

Research article

Molecular docking and biochemical insights into the pro-apoptotic cytotoxicity of *Breonadia salicina*

Iliyasu Uwaisu¹, Sawsan S. Al-Rawi², Ahmad H. Ibrahim³, Abdulrahman Mahmoud Dogara^{2,*}, Ateeq Ahmed Al-Zahrani⁴, Shehu Sani¹, Yakubu Yahaya⁵, Sani Hammada⁶, Garba Musa Abdullahi⁶, Hussain D. Almalki⁴ and Alaa Ahmad Hamdy⁷

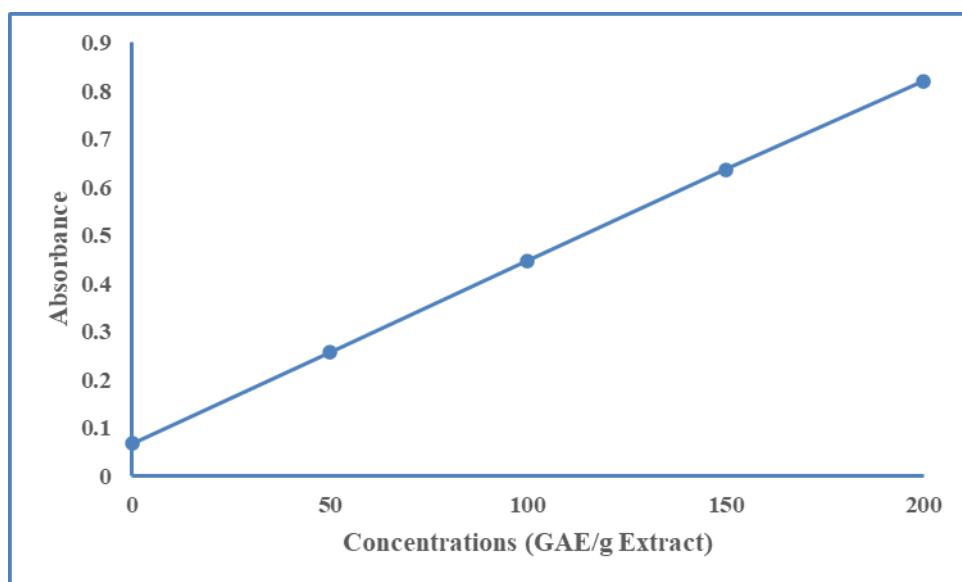
¹ Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences, Kaduna State University, Kaduna, Nigeria

² Biology Education Department, Tishk International University, Erbil, Iraq

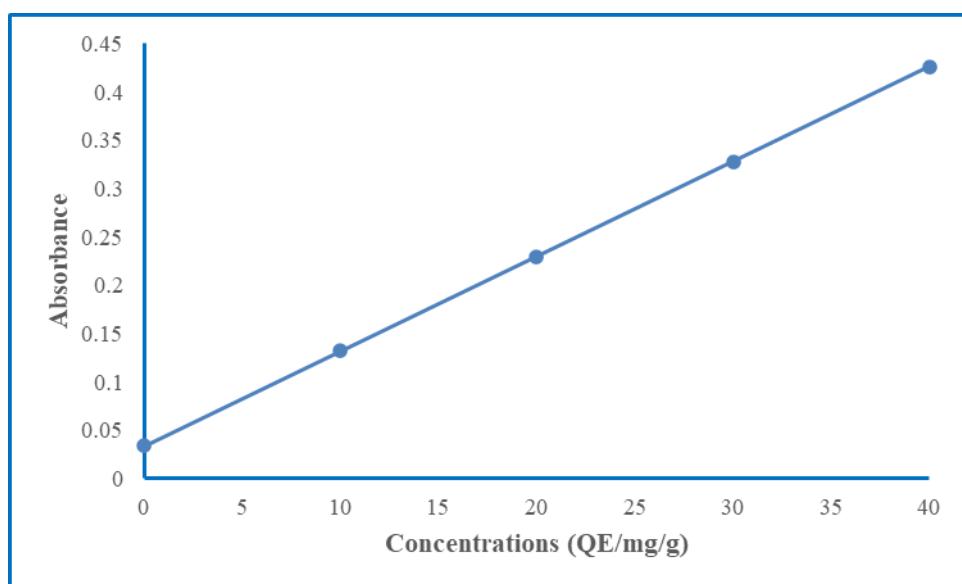
³ Pharmacy Department, Tishk International University, Erbil, Iraq

⁴ Chemistry Department, University College at Al-Qunfudhah, Umm Al-Qura University, Saudi Arabia

⁵ Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences Kaduna State University, Kaduna, Nigeria


⁶ Department of Community Medicine, Faculty Basic Medical Sciences, Kaduna State University, Kaduna, Nigeria

⁷ Ministry of Health, Directorate of Health, Duhok, Kurdistan Region, Iraq


*** Correspondence:** Email: abdulrahman.mahmud@tiu.edu.iq; Tel: +2348036437378.

Supplementary

Figure 1. Calibration curve for the spectrophotometric quantification of total phenolic content, expressed as gallic acid equivalents (GAE).

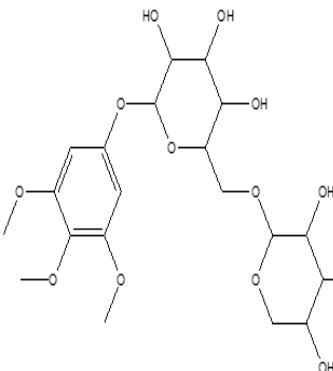
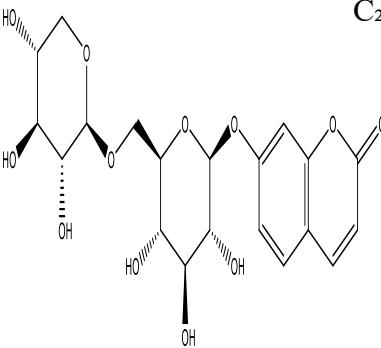
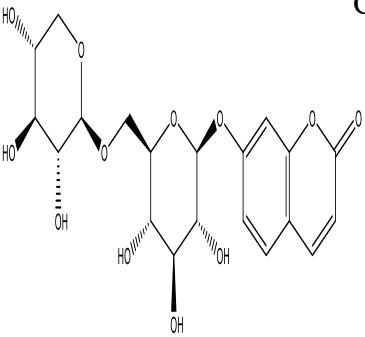




Figure 2. Calibration curve for the spectrophotometric quantification of total flavonoid content, expressed as Quercetin Equivalents milligram per gram (QE/mg/g).

Table 1. Chemical compounds of the Root extract of *Breonadia salicina*.

S/N	Structure of the compound	Molecular formula	Name of the compound	Molecular weight	RT/ min
1.		C ₉ H ₆ O ₃	4-Hydroxycoumarin	162.0305	5.84
2.		C ₁₆ H ₂₂ O ₁₀	Geniposidic acid	374.1210	3.75
3.		C ₂₅ H ₂₄ O ₁₂	4,5-Dicaffeoylquinic acid	516.1264	11.82
4.		C ₁₆ H ₁₈ O ₉	Chlorogenic acid	354.0949	4.12
5.		C ₉ H ₆ O ₃	7-Hydroxycoumarin e	162.0314	5.87

Continued on next page

S/N	Structure of the compound	Molecular formula	Name of the compound	Molecular weight	RT/ min
6.		C ₂₀ H ₃₀ O ₁₃	3,4,5-Trimethoxyphenyl-6-O-pentopyranosyl-β-D-glucopyranoside	500.1503	3.97
7.		C ₂₀ H ₂₄ O ₁₂	2-Oxo-2H-chromen-7-yl-6-O-β-xylopyranosyl-β-D-glucopyranoside	456.4 g/mol.	3.58
8.		C ₃₆ H ₅₈ O ₁₁	1-O-[2alpha,3beta,5xi,9xi,18xi,19alpha)-2,3,19,23-Tetrahydroxy-28-oxoolean-12-en-28-yl]-beta-D-glucopyranose	666.8 g/mol	3.61

AIMS Press

© 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (<http://creativecommons.org/licenses/by/4.0>)