Citation: Alexis M. Chambers, Jessica D. Payne. Neural Plasticity and Learning: The Consequences of Sleep[J]. AIMS Neuroscience, 2014, 1(2): 163-168. doi: 10.3934/Neuroscience.2014.2.163
[1] | Roediger HL. (1980) Memory metaphors in cognitive psychology. Mem Cogn 8: 231-246. doi: 10.3758/BF03197611 |
[2] | Hebb DO. (1949) The organization of behaviour. New York: Wiley. |
[3] | Cadonic C, Albensi BC. (2014) Oscillations and NMDA receptors: Their interplay create memories. AIMS Neurosci 1: 52-64. |
[4] | Bliss TVP, Lomo T. (1973) Long-lasting potentiation of synaptic transmission in dentate area of anesthetized rabbit following stimulation of perforant path. J Physiol Lond 232: 331-356. doi: 10.1113/jphysiol.1973.sp010273 |
[5] | Bliss TVP, Collingridge GL. (1993) A synaptic model of memory: Long-term potentiation in the hippocampus. Nature 361: 31-39. doi: 10.1038/361031a0 |
[6] | Dingledine R, Borges K, Bowie D, et al. (1999) The glutamate receptor ion channels. Pharmacol Rev 51: 7-61. |
[7] | Lisman J, Yasuda R, Raghavachari S. (2012) Mechanisms of CaMKII action in long-term potentiation. Nature Rev Neurosci 13: 169-181. |
[8] | Lynch MA. (2004) Long-term potentiation and memory. Physiol Rev 84: 87-136. doi: 10.1152/physrev.00014.2003 |
[9] | Whitlock JR, Heynen AJ, Shuler MG, et al. (2006) Learning induces long-term potentiation in the hippocampus. Science 313: 1093-1097. doi: 10.1126/science.1128134 |
[10] | Morris RG, Anderson E, Lynch GS, et al. (1986) Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature 319:774-776. doi: 10.1038/319774a0 |
[11] | Klimesch W. (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Res Rev 29: 169-195. doi: 10.1016/S0165-0173(98)00056-3 |
[12] | Hanslmayr S, Staudigl T. (2014) How brain oscillations form memories―A processing based perspective on oscillatory subsequent memory effects. NeuroImage 85: 648-655. doi: 10.1016/j.neuroimage.2013.05.121 |
[13] | Jacobsen RB, Ulrich D, Huguenard JR. (2001) GABA(B) and NMDA receptors contribute to spindle-like oscillations in rat thalamus in vitro. J Neurophysiol 86: 1365-1375. |
[14] | Korotkova T, Fuchs EC, Ponomarenko A, et al. (2010) NMDA receptor ablation on parvalbumin-positive interneurons impairs hippocampal synchrony, spatial representations, and working memory. Neuron 68: 557-569. doi: 10.1016/j.neuron.2010.09.017 |
[15] | Klimesch W. (1996) Memory processes, brain oscillations and EEG synchronization. Int J Psychophysiol 24: 61-100. doi: 10.1016/S0167-8760(96)00057-8 |
[16] | Hanslmayr S, Spitzer B, Bauml KH. (2009) Brain oscillations dissociate between semantic and nonsemantic encoding of episodic memories. Cereb Cortex 19: 1631-1640. doi: 10.1093/cercor/bhn197 |
[17] | Rechtschaffen A, Kales A. (1968) A manual of standardized terminology, techniques and scoring system for sleep stages in human subjects. Los Angeles: Brain Information Service/Brain Research Institute, University of California. |
[18] | Stickgold R, Hobson JA, Fosse R, et al. (2001) Sleep, learning, and dreams: Off-line memory reprocessing. Science 294: 1052-1057. doi: 10.1126/science.1063530 |
[19] | Abel T, Havekes R, Saletin JM, et al. (2013) Sleep, plasticity and memory from molecules to whole-brain networks. Curr Biol 23: R774-R788. doi: 10.1016/j.cub.2013.07.025 |
[20] | Montgomery SM, Sirota A, Buzsaki G. (2008) Theta and gamma coordination of hippocampal networks during waking and rapid eye movement sleep. J Neurosci 28: 6731-6741. doi: 10.1523/JNEUROSCI.1227-08.2008 |
[21] | Gais S, Rasch B, Wagner U, et al. (2008) Visual-procedural memory consolidation during sleep blocked by glutamatergic receptor antagonists. J Neurosci 28: 5513-5518. doi: 10.1523/JNEUROSCI.5374-07.2008 |
[22] | Aton SJ, Seibt J, Dumoulin M, et al. (2009) Mechanisms of sleep-dependent consolidation of cortical plasticity. Neuron 61: 454-466. doi: 10.1016/j.neuron.2009.01.007 |
[23] | Shimizu E, Tang YP, Rampon C, et al. (2000) NMDA receptor-dependent synaptic reinforcement as a crucial process for memory consolidation. Science 290: 1170-1174. doi: 10.1126/science.290.5494.1170 |
[24] | Fonseca R, Nagerl UV, Bonhoeffer T. (2006) Neuronal activity determines the protein synthesis dependence of long-term potentiation. Nature Neuro 9: 478-480. doi: 10.1038/nn1667 |
[25] | Frey U, Morris RGM. (1998) Synaptic tagging: Implications for late maintenance of hippocampal long-term potentiation. TINS 21: 181-188. |
[26] | Kopp C, Longordo F, Nicholson JR, et al. (2006) Insufficient sleep reversibly alters bidirectional synaptic plasticity and NMDA receptor function. J Neurosci 26: 12456-12465. doi: 10.1523/JNEUROSCI.2702-06.2006 |
[27] | Marshall L, Helgadottir H, Molle M, et al. (2006) Boosting slow oscillations during sleep potentiates memory. Nature 444: 610-613. doi: 10.1038/nature05278 |
[28] | Chauvette S, Seigneur J, Timofeev I. (2012) Sleep oscillations in the thalamocortical system induces long-term neuronal plasticity. Neuron 75: 1105-1113. doi: 10.1016/j.neuron.2012.08.034 |
[29] | Rosanova M, Ulrich D. (2005) Pattern-specific associative long-term potentiation induced by a sleep spindle-related spike train. J Neurosci 25: 9398-9405. doi: 10.1523/JNEUROSCI.2149-05.2005 |
[30] | Timofeev I, Grenier F, Bazhenov M, et al. (2000) Origin of slow cortical oscillations in deafferented cortical slabs. Cereb Cortex 10: 1185-1199. doi: 10.1093/cercor/10.12.1185 |
[31] | Werk CM, Harbour VL, Chapman CA. (2005) Induction of long-term potentiation leads to increased reliability of evoked neocortical spindles in vivo. Neuroscience 131: 793-800. doi: 10.1016/j.neuroscience.2004.12.020 |
[32] | Luo J, Phan TX, Yang Y, et al. (2013) Increases in camp, MAPK activity, and CREB phosphorylation during REM sleep: Implications for REM sleep and memory consolidation. J Neurosci 33: 6460-6468. doi: 10.1523/JNEUROSCI.5018-12.2013 |
[33] | Kocsis B. (2012) State-dependent increase of cortical gamma activity during REM sleep after selective blockade of NR2B subunit containing NMDA receptors. Sleep 35: 1011-1016. |
[34] | Corsi-Cabrera M, Sifuentes-Ortega R, Rosales-Lagarde A, et al. (2014) Enhanced synchronization of gamma activity between frontal lobes during REM sleep as a function of REM sleep deprivation in man. Exp Brain Res 232: 1497-1508. doi: 10.1007/s00221-013-3802-z |
[35] | Cissé Y, Crochet S, Timofeev I, et al. (2004) Synaptic enhancement induced through callosal pathways in cat association cortex. J Neurphysiol 92: 3221-3232 |
[36] | Lee AK, Wilson MA. (2002) Memory of sequential experience in the hippocampus during slow wave sleep. Neuron 36: 1183-1194. doi: 10.1016/S0896-6273(02)01096-6 |
[37] | Louie K, Wilson M. (2001) Temporally structured replay of awake hippocampal ensemble activity during rapid eye movement sleep. Neuron 29: 145-156. doi: 10.1016/S0896-6273(01)00186-6 |
[38] | Eschenko O, Ramadan W, Mölle M, et al. (2008) Sustained increase in hippocampal sharp-wave ripple activity during slow-wave sleep after learning. Learn Mem 15: 222-228. doi: 10.1101/lm.726008 |
[39] | Nishida M, Pearsall J, Buckner RL, et al. (2009) REM sleep, prefrontal theta, and the consolidation of human emotional memory. Cereb Cortex 19: 1158-1166. doi: 10.1093/cercor/bhn155 |
[40] | Buzsaki G. (1996) The hippocampo-neocortical dialogue. Cereb Cortex 6: 81-92. doi: 10.1093/cercor/6.2.81 |
[41] | Tononi G, Cirelli C. (2006) Sleep function and synaptic homeostasis. Sleep Med Rev 10: 49-62. doi: 10.1016/j.smrv.2005.05.002 |
[42] | Tononi G, Cirelli C. (2014) Sleep and the price of plasticity: From synaptic and cellular homeostasis to memory consolidation and integration. Neuron 81: 12-34. doi: 10.1016/j.neuron.2013.12.025 |
[43] | Wamsley EJ, Tucker MA, Shinn AK, et al. (2012) Reduced sleep spindles and spindle coherence in schizophrenia: Mechanisms of impaired memory consolidation? Biol Psychiat 71: 154-161. doi: 10.1016/j.biopsych.2011.08.008 |
[44] | Tekell JL, Hoffmann R, Hendrickse W, et al. (2005) High frequency EEG activity during sleep: characteristics in schizophrenia and depression. Clin EEG Neurosci 36: 25-35. doi: 10.1177/155005940503600107 |