

AIMS Microbiology, 11(4): 1035–1078.

DOI: 10.3934/microbiol.2025046 Received: 23 September 2025

Revised: 12 December 2025 Accepted: 16 December 2025 Published: 19 December 2025

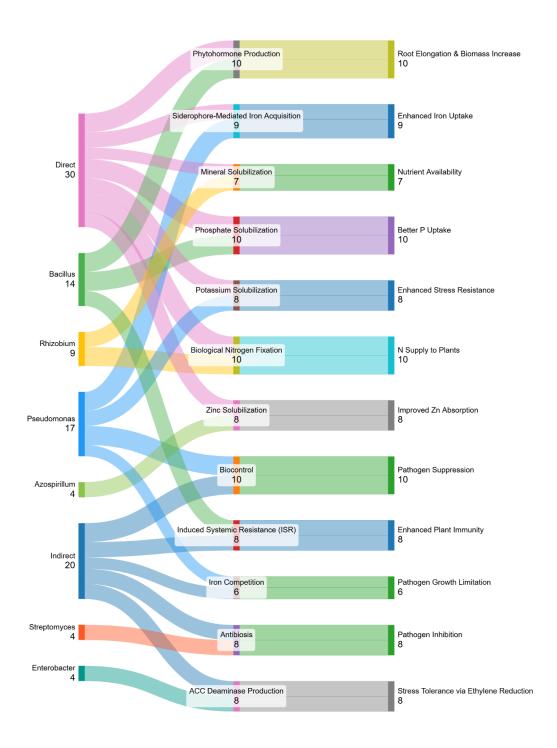
https://www.aimspress.com/journal/microbiology

Review

Understanding plant-microorganism interactions: The key roles of soil, rhizosphere, and direct and indirect mechanisms

Mohamed Hnini^{1,2,*}, Karim Rabeh³ and Malika Oubohssaine¹

- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University of Rabat, Avenue Ibn Battouta, BP 1014, Rabat 10000, Morocco
- Research Team in Science and Technology, High School of Technology Laayoune, Ibn Zohr University, Morocco
- Oasis System Research Unit, Regional Center of Agricultural Research of Errachidia, National Institute of Agricultural Research, PO. Box 415, Rabat 10090, Morocco
- * Correspondence: Email: hnini007@gmail.com, m.hnini@uiz.ac.ma.


Table S1. Direct and indirect mechanisms of Plant Growth-Promoting Rhizobacteria (PGPR).

Type of	Specific	Description and Benefits to	Examples of Genera/Species	References
Mechanism	Mechanism	Plants		
Direct	Phytohormone	PGPR synthesize plant	Rhizobium,	(Eichmann et al., 2021;
	Production	hormones (e.g.,	Bradyrhizobium,	Rolon-Cardenas et al.,
		indole-3-acetic acid, IAA)	Azospirillum, Bacillus,	2022; Khoshru et al.,
		that regulate growth and	Pseudomonas	2020;; Spaepen et al.,
		stress responses, enhancing		2014; Maheshwari et
		root elongation, nutrient		al., 2015)
		uptake, and biomass		
		production.		
	Iron Acquisition	Siderophores chelate Fe ³⁺	Streptomyces spp., Erwinia	(Albelda-Berenguer et
	via Siderophores	in low-availability soils,	spp., Rhizobium	al., 2019; Guerinot,
		improving iron uptake for	leguminosarum,	1994;; Sadaghiani and
		both bacteria and plants,	Agrobacterium tumefaciens,	Barin, 2008; Babalola
		enhancing health and	Pseudomonas spp.,	et al., 2021)
		productivity.	Bradyrhizobium japonicum	
	Mineral	Soil microbes solubilize	Soil bacteria and fungi	(Whitelaw, 1999)
	Solubilization	insoluble minerals,		
		increasing nutrient		
		availability to plants.		
	Phosphate	PGPR release organic acids	Soil bacteria and fungi	Karpagam and
	Solubilization	and enzymes		Nagalakshmi, 2014;;
		(phosphatases, phytases) to		Khatoon et al., 2020;;
		convert insoluble		Spaepen et al., 2009;
		phosphate compounds into		Mahdi et al., 2011)
	Potassium	bioavailable forms.	0.1	(A1
		Certain bacteria solubilize	Soil potassium-solubilizing	(Almeida et al., 2015;
	Solubilization	K-bearing minerals via	bacteria	Sahu et al., 2021;
		organic acid production,		Etesami et al., 2017)
		enhancing plant K uptake and stress resistance.		
	Zinc		Zina saluhilizina	(Cabot et al., 2019;
			Zinc-solubilizing	•
	Solubilization	availability through acidification, siderophore	microorganisms	Havlin et al., 2016;; Saravanan et al., 2011;
		production, siderophore		Dhaked et al., 2017)
		reactions, and ligand		Dilakeu et al., 2017)
		chelation, promoting plant		
		. 1		
		growth.		

Continued on next page

Table S1. Direct and indirect mechanisms of Plant Growth-Promoting Rhizobacteria (PGPR).

Type of	Specific	Description and Benefits to	Examples of Genera/Species	References
Mechanism	Mechanism	Plants		
Direct	Biological Nitrogen Fixation (BNF)	Diazotrophic PGPR convert atmospheric N_2 into NH_3 , making nitrogen accessible to plants, particularly in legume symbiosis.	Klebsiella sp., Acinetobacter sp., Bacillus pumilus, Azotobacter spp., Burkholderia, Pseudomonas, rhizobia (e.g., Rhizobium, Sinorhizobium)	(Heil et al., 2016; Kuan et al., 2016; Bhattacharyya and Jha, 2012;;; Gamalero and Glick, 2011; Nascimento et al., 2014)
Indirect	Biocontrol of Pathogens	PGPR suppress pathogens through competition, production of antimicrobials, and triggering plant defenses, thereby reducing disease incidence.	Pseudomonas spp., Bacillus spp., diazotrophic bacteria	(Ahmad and Aqil, 2007; Haas and Defago, 2005;; Spaepen et al., 2009)
	Induced Systemic Resistance (ISR)	ISR enhances plant defenses, reinforcing cell walls and metabolic pathways to resist a broad spectrum of pathogens.	Pseudomonas fluorescens, Rhizobium leguminosarum; also triggered by siderophore-mediated iron depletion	(Singh et al., 2021; Abdelkhalek et al., 2022;; Weyens et al., 2013)
	Antibiosis (Antimicrobial Compound Production)	PGPR produce antibiotics, lytic enzymes, siderophores, HCN, and secondary metabolites that inhibit root pathogens.	Pseudomonas, Bacillus; HCN-producing strains also reported	(Sehrawat et al., 2022;; Rijavec and Lapanje, 2016; Agbodjato et al., 2015)
	Competition for Iron	High-affinity siderophores sequester iron, limiting pathogen access and thereby inhibiting their growth.	Streptomyces spp., Erwinia spp., Sinorhizobium meliloti, Pseudomonas spp., Bradyrhizobium japonicum	(Kloepper et al., 1980; Maheshwari, 2010)
	ACC Deaminase Production	ACC deaminase degrades ACC (ethylene precursor), reducing ethylene levels under stress and promoting plant growth. Enhances nodulation and mycorrhizal colonization.	Pseudomonas sp., Hansenula saturnus, Arthrobacter protophormiae, Rhizobium, Sinorhizobium, Agrobacterium, Phyllobacterium, Mesorhizobium, Azospirillum	(Ekimova et al., 2018.Barnawal et al., 2014).

Figure S1. Sankey diagram illustrating direct and indirect mechanisms of plant growth-promoting rhizobacteria (pgpr) in enhancing plant growth and resilience.

© 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0)