=1}^n (a_i)^2 \leq (\sum_{i=1}^n a_i)^2$ when $a_i \geq 0$. \square

III. The proof of Lemma 4.3

Proof. 1) From Lemma 4.2, we get

$$\begin{aligned} \hat{\mathcal{L}}_\tau(\mathbf{Y}_1^{(1)}, \mathbf{X}^{(1)}; \mathbf{Y}_2^{(1)}, \mathbf{\varepsilon}^{(1)}) & \geq \dots \geq \hat{\mathcal{L}}_\tau(\mathbf{Y}_1^{(t)}, \mathbf{X}^{(t)}; \mathbf{Y}_2^{(t)}, \mathbf{\varepsilon}^{(t)}) \\ & = \frac{1}{2} \|\mathbf{X}^{(t)} - \mathbf{A}\|_F^2 + g(\mathbf{E}^{(t)}) + r_1(\mathbf{F}^{(t)}) + r_2(\bar{\mathbf{F}}^{(t)}) \\ & \quad + \frac{\tau}{2} \|\mathbf{D}\mathbf{X}^{(t)} - \mathbf{E}^{(t)} + \frac{1}{\tau} \mathbf{P}^{(t)}\|_F^2 + \frac{\tau}{2} \|\mathbf{X}^{(t)} - \mathbf{F}^{(t)} + \frac{1}{\tau} \mathbf{G}^{(t)}\|_F^2 \\ & \quad + \frac{\tau}{2} \|\mathbf{X}^{(t)} - \bar{\mathbf{F}}^{(t)} + \frac{1}{\tau} \bar{\mathbf{G}}^{(t)}\|_F^2 - \frac{1}{2\tau} \|\mathbf{Y}_2^{(t)}\|_F^2 + \mathbf{\varepsilon}^{(t)}. \end{aligned}$$

Then, $\hat{\mathcal{L}}_\tau(\mathbf{Y}_1^{(t)}, \mathbf{X}^{(t)}; \mathbf{Y}_2^{(t)}, \mathbf{\varepsilon}^{(t)})$ is coercive, bounded from below, and lower semi-continuous since the objective function in (1.4) is coercive, bounded from below, and lower semi-continuous, $\hat{\mathcal{L}}_\tau(\mathbf{Y}_1^{(1)}, \mathbf{X}^{(1)}; \mathbf{Y}_2^{(1)}, \mathbf{\varepsilon}^{(1)}) < +\infty$, and Assumption 4.1 holds. Further, it is obvious that the generated sequences $\{\mathbf{Y}_1^{(t)}\}_{t=1}^{+\infty}$ and $\{\mathbf{X}^{(t)}\}_{t=1}^{+\infty}$ are bounded.

2) In accordance with the boundedness of $\{(\mathbf{Y}_1^{(t)}, \mathbf{X}^{(t)}, \mathbf{Y}_2^{(t)})\}_{t=1}^{+\infty}$ and the Bolzano-Weierstrass theorem, there exists at least one cluster point $\tilde{\mathbf{Y}} = (\tilde{\mathbf{Y}}_1, \tilde{\mathbf{X}}, \tilde{\mathbf{Y}}_2)$ and a subsequence $\{(\mathbf{Y}_1^{(t_j)}, \mathbf{X}^{(t_j)}, \mathbf{Y}_2^{(t_j)})\}_{t=1}^{+\infty} \subseteq \{(\mathbf{Y}_1^{(t)}, \mathbf{X}^{(t)}, \mathbf{Y}_2^{(t)})\}_{t=1}^{+\infty}$ such that

$$\lim_{j \rightarrow +\infty} (\mathbf{Y}_1^{(t_j)}, \mathbf{X}^{(t_j)}; \mathbf{Y}_2^{(t_j)}) = \tilde{\mathbf{Y}}, \quad (6.9)$$

where $\tilde{\mathbf{Y}}_1 = (\tilde{\mathbf{E}}, \tilde{\mathbf{F}}, \tilde{\bar{\mathbf{F}}})$ and $\tilde{\mathbf{Y}}_2 = (\tilde{\mathbf{P}}, \tilde{\mathbf{G}}, \tilde{\bar{\mathbf{G}}})$.

From the properness and the lower semi-continuity of $\hat{\mathcal{L}}_\tau(\cdot)$, we can get

$$\liminf_{j \rightarrow +\infty} \hat{\mathcal{L}}_\tau(\mathbf{Y}_1^{(t_j)}, \mathbf{X}^{(t_j)}; \mathbf{Y}_2^{(t_j)}, \mathbf{\varepsilon}^{(t_j)}) \geq \mathcal{L}_\tau(\tilde{\mathbf{Y}}) > -\infty.$$

Using Lemma 4.2, we have

$$\begin{aligned}
& \sum_{t=1}^{t_{j-1}} \|\mathbf{X}^{(t+1)} - \mathbf{X}^{(t)}\|_F^2 \\
& \leq \frac{1}{\bar{w}} \sum_{t=1}^{t_{j-1}} (\hat{\mathcal{L}}_\tau(\mathbf{Y}_1^{(t)}, \mathbf{X}^{(t)}; \mathbf{Y}_2^{(t)}, \boldsymbol{\varepsilon}^{(t)}) - \hat{\mathcal{L}}_\tau(\mathbf{Y}_1^{(t+1)}, \mathbf{X}^{(t+1)}; \mathbf{Y}_2^{(t+1)}, \boldsymbol{\varepsilon}^{(t+1)})) \\
& \leq \frac{1}{\bar{w}} (\hat{\mathcal{L}}_\tau(\mathbf{Y}_1^{(1)}, \mathbf{X}^{(1)}; \mathbf{Y}_2^{(1)}, \boldsymbol{\varepsilon}^{(1)}) - \hat{\mathcal{L}}_\tau(\mathbf{Y}_1^{(t_j)}, \mathbf{X}^{(t_j)}; \mathbf{Y}_2^{(t_j)}, \boldsymbol{\varepsilon}^{(t_j)})),
\end{aligned}$$

which indicates that

$$\sum_{t=1}^{+\infty} \|\mathbf{X}^{(t+1)} - \mathbf{X}^{(t)}\|_F^2 < +\infty \text{ as } j \rightarrow +\infty. \quad (6.10)$$

Subsequently, it holds from Assumption 4.1 that

$$\begin{aligned}
\sum_{t=1}^{+\infty} \|\mathbf{Y}_2^{(t+1)} - \mathbf{Y}_2^{(t)}\|_F^2 &= \sum_{t=1}^{+\infty} \theta \|\mathbf{X}^{(t+1)} - \mathbf{X}^{(t)}\|_F^2 + \sum_{t=1}^{+\infty} \tau (\boldsymbol{\varepsilon}^{(t+1)} - \boldsymbol{\varepsilon}^{(t)}) \\
&= \sum_{t=1}^{+\infty} \theta \|\mathbf{X}^{(t+1)} - \mathbf{X}^{(t)}\|_F^2 - \tau \boldsymbol{\varepsilon}^{(1)} \\
&< +\infty.
\end{aligned} \quad (6.11)$$

Moreover, we obtain with (4.7) that

$$\sum_{t=1}^{+\infty} \|\mathbf{Y}_1^{(t+1)} - \mathbf{Y}_1^{(t)}\|_F^2 \leq \frac{1}{\tau} \sum_{t=1}^{+\infty} \|\mathbf{Y}_2^{(t+1)} - \mathbf{Y}_2^{(t)}\|_F^2 < +\infty. \quad (6.12)$$

Therefore, it follows from (6.9)-(6.12), that

$$\lim_{t \rightarrow +\infty} \|(\mathbf{Y}_1^{(t+1)}, \mathbf{X}^{(t+1)}; \mathbf{Y}_2^{(t+1)}) - (\mathbf{Y}_1^{(t)}, \mathbf{X}^{(t)}; \mathbf{Y}_2^{(t)})\|_F = 0.$$

□

IV. Optimal parameter settings

We compare the accuracy of different methods on raw, unprocessed real-world datasets in Section 5. The optimal parameter values for each method are listed in Table 6, with “-” indicating the absence of a corresponding parameter. It is important to note that while the optimal parameters may lie within a range, we have reported only a single representative value for conciseness.

Table 6. Hyperparameter settings of different clustering methods on real-world datasets.

Datasets	Methods	α	γ	η	ϕ	k	τ
Authors	<i>K</i> -means	-	-	-	-	-	-
	CC	8	-	-	10^{-5}	3	-
	SCC	3756	1	-	5	3	1
	SGLCC	5756	0.7	2^{-8}	5	3	0.4
	ERC	150	-	-	10^{-5}	3	-
Lung-discrete	GSFRC	5255	0.01	2^{-8}	5	3	0.4
	<i>K</i> -means	-	-	-	-	-	-
	CC	110	-	-	10^{-3}	3	-
	SCC	7809	1	-	5	3	1
	SGLCC	5961	1	2^{-8}	5	3	0.5
GLIOMA	ERC	11.028	-	-	10^{-5}	4	-
	GSFRC	5250	6	2^{-6}	5	3	0.5
	<i>K</i> -means	-	-	-	-	-	-
	CC	19	-	-	10^{-5}	3	-
	SCC	937	0.7	-	5	6	1
Brain	SGLCC	909	0.03	2^{-7}	5	6	0.3
	ERC	6	-	-	10^{-5}	4	-
	GSFRC	942	0.05	2^{-7}	5	6	0.3
	<i>K</i> -means	-	-	-	-	-	-
	CC	48	-	-	10^{-5}	3	-
Brain	SCC	6300	0.04	-	5	3	1
	SGLCC	5488	0.01	2^{-4}	5	3	0.8
	ERC	25	-	-	10^{-5}	3	-
	GSFRC	5224	0.004	2^{-4}	5	3	0.8

AIMS Press

© 2026 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (<https://creativecommons.org/licenses/by/4.0>)