
Research article

Relative contribution of three transporters to D-xylose uptake in *Aspergillus niger*

Jiali Meng^{1, #}, Astrid Müller¹, Jiajia Li¹, Vivien Bőrő², Alexandra Márton², Erzsébet Fekete², Levente Karaffa², Miia R. Mäkelä³ and Ronald P. de Vries^{1,*}

¹ Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalaalaan 8, 3584 CT Utrecht, The Netherlands

² Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary

³ Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland

[#]Current address: Ningbo Excare Pharm Inc., No.172, Xizishan Rd, Ningbo, Zhejiang, China

*** Correspondence:** Email: r.devries@wi.knaw.nl; Tel: +31302122600; Fax: +31302122601.

Supplemental Data S1: Construction of genetic mutants.

Table 1A. Plasmids and guide sequences used in this study.

	Description	CRISPR guide sequence	Reference
ANEp8-Cas9	Extra-chromosomal expressing plasmid	<i>cas9</i> -	Song <i>et al.</i> (2018)*
ANEp8-Cas9-gRNA (<i>xltA</i>)	ANEp8-Cas9 with gRNA targeting <i>xltA</i>	AATATTGTCGACCCAGAGCA	this study
ANEp8-Cas9-gRNA (<i>xltB</i>)	ANEp8-Cas9 with gRNA targeting <i>xltB</i>	ATTCTTGGAACGTTCCCCG	this study
ANEp8-Cas9-gRNA (<i>xltD</i> ; 02351)	ANEp8-Cas9 with gRNA targeting <i>xltD</i>	GCTGGTCTCCAGCACAAACG	this study

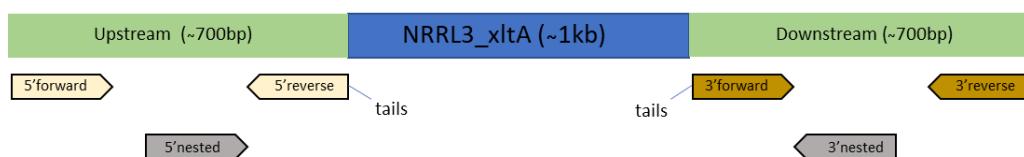
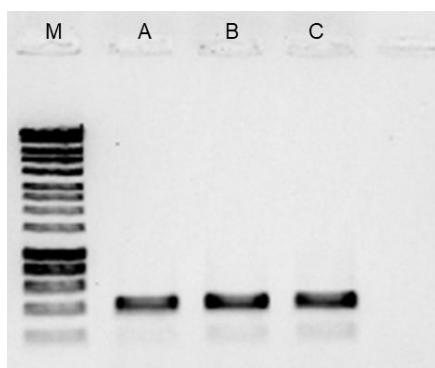
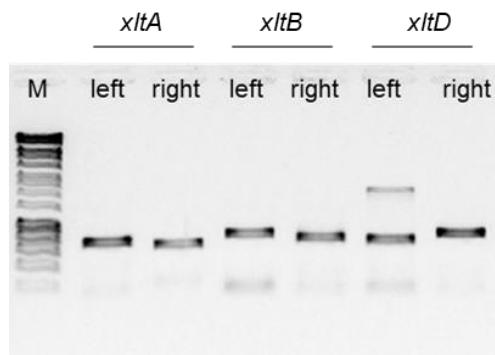
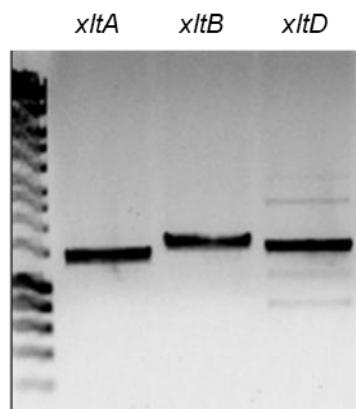

* Song, L., Ouedraogo, J. P., Kolbusz, M., Nguyen, T. T. M. and Tsang, A., 2018. Efficient genome editing using tRNA promoter-driven CRISPR/Cas9 gRNA in *Aspergillus niger*. PLoS One. 13, e0202868.

Table 1B. Primers used in this study. The 20 bp guide RNA (gRNA) sequences designed for the deletion of our target genes are indicated in red font. The linker sequence is depicted in lowercase/ bold font.


Primer name	Sequence (5' to 3')	Used for	Expected construct (bp)
xltA_F	TGCTCTGGTCGACAATATTGACGAGCTTACTCGTTCG	construction of the gRNA (<i>xltA</i>)	350
xltA_R	AATATTGTCGACCCAGAGCA GTAGCTAGAAATA GCAAG	construction of the gRNA (<i>xltA</i>)	
left_xltA_F	GGCTGCTTCATACCTTCACG	amplification of <i>xltA</i> 5' flank	664
left_xltA_R	cgatagcgaatcttagcgt GGACAATCACAGTACAAACC	amplification of <i>xltA</i> 5' flank	
right_xltA_F	actgttaggatcgctatcg CGTCAGCAAAACGGTATAAGC	amplification of <i>xltA</i> 3' flank	587
right_xltA_R	GCCTCCCTCCACTGTAAGC	amplification of <i>xltA</i> 3' flank/ checking the presence or absence of the <i>xltA</i> fusion of <i>xltA</i> 5' and 3' flanks	
nest_xltA_F	CCTACTACTTGATGTCATC	construction of the gRNA (<i>xltA</i>)	1187
nest_xltA_R	CGAGGTTAGCGAGTAAC	construction of the gRNA (<i>xltA</i>)	
xltB_F	CGGGGAAACGTTCCAAGAATGACGAGCTTACTCGTTTC G	construction of the gRNA (<i>xltB</i>)	350
xltB_R	ATTCTTGGAACGTTCCCCG GTAGCTAGAAATAG CAAG	construction of the gRNA (<i>xltB</i>)	
left_xltB_F	GCAAGGTTAAGTCTTGATG	amplification of <i>xltB</i> 5' flank	541
left_xltB_R	cgatagcgaatcttagcgt CTTGGTCACACAGCGATGC	amplification of <i>xltB</i> 5' flank	
right_xltB_F	actgttaggatcgctatcg GCATTGGTCTACTGGTAG	amplification of <i>xltB</i> 3' flank	659
right_xltB_R	CACTGTCAGAATATAACC	amplification of <i>xltB</i> 3' flank/ checking the presence or absence of the <i>xltB</i>	

Continued on next page


Primer name	Sequence (5' to 3')	Used for	Expected construct (bp)
nest_xltB_F	CGGCTTCCATGTAGTTTC	<i>fusion of xltB 5' and 3' flanks</i>	1047
nest_xltB_R	CTTGGCTTCCGCTTCCGAG	<i>fusion of xltB 5' and 3' flanks</i>	
NRRL3_02351_F	CGTTGTGCTGGAGAACCGACGAGCTACTCGTTCG	<i>construction of the gRNA (xltD)</i>	350
NRRL3_02351_R	GCTGGTTCTCCAGCACAAACG GTTTAGAGCTAGAAATAG	<i>construction of the gRNA (xltD)</i>	
left_02351_F	CAAG	<i>amplification of xltD 5' flank</i>	
left_02351_R	GAGATGTATCAGTCAGTC	<i>amplification of xltD 5' flank</i>	711
right_02351_F	cgatagegaatccatcgagt CGGACTTTCCGCACTCTCTATG	<i>amplification of xltD 5' flank</i>	
right_02351_R	actgetaggatcgatcg GCGTACACGACTGTGCTTTC	<i>amplification of xltD 3' flank</i>	760
right_02351_R	CCACGGACGAGAGGACTGC	<i>amplification of xltD 3' flank/ checking the presence or absence of the xltD</i>	
nest_02351_F	CAGGCTTCTGTGGCTTAG	<i>fusion of xltD 5' and 3' flanks</i>	1350
nest_02351_R	CCTTGTGAGATATAGCAG	<i>fusion of xltD 5' and 3' flanks</i>	
linker_F	ACTGCTAGGATTGCTATCG	checking the presence or absence of the target genes	


Figure 1. Schematic overview of rescue template assembly of transporter mutants.

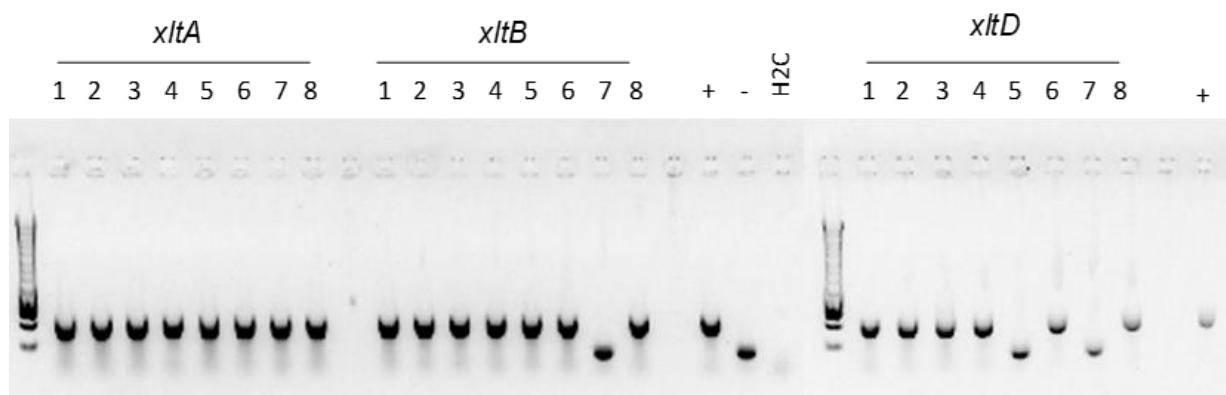
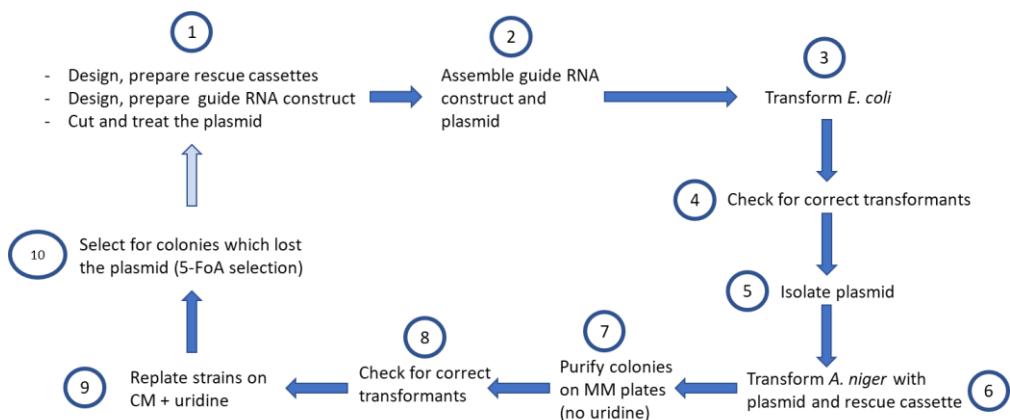
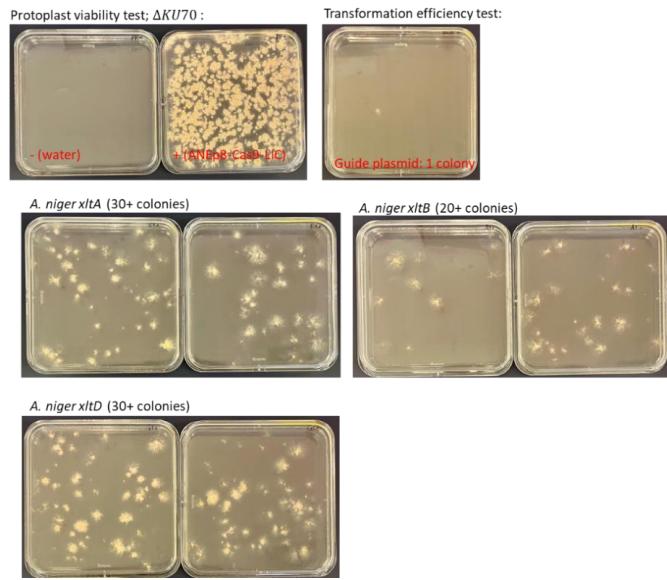

Figure 2A: PCR gel for gRNA cassettes for transporter mutants. A: *xltA*; B: *xltB*; C: *xltD*. Expected band size of 350bp could be confirmed.

Figure 2B: PCR for 5' (left) and 3' (right) flanking regions of rescue templates of transporter mutants. PCR products were cut from gel and cleaned with Wizard SV Gel and PCR Clean-Up System (PROMEGA). For expected size see Table S1B.


Figure 2C: Nested PCR to fuse 5' (left) and 3' (right) flanking regions of transporter mutants. PCR products were cut from gel and cleaned with Wizard SV Gel and PCR Clean-Up System (PROMEGA). For expected size see Table S1B.


Figure 2D: *E. coli* DH5 α transformation verification by PCR containing the ANEp8-Cas9-Lic transporter plasmids. Colony xltA-1, xltB-1 and xltD-4 were used for plasmid isolation.

Method 1: *A. niger* protoplasting and transformation protocol was based on Kowalczyk *et al.*, 2017:

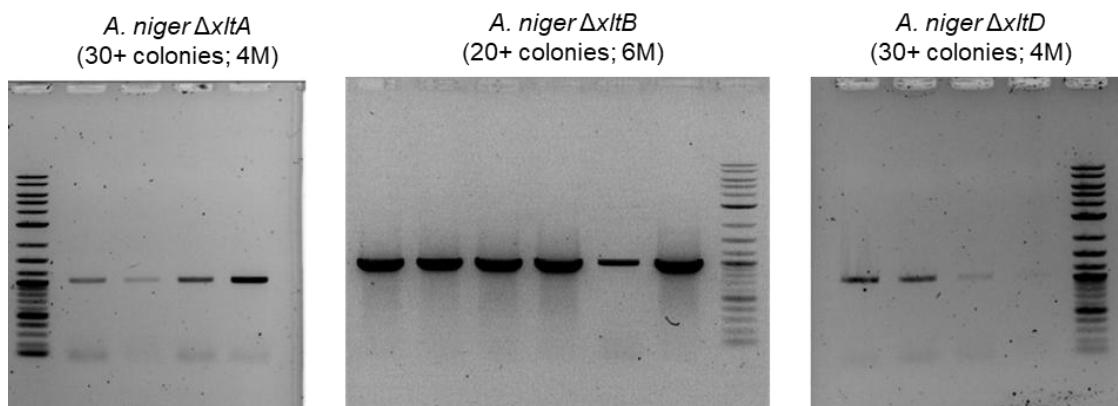

Young mycelia from overnight culture were harvested by vacuum filtration, washed with 0.6 M MgSO₄ and dried between two sheets of paper. The mycelium was then dissolved in PS buffer (0.2 M sodium phosphate buffer, 0.8 M L-sorbitol, pH6) containing VinoTaste® Pro lysing enzyme (0.5 g enzyme/g of mycelia) and incubated in a rotary shaker at 100 rpm. When protoplasts were abundantly present, the mixture was filtrated through glass wool and undigested mycelia debris were removed. The protoplasts were collected by centrifugation (10 min, 1811 × g, 4 °C), washed twice with ice-cold SC solution (182.2 g L⁻¹ sorbitol, 7.35 g L⁻¹ CaCl₂ * 2H₂O) and resuspended in SC to a final concentration of 2 * 10⁷ protoplast/mL. For transformation, 200 µL of fresh protoplast suspension, 20 µL of 0.4 M ATA (AurinTricarboxylic Acid ammonium salt), 100 µL of 20% PEG-4000 were mixed with 5 µg of deletion cassette DNA and incubated for 10 min. After addition of 1.5 mL 60% PEG-4000 the mixture was incubated for 20 min. Next, 5 mL 1.2 M sorbitol was added and incubated another 10 min. Transformed protoplasts were collected by centrifugation (10 min, 3220 × g), resuspended in 1 mL 1.2 M sorbitol and spread evenly over two selective plates using a cell spreader. Growing colonies were observed after 4 days. Putative deletion strains were purified by two consecutive single colony streaks. 1.3 mg/mL 5-fluoroorotic acid (5-FoA) was required for counter selecting colonies containing the pyrG marker gene on ANEp8-Cas9 plasmids. gDNA of 4-6 independent transformants per strain was isolated using standard phenol/chloroform extraction.

Figure 3A: Schematic workflow overview of construction and *A. niger* transformation.

Figure 3B: Overview of transformation efficiency of transporter mutants. Transformation of *A. niger* *xltA* yielded 30+ mutants, *xltB* yielded 20+ colonies and *xltD* yielded 30+ mutants. Putative deletion strains were purified by two consecutive single colony streaks and 5-fluoroorotic acid (5-FOA) was required for counter selecting colonies containing the *pyrG* marker gene on ANEp8-Cas9 plasmids.

Figure 3C: PCR verification of transporter mutants. Mutant verification PCR conditions: left_xltA 5' Fw /right_xltA 3' Rv, Program: 95 °C 5 min--> 35x (95 °C 1 min, 54 °C 1 min, 72 °C 4 min) --> 72 °C 10 min-->10 °C ∞; left_xltB 5' Fw /right_xltB 3' Rv: Program: 95 °C 5 min--> 35x (95 °C 1 min, 52.4 °C 1 min, 72 °C 3 min) --> 72 °C 10 min-->10 °C ∞. Single integration verification: right_xltA 3'Rv/ right_xltB 3' Rv/ right_02351 3' Rv + Linker F.